aboutsummaryrefslogtreecommitdiff
path: root/src
diff options
context:
space:
mode:
authorfanquake <fanquake@gmail.com>2023-09-08 10:06:32 +0100
committerfanquake <fanquake@gmail.com>2023-09-08 10:24:03 +0100
commit4e1a38c6df91f96ca8a2ef07413ffdb1d59c30cc (patch)
treeb34b18a1ff5cd9d7e1d534951090d75dd5c5eda0 /src
parent238d29aff9b43234e340a9cf17742b2be5d1e97d (diff)
parentdb9888feec48c6220a2fcf92865503bbbdab02a4 (diff)
downloadbitcoin-4e1a38c6df91f96ca8a2ef07413ffdb1d59c30cc.tar.xz
Merge bitcoin/bitcoin#28196: BIP324 connection support
db9888feec48c6220a2fcf92865503bbbdab02a4 net: detect wrong-network V1 talking to V2Transport (Pieter Wuille) 91e1ef8684997fb4b3e8b64ef3935a936445066b test: add unit tests for V2Transport (Pieter Wuille) 297c8889975a18258d6cc39b1ec1e94fed6630fb net: make V2Transport preallocate receive buffer space (Pieter Wuille) 3ffa5fb49ee4a6d9502aa957093bd94058630282 net: make V2Transport send uniformly random number garbage bytes (Pieter Wuille) 0be752d9f8ca27320bc3e82498c7640fabd7e8de net: add short message encoding/decoding support to V2Transport (Pieter Wuille) 8da8642062fa2c7aa2f49995b832c3d0897e37ed net: make V2Transport auto-detect incoming V1 and fall back to it (Pieter Wuille) 13a7f01557272db652b3f333af3f06af6897253f net: add V2Transport class with subset of BIP324 functionality (Pieter Wuille) dc2d7eb810ef95b06620f334c198687579916435 crypto: Spanify EllSwiftPubKey constructor (Pieter Wuille) 5f4b2c6d79e81ee0445752ad558fcc17831f4b2f net: remove unused Transport::SetReceiveVersion (Pieter Wuille) c3fad1f29df093e8fd03d70eb43f25ee9d531bf7 net: add have_next_message argument to Transport::GetBytesToSend() (Pieter Wuille) Pull request description: This is part of #27634. This implements the BIP324 v2 transport (which implements all of what the BIP calls transport layer *and* application layer), though in a non-exposed way. It is tested through an extensive fuzz test, which verifies that v2 transports can talk to v2 transports, and v1 transports can talk to v2 transports, and a unit test that exercises a number of unusual scenarios. The transport is functionally complete, including: * Autodetection of incoming V1 connections. * Garbage, both sending and receiving. * Short message type IDs, both sending and receiving. * Ignore packets (receiving only, but tested in a unit test). * Session IDs are visible in `getpeerinfo` output (for manual comparison). Things that are not included, left for future PRs, are: * Actually using the v2 transport for connections. * Support for the `NODE_P2P_V2` service flag. * Retrying downgrade to V1 when attempted outbound V2 connections immediately fail. * P2P functional and unit tests ACKs for top commit: naumenkogs: ACK db9888feec48c6220a2fcf92865503bbbdab02a4 theStack: re-ACK db9888feec48c6220a2fcf92865503bbbdab02a4 mzumsande: Code Review ACK db9888feec48c6220a2fcf92865503bbbdab02a4 Tree-SHA512: 8906ac1e733a99e1f31c9111055611f706d80bbfc2edf6a07fa6e47b21bb65baacd1ff17993cbbf588063b2f5ad30b3af674a50c7bc8e8ebf4671483a21bbfeb
Diffstat (limited to 'src')
-rw-r--r--src/net.cpp705
-rw-r--r--src/net.h267
-rw-r--r--src/pubkey.cpp6
-rw-r--r--src/pubkey.h3
-rw-r--r--src/test/bip324_tests.cpp10
-rw-r--r--src/test/denialofservice_tests.cpp4
-rw-r--r--src/test/fuzz/p2p_transport_serialization.cpp91
-rw-r--r--src/test/net_tests.cpp527
-rw-r--r--src/test/util/net.cpp4
9 files changed, 1558 insertions, 59 deletions
diff --git a/src/net.cpp b/src/net.cpp
index 4addca0982..3955005dfa 100644
--- a/src/net.cpp
+++ b/src/net.cpp
@@ -867,20 +867,22 @@ bool V1Transport::SetMessageToSend(CSerializedNetMsg& msg) noexcept
return true;
}
-Transport::BytesToSend V1Transport::GetBytesToSend() const noexcept
+Transport::BytesToSend V1Transport::GetBytesToSend(bool have_next_message) const noexcept
{
AssertLockNotHeld(m_send_mutex);
LOCK(m_send_mutex);
if (m_sending_header) {
return {Span{m_header_to_send}.subspan(m_bytes_sent),
- // We have more to send after the header if the message has payload.
- !m_message_to_send.data.empty(),
+ // We have more to send after the header if the message has payload, or if there
+ // is a next message after that.
+ have_next_message || !m_message_to_send.data.empty(),
m_message_to_send.m_type
};
} else {
return {Span{m_message_to_send.data}.subspan(m_bytes_sent),
- // We never have more to send after this message's payload.
- false,
+ // We only have more to send after this message's payload if there is another
+ // message.
+ have_next_message,
m_message_to_send.m_type
};
}
@@ -911,16 +913,676 @@ size_t V1Transport::GetSendMemoryUsage() const noexcept
return m_message_to_send.GetMemoryUsage();
}
+namespace {
+
+/** List of short messages as defined in BIP324, in order.
+ *
+ * Only message types that are actually implemented in this codebase need to be listed, as other
+ * messages get ignored anyway - whether we know how to decode them or not.
+ */
+const std::array<std::string, 33> V2_MESSAGE_IDS = {
+ "", // 12 bytes follow encoding the message type like in V1
+ NetMsgType::ADDR,
+ NetMsgType::BLOCK,
+ NetMsgType::BLOCKTXN,
+ NetMsgType::CMPCTBLOCK,
+ NetMsgType::FEEFILTER,
+ NetMsgType::FILTERADD,
+ NetMsgType::FILTERCLEAR,
+ NetMsgType::FILTERLOAD,
+ NetMsgType::GETBLOCKS,
+ NetMsgType::GETBLOCKTXN,
+ NetMsgType::GETDATA,
+ NetMsgType::GETHEADERS,
+ NetMsgType::HEADERS,
+ NetMsgType::INV,
+ NetMsgType::MEMPOOL,
+ NetMsgType::MERKLEBLOCK,
+ NetMsgType::NOTFOUND,
+ NetMsgType::PING,
+ NetMsgType::PONG,
+ NetMsgType::SENDCMPCT,
+ NetMsgType::TX,
+ NetMsgType::GETCFILTERS,
+ NetMsgType::CFILTER,
+ NetMsgType::GETCFHEADERS,
+ NetMsgType::CFHEADERS,
+ NetMsgType::GETCFCHECKPT,
+ NetMsgType::CFCHECKPT,
+ NetMsgType::ADDRV2,
+ // Unimplemented message types that are assigned in BIP324:
+ "",
+ "",
+ "",
+ ""
+};
+
+class V2MessageMap
+{
+ std::unordered_map<std::string, uint8_t> m_map;
+
+public:
+ V2MessageMap() noexcept
+ {
+ for (size_t i = 1; i < std::size(V2_MESSAGE_IDS); ++i) {
+ m_map.emplace(V2_MESSAGE_IDS[i], i);
+ }
+ }
+
+ std::optional<uint8_t> operator()(const std::string& message_name) const noexcept
+ {
+ auto it = m_map.find(message_name);
+ if (it == m_map.end()) return std::nullopt;
+ return it->second;
+ }
+};
+
+const V2MessageMap V2_MESSAGE_MAP;
+
+} // namespace
+
+V2Transport::V2Transport(NodeId nodeid, bool initiating, int type_in, int version_in) noexcept :
+ m_cipher{}, m_initiating{initiating}, m_nodeid{nodeid},
+ m_v1_fallback{nodeid, type_in, version_in}, m_recv_type{type_in}, m_recv_version{version_in},
+ m_recv_state{initiating ? RecvState::KEY : RecvState::KEY_MAYBE_V1},
+ m_send_state{initiating ? SendState::AWAITING_KEY : SendState::MAYBE_V1}
+{
+ // Construct garbage (including its length) using a FastRandomContext.
+ FastRandomContext rng;
+ size_t garbage_len = rng.randrange(MAX_GARBAGE_LEN + 1);
+ // Initialize the send buffer with ellswift pubkey + garbage.
+ m_send_buffer.resize(EllSwiftPubKey::size() + garbage_len);
+ std::copy(std::begin(m_cipher.GetOurPubKey()), std::end(m_cipher.GetOurPubKey()), MakeWritableByteSpan(m_send_buffer).begin());
+ rng.fillrand(MakeWritableByteSpan(m_send_buffer).subspan(EllSwiftPubKey::size()));
+}
+
+V2Transport::V2Transport(NodeId nodeid, bool initiating, int type_in, int version_in, const CKey& key, Span<const std::byte> ent32, Span<const uint8_t> garbage) noexcept :
+ m_cipher{key, ent32}, m_initiating{initiating}, m_nodeid{nodeid},
+ m_v1_fallback{nodeid, type_in, version_in}, m_recv_type{type_in}, m_recv_version{version_in},
+ m_recv_state{initiating ? RecvState::KEY : RecvState::KEY_MAYBE_V1},
+ m_send_state{initiating ? SendState::AWAITING_KEY : SendState::MAYBE_V1}
+{
+ assert(garbage.size() <= MAX_GARBAGE_LEN);
+ // Initialize the send buffer with ellswift pubkey + provided garbage.
+ m_send_buffer.resize(EllSwiftPubKey::size() + garbage.size());
+ std::copy(std::begin(m_cipher.GetOurPubKey()), std::end(m_cipher.GetOurPubKey()), MakeWritableByteSpan(m_send_buffer).begin());
+ std::copy(garbage.begin(), garbage.end(), m_send_buffer.begin() + EllSwiftPubKey::size());
+}
+
+void V2Transport::SetReceiveState(RecvState recv_state) noexcept
+{
+ AssertLockHeld(m_recv_mutex);
+ // Enforce allowed state transitions.
+ switch (m_recv_state) {
+ case RecvState::KEY_MAYBE_V1:
+ Assume(recv_state == RecvState::KEY || recv_state == RecvState::V1);
+ break;
+ case RecvState::KEY:
+ Assume(recv_state == RecvState::GARB_GARBTERM);
+ break;
+ case RecvState::GARB_GARBTERM:
+ Assume(recv_state == RecvState::GARBAUTH);
+ break;
+ case RecvState::GARBAUTH:
+ Assume(recv_state == RecvState::VERSION);
+ break;
+ case RecvState::VERSION:
+ Assume(recv_state == RecvState::APP);
+ break;
+ case RecvState::APP:
+ Assume(recv_state == RecvState::APP_READY);
+ break;
+ case RecvState::APP_READY:
+ Assume(recv_state == RecvState::APP);
+ break;
+ case RecvState::V1:
+ Assume(false); // V1 state cannot be left
+ break;
+ }
+ // Change state.
+ m_recv_state = recv_state;
+}
+
+void V2Transport::SetSendState(SendState send_state) noexcept
+{
+ AssertLockHeld(m_send_mutex);
+ // Enforce allowed state transitions.
+ switch (m_send_state) {
+ case SendState::MAYBE_V1:
+ Assume(send_state == SendState::V1 || send_state == SendState::AWAITING_KEY);
+ break;
+ case SendState::AWAITING_KEY:
+ Assume(send_state == SendState::READY);
+ break;
+ case SendState::READY:
+ case SendState::V1:
+ Assume(false); // Final states
+ break;
+ }
+ // Change state.
+ m_send_state = send_state;
+}
+
+bool V2Transport::ReceivedMessageComplete() const noexcept
+{
+ AssertLockNotHeld(m_recv_mutex);
+ LOCK(m_recv_mutex);
+ if (m_recv_state == RecvState::V1) return m_v1_fallback.ReceivedMessageComplete();
+
+ return m_recv_state == RecvState::APP_READY;
+}
+
+void V2Transport::ProcessReceivedMaybeV1Bytes() noexcept
+{
+ AssertLockHeld(m_recv_mutex);
+ AssertLockNotHeld(m_send_mutex);
+ Assume(m_recv_state == RecvState::KEY_MAYBE_V1);
+ // We still have to determine if this is a v1 or v2 connection. The bytes being received could
+ // be the beginning of either a v1 packet (network magic + "version\x00"), or of a v2 public
+ // key. BIP324 specifies that a mismatch with this 12-byte string should trigger sending of the
+ // key.
+ std::array<uint8_t, V1_PREFIX_LEN> v1_prefix = {0, 0, 0, 0, 'v', 'e', 'r', 's', 'i', 'o', 'n', 0};
+ std::copy(std::begin(Params().MessageStart()), std::end(Params().MessageStart()), v1_prefix.begin());
+ Assume(m_recv_buffer.size() <= v1_prefix.size());
+ if (!std::equal(m_recv_buffer.begin(), m_recv_buffer.end(), v1_prefix.begin())) {
+ // Mismatch with v1 prefix, so we can assume a v2 connection.
+ SetReceiveState(RecvState::KEY); // Convert to KEY state, leaving received bytes around.
+ // Transition the sender to AWAITING_KEY state (if not already).
+ LOCK(m_send_mutex);
+ SetSendState(SendState::AWAITING_KEY);
+ } else if (m_recv_buffer.size() == v1_prefix.size()) {
+ // Full match with the v1 prefix, so fall back to v1 behavior.
+ LOCK(m_send_mutex);
+ Span<const uint8_t> feedback{m_recv_buffer};
+ // Feed already received bytes to v1 transport. It should always accept these, because it's
+ // less than the size of a v1 header, and these are the first bytes fed to m_v1_fallback.
+ bool ret = m_v1_fallback.ReceivedBytes(feedback);
+ Assume(feedback.empty());
+ Assume(ret);
+ SetReceiveState(RecvState::V1);
+ SetSendState(SendState::V1);
+ // Reset v2 transport buffers to save memory.
+ m_recv_buffer = {};
+ m_send_buffer = {};
+ } else {
+ // We have not received enough to distinguish v1 from v2 yet. Wait until more bytes come.
+ }
+}
+
+bool V2Transport::ProcessReceivedKeyBytes() noexcept
+{
+ AssertLockHeld(m_recv_mutex);
+ AssertLockNotHeld(m_send_mutex);
+ Assume(m_recv_state == RecvState::KEY);
+ Assume(m_recv_buffer.size() <= EllSwiftPubKey::size());
+
+ // As a special exception, if bytes 4-16 of the key on a responder connection match the
+ // corresponding bytes of a V1 version message, but bytes 0-4 don't match the network magic
+ // (if they did, we'd have switched to V1 state already), assume this is a peer from
+ // another network, and disconnect them. They will almost certainly disconnect us too when
+ // they receive our uniformly random key and garbage, but detecting this case specially
+ // means we can log it.
+ static constexpr std::array<uint8_t, 12> MATCH = {'v', 'e', 'r', 's', 'i', 'o', 'n', 0, 0, 0, 0, 0};
+ static constexpr size_t OFFSET = sizeof(CMessageHeader::MessageStartChars);
+ if (!m_initiating && m_recv_buffer.size() >= OFFSET + MATCH.size()) {
+ if (std::equal(MATCH.begin(), MATCH.end(), m_recv_buffer.begin() + OFFSET)) {
+ LogPrint(BCLog::NET, "V2 transport error: V1 peer with wrong MessageStart %s\n",
+ HexStr(Span(m_recv_buffer).first(OFFSET)));
+ return false;
+ }
+ }
+
+ if (m_recv_buffer.size() == EllSwiftPubKey::size()) {
+ // Other side's key has been fully received, and can now be Diffie-Hellman combined with
+ // our key to initialize the encryption ciphers.
+
+ // Initialize the ciphers.
+ EllSwiftPubKey ellswift(MakeByteSpan(m_recv_buffer));
+ LOCK(m_send_mutex);
+ m_cipher.Initialize(ellswift, m_initiating);
+
+ // Switch receiver state to GARB_GARBTERM.
+ SetReceiveState(RecvState::GARB_GARBTERM);
+ m_recv_buffer.clear();
+
+ // Switch sender state to READY.
+ SetSendState(SendState::READY);
+
+ // Append the garbage terminator to the send buffer.
+ size_t garbage_len = m_send_buffer.size() - EllSwiftPubKey::size();
+ m_send_buffer.resize(m_send_buffer.size() + BIP324Cipher::GARBAGE_TERMINATOR_LEN);
+ std::copy(m_cipher.GetSendGarbageTerminator().begin(),
+ m_cipher.GetSendGarbageTerminator().end(),
+ MakeWritableByteSpan(m_send_buffer).last(BIP324Cipher::GARBAGE_TERMINATOR_LEN).begin());
+
+ // Construct garbage authentication packet in the send buffer (using the garbage data which
+ // is still there).
+ m_send_buffer.resize(m_send_buffer.size() + BIP324Cipher::EXPANSION);
+ m_cipher.Encrypt(
+ /*contents=*/{},
+ /*aad=*/MakeByteSpan(m_send_buffer).subspan(EllSwiftPubKey::size(), garbage_len),
+ /*ignore=*/false,
+ /*output=*/MakeWritableByteSpan(m_send_buffer).last(BIP324Cipher::EXPANSION));
+
+ // Construct version packet in the send buffer.
+ m_send_buffer.resize(m_send_buffer.size() + BIP324Cipher::EXPANSION + VERSION_CONTENTS.size());
+ m_cipher.Encrypt(
+ /*contents=*/VERSION_CONTENTS,
+ /*aad=*/{},
+ /*ignore=*/false,
+ /*output=*/MakeWritableByteSpan(m_send_buffer).last(BIP324Cipher::EXPANSION + VERSION_CONTENTS.size()));
+ } else {
+ // We still have to receive more key bytes.
+ }
+ return true;
+}
+
+bool V2Transport::ProcessReceivedGarbageBytes() noexcept
+{
+ AssertLockHeld(m_recv_mutex);
+ Assume(m_recv_state == RecvState::GARB_GARBTERM);
+ Assume(m_recv_buffer.size() <= MAX_GARBAGE_LEN + BIP324Cipher::GARBAGE_TERMINATOR_LEN);
+ if (m_recv_buffer.size() >= BIP324Cipher::GARBAGE_TERMINATOR_LEN) {
+ if (MakeByteSpan(m_recv_buffer).last(BIP324Cipher::GARBAGE_TERMINATOR_LEN) == m_cipher.GetReceiveGarbageTerminator()) {
+ // Garbage terminator received. Switch to receiving garbage authentication packet.
+ m_recv_garbage = std::move(m_recv_buffer);
+ m_recv_garbage.resize(m_recv_garbage.size() - BIP324Cipher::GARBAGE_TERMINATOR_LEN);
+ m_recv_buffer.clear();
+ SetReceiveState(RecvState::GARBAUTH);
+ } else if (m_recv_buffer.size() == MAX_GARBAGE_LEN + BIP324Cipher::GARBAGE_TERMINATOR_LEN) {
+ // We've reached the maximum length for garbage + garbage terminator, and the
+ // terminator still does not match. Abort.
+ LogPrint(BCLog::NET, "V2 transport error: missing garbage terminator, peer=%d\n", m_nodeid);
+ return false;
+ } else {
+ // We still need to receive more garbage and/or garbage terminator bytes.
+ }
+ } else {
+ // We have less than GARBAGE_TERMINATOR_LEN (16) bytes, so we certainly need to receive
+ // more first.
+ }
+ return true;
+}
+
+bool V2Transport::ProcessReceivedPacketBytes() noexcept
+{
+ AssertLockHeld(m_recv_mutex);
+ Assume(m_recv_state == RecvState::GARBAUTH || m_recv_state == RecvState::VERSION ||
+ m_recv_state == RecvState::APP);
+
+ // The maximum permitted contents length for a packet, consisting of:
+ // - 0x00 byte: indicating long message type encoding
+ // - 12 bytes of message type
+ // - payload
+ static constexpr size_t MAX_CONTENTS_LEN =
+ 1 + CMessageHeader::COMMAND_SIZE +
+ std::min<size_t>(MAX_SIZE, MAX_PROTOCOL_MESSAGE_LENGTH);
+
+ if (m_recv_buffer.size() == BIP324Cipher::LENGTH_LEN) {
+ // Length descriptor received.
+ m_recv_len = m_cipher.DecryptLength(MakeByteSpan(m_recv_buffer));
+ if (m_recv_len > MAX_CONTENTS_LEN) {
+ LogPrint(BCLog::NET, "V2 transport error: packet too large (%u bytes), peer=%d\n", m_recv_len, m_nodeid);
+ return false;
+ }
+ } else if (m_recv_buffer.size() > BIP324Cipher::LENGTH_LEN && m_recv_buffer.size() == m_recv_len + BIP324Cipher::EXPANSION) {
+ // Ciphertext received, decrypt it into m_recv_decode_buffer.
+ // Note that it is impossible to reach this branch without hitting the branch above first,
+ // as GetMaxBytesToProcess only allows up to LENGTH_LEN into the buffer before that point.
+ m_recv_decode_buffer.resize(m_recv_len);
+ bool ignore{false};
+ Span<const std::byte> aad;
+ if (m_recv_state == RecvState::GARBAUTH) aad = MakeByteSpan(m_recv_garbage);
+ bool ret = m_cipher.Decrypt(
+ /*input=*/MakeByteSpan(m_recv_buffer).subspan(BIP324Cipher::LENGTH_LEN),
+ /*aad=*/aad,
+ /*ignore=*/ignore,
+ /*contents=*/MakeWritableByteSpan(m_recv_decode_buffer));
+ if (!ret) {
+ LogPrint(BCLog::NET, "V2 transport error: packet decryption failure (%u bytes), peer=%d\n", m_recv_len, m_nodeid);
+ return false;
+ }
+ // Feed the last 4 bytes of the Poly1305 authentication tag (and its timing) into our RNG.
+ RandAddEvent(ReadLE32(m_recv_buffer.data() + m_recv_buffer.size() - 4));
+
+ // At this point we have a valid packet decrypted into m_recv_decode_buffer. Depending on
+ // the current state, decide what to do with it.
+ switch (m_recv_state) {
+ case RecvState::GARBAUTH:
+ // Ignore flag does not matter for garbage authentication. Any valid packet functions
+ // as authentication. Receive and process the version packet next.
+ SetReceiveState(RecvState::VERSION);
+ m_recv_garbage = {};
+ break;
+ case RecvState::VERSION:
+ if (!ignore) {
+ // Version message received; transition to application phase. The contents is
+ // ignored, but can be used for future extensions.
+ SetReceiveState(RecvState::APP);
+ }
+ break;
+ case RecvState::APP:
+ if (!ignore) {
+ // Application message decrypted correctly. It can be extracted using GetMessage().
+ SetReceiveState(RecvState::APP_READY);
+ }
+ break;
+ default:
+ // Any other state is invalid (this function should not have been called).
+ Assume(false);
+ }
+ // Wipe the receive buffer where the next packet will be received into.
+ m_recv_buffer = {};
+ // In all but APP_READY state, we can wipe the decoded contents.
+ if (m_recv_state != RecvState::APP_READY) m_recv_decode_buffer = {};
+ } else {
+ // We either have less than 3 bytes, so we don't know the packet's length yet, or more
+ // than 3 bytes but less than the packet's full ciphertext. Wait until those arrive.
+ }
+ return true;
+}
+
+size_t V2Transport::GetMaxBytesToProcess() noexcept
+{
+ AssertLockHeld(m_recv_mutex);
+ switch (m_recv_state) {
+ case RecvState::KEY_MAYBE_V1:
+ // During the KEY_MAYBE_V1 state we do not allow more than the length of v1 prefix into the
+ // receive buffer.
+ Assume(m_recv_buffer.size() <= V1_PREFIX_LEN);
+ // As long as we're not sure if this is a v1 or v2 connection, don't receive more than what
+ // is strictly necessary to distinguish the two (12 bytes). If we permitted more than
+ // the v1 header size (24 bytes), we may not be able to feed the already-received bytes
+ // back into the m_v1_fallback V1 transport.
+ return V1_PREFIX_LEN - m_recv_buffer.size();
+ case RecvState::KEY:
+ // During the KEY state, we only allow the 64-byte key into the receive buffer.
+ Assume(m_recv_buffer.size() <= EllSwiftPubKey::size());
+ // As long as we have not received the other side's public key, don't receive more than
+ // that (64 bytes), as garbage follows, and locating the garbage terminator requires the
+ // key exchange first.
+ return EllSwiftPubKey::size() - m_recv_buffer.size();
+ case RecvState::GARB_GARBTERM:
+ // Process garbage bytes one by one (because terminator may appear anywhere).
+ return 1;
+ case RecvState::GARBAUTH:
+ case RecvState::VERSION:
+ case RecvState::APP:
+ // These three states all involve decoding a packet. Process the length descriptor first,
+ // so that we know where the current packet ends (and we don't process bytes from the next
+ // packet or decoy yet). Then, process the ciphertext bytes of the current packet.
+ if (m_recv_buffer.size() < BIP324Cipher::LENGTH_LEN) {
+ return BIP324Cipher::LENGTH_LEN - m_recv_buffer.size();
+ } else {
+ // Note that BIP324Cipher::EXPANSION is the total difference between contents size
+ // and encoded packet size, which includes the 3 bytes due to the packet length.
+ // When transitioning from receiving the packet length to receiving its ciphertext,
+ // the encrypted packet length is left in the receive buffer.
+ return BIP324Cipher::EXPANSION + m_recv_len - m_recv_buffer.size();
+ }
+ case RecvState::APP_READY:
+ // No bytes can be processed until GetMessage() is called.
+ return 0;
+ case RecvState::V1:
+ // Not allowed (must be dealt with by the caller).
+ Assume(false);
+ return 0;
+ }
+ Assume(false); // unreachable
+ return 0;
+}
+
+bool V2Transport::ReceivedBytes(Span<const uint8_t>& msg_bytes) noexcept
+{
+ AssertLockNotHeld(m_recv_mutex);
+ /** How many bytes to allocate in the receive buffer at most above what is received so far. */
+ static constexpr size_t MAX_RESERVE_AHEAD = 256 * 1024;
+
+ LOCK(m_recv_mutex);
+ if (m_recv_state == RecvState::V1) return m_v1_fallback.ReceivedBytes(msg_bytes);
+
+ // Process the provided bytes in msg_bytes in a loop. In each iteration a nonzero number of
+ // bytes (decided by GetMaxBytesToProcess) are taken from the beginning om msg_bytes, and
+ // appended to m_recv_buffer. Then, depending on the receiver state, one of the
+ // ProcessReceived*Bytes functions is called to process the bytes in that buffer.
+ while (!msg_bytes.empty()) {
+ // Decide how many bytes to copy from msg_bytes to m_recv_buffer.
+ size_t max_read = GetMaxBytesToProcess();
+
+ // Reserve space in the buffer if there is not enough.
+ if (m_recv_buffer.size() + std::min(msg_bytes.size(), max_read) > m_recv_buffer.capacity()) {
+ switch (m_recv_state) {
+ case RecvState::KEY_MAYBE_V1:
+ case RecvState::KEY:
+ case RecvState::GARB_GARBTERM:
+ // During the initial states (key/garbage), allocate once to fit the maximum (4111
+ // bytes).
+ m_recv_buffer.reserve(MAX_GARBAGE_LEN + BIP324Cipher::GARBAGE_TERMINATOR_LEN);
+ break;
+ case RecvState::GARBAUTH:
+ case RecvState::VERSION:
+ case RecvState::APP: {
+ // During states where a packet is being received, as much as is expected but never
+ // more than MAX_RESERVE_AHEAD bytes in addition to what is received so far.
+ // This means attackers that want to cause us to waste allocated memory are limited
+ // to MAX_RESERVE_AHEAD above the largest allowed message contents size, and to
+ // MAX_RESERVE_AHEAD more than they've actually sent us.
+ size_t alloc_add = std::min(max_read, msg_bytes.size() + MAX_RESERVE_AHEAD);
+ m_recv_buffer.reserve(m_recv_buffer.size() + alloc_add);
+ break;
+ }
+ case RecvState::APP_READY:
+ // The buffer is empty in this state.
+ Assume(m_recv_buffer.empty());
+ break;
+ case RecvState::V1:
+ // Should have bailed out above.
+ Assume(false);
+ break;
+ }
+ }
+
+ // Can't read more than provided input.
+ max_read = std::min(msg_bytes.size(), max_read);
+ // Copy data to buffer.
+ m_recv_buffer.insert(m_recv_buffer.end(), UCharCast(msg_bytes.data()), UCharCast(msg_bytes.data() + max_read));
+ msg_bytes = msg_bytes.subspan(max_read);
+
+ // Process data in the buffer.
+ switch (m_recv_state) {
+ case RecvState::KEY_MAYBE_V1:
+ ProcessReceivedMaybeV1Bytes();
+ if (m_recv_state == RecvState::V1) return true;
+ break;
+
+ case RecvState::KEY:
+ if (!ProcessReceivedKeyBytes()) return false;
+ break;
+
+ case RecvState::GARB_GARBTERM:
+ if (!ProcessReceivedGarbageBytes()) return false;
+ break;
+
+ case RecvState::GARBAUTH:
+ case RecvState::VERSION:
+ case RecvState::APP:
+ if (!ProcessReceivedPacketBytes()) return false;
+ break;
+
+ case RecvState::APP_READY:
+ return true;
+
+ case RecvState::V1:
+ // We should have bailed out before.
+ Assume(false);
+ break;
+ }
+ // Make sure we have made progress before continuing.
+ Assume(max_read > 0);
+ }
+
+ return true;
+}
+
+std::optional<std::string> V2Transport::GetMessageType(Span<const uint8_t>& contents) noexcept
+{
+ if (contents.size() == 0) return std::nullopt; // Empty contents
+ uint8_t first_byte = contents[0];
+ contents = contents.subspan(1); // Strip first byte.
+
+ if (first_byte != 0) {
+ // Short (1 byte) encoding.
+ if (first_byte < std::size(V2_MESSAGE_IDS)) {
+ // Valid short message id.
+ return V2_MESSAGE_IDS[first_byte];
+ } else {
+ // Unknown short message id.
+ return std::nullopt;
+ }
+ }
+
+ if (contents.size() < CMessageHeader::COMMAND_SIZE) {
+ return std::nullopt; // Long encoding needs 12 message type bytes.
+ }
+
+ size_t msg_type_len{0};
+ while (msg_type_len < CMessageHeader::COMMAND_SIZE && contents[msg_type_len] != 0) {
+ // Verify that message type bytes before the first 0x00 are in range.
+ if (contents[msg_type_len] < ' ' || contents[msg_type_len] > 0x7F) {
+ return {};
+ }
+ ++msg_type_len;
+ }
+ std::string ret{reinterpret_cast<const char*>(contents.data()), msg_type_len};
+ while (msg_type_len < CMessageHeader::COMMAND_SIZE) {
+ // Verify that message type bytes after the first 0x00 are also 0x00.
+ if (contents[msg_type_len] != 0) return {};
+ ++msg_type_len;
+ }
+ // Strip message type bytes of contents.
+ contents = contents.subspan(CMessageHeader::COMMAND_SIZE);
+ return {std::move(ret)};
+}
+
+CNetMessage V2Transport::GetReceivedMessage(std::chrono::microseconds time, bool& reject_message) noexcept
+{
+ AssertLockNotHeld(m_recv_mutex);
+ LOCK(m_recv_mutex);
+ if (m_recv_state == RecvState::V1) return m_v1_fallback.GetReceivedMessage(time, reject_message);
+
+ Assume(m_recv_state == RecvState::APP_READY);
+ Span<const uint8_t> contents{m_recv_decode_buffer};
+ auto msg_type = GetMessageType(contents);
+ CDataStream ret(m_recv_type, m_recv_version);
+ CNetMessage msg{std::move(ret)};
+ // Note that BIP324Cipher::EXPANSION also includes the length descriptor size.
+ msg.m_raw_message_size = m_recv_decode_buffer.size() + BIP324Cipher::EXPANSION;
+ if (msg_type) {
+ reject_message = false;
+ msg.m_type = std::move(*msg_type);
+ msg.m_time = time;
+ msg.m_message_size = contents.size();
+ msg.m_recv.resize(contents.size());
+ std::copy(contents.begin(), contents.end(), UCharCast(msg.m_recv.data()));
+ } else {
+ LogPrint(BCLog::NET, "V2 transport error: invalid message type (%u bytes contents), peer=%d\n", m_recv_decode_buffer.size(), m_nodeid);
+ reject_message = true;
+ }
+ m_recv_decode_buffer = {};
+ SetReceiveState(RecvState::APP);
+
+ return msg;
+}
+
+bool V2Transport::SetMessageToSend(CSerializedNetMsg& msg) noexcept
+{
+ AssertLockNotHeld(m_send_mutex);
+ LOCK(m_send_mutex);
+ if (m_send_state == SendState::V1) return m_v1_fallback.SetMessageToSend(msg);
+ // We only allow adding a new message to be sent when in the READY state (so the packet cipher
+ // is available) and the send buffer is empty. This limits the number of messages in the send
+ // buffer to just one, and leaves the responsibility for queueing them up to the caller.
+ if (!(m_send_state == SendState::READY && m_send_buffer.empty())) return false;
+ // Construct contents (encoding message type + payload).
+ std::vector<uint8_t> contents;
+ auto short_message_id = V2_MESSAGE_MAP(msg.m_type);
+ if (short_message_id) {
+ contents.resize(1 + msg.data.size());
+ contents[0] = *short_message_id;
+ std::copy(msg.data.begin(), msg.data.end(), contents.begin() + 1);
+ } else {
+ // Initialize with zeroes, and then write the message type string starting at offset 1.
+ // This means contents[0] and the unused positions in contents[1..13] remain 0x00.
+ contents.resize(1 + CMessageHeader::COMMAND_SIZE + msg.data.size(), 0);
+ std::copy(msg.m_type.begin(), msg.m_type.end(), contents.data() + 1);
+ std::copy(msg.data.begin(), msg.data.end(), contents.begin() + 1 + CMessageHeader::COMMAND_SIZE);
+ }
+ // Construct ciphertext in send buffer.
+ m_send_buffer.resize(contents.size() + BIP324Cipher::EXPANSION);
+ m_cipher.Encrypt(MakeByteSpan(contents), {}, false, MakeWritableByteSpan(m_send_buffer));
+ m_send_type = msg.m_type;
+ // Release memory
+ msg.data = {};
+ return true;
+}
+
+Transport::BytesToSend V2Transport::GetBytesToSend(bool have_next_message) const noexcept
+{
+ AssertLockNotHeld(m_send_mutex);
+ LOCK(m_send_mutex);
+ if (m_send_state == SendState::V1) return m_v1_fallback.GetBytesToSend(have_next_message);
+
+ // We do not send anything in MAYBE_V1 state (as we don't know if the peer is v1 or v2),
+ // despite there being data in the send buffer in that state.
+ if (m_send_state == SendState::MAYBE_V1) return {{}, false, m_send_type};
+ Assume(m_send_pos <= m_send_buffer.size());
+ return {
+ Span{m_send_buffer}.subspan(m_send_pos),
+ // We only have more to send after the current m_send_buffer if there is a (next)
+ // message to be sent, and we're capable of sending packets. */
+ have_next_message && m_send_state == SendState::READY,
+ m_send_type
+ };
+}
+
+void V2Transport::MarkBytesSent(size_t bytes_sent) noexcept
+{
+ AssertLockNotHeld(m_send_mutex);
+ LOCK(m_send_mutex);
+ if (m_send_state == SendState::V1) return m_v1_fallback.MarkBytesSent(bytes_sent);
+
+ m_send_pos += bytes_sent;
+ Assume(m_send_pos <= m_send_buffer.size());
+ // Only wipe the buffer when everything is sent in the READY state. In the AWAITING_KEY state
+ // we still need the garbage that's in the send buffer to construct the garbage authentication
+ // packet.
+ if (m_send_state == SendState::READY && m_send_pos == m_send_buffer.size()) {
+ m_send_pos = 0;
+ m_send_buffer = {};
+ }
+}
+
+size_t V2Transport::GetSendMemoryUsage() const noexcept
+{
+ AssertLockNotHeld(m_send_mutex);
+ LOCK(m_send_mutex);
+ if (m_send_state == SendState::V1) return m_v1_fallback.GetSendMemoryUsage();
+
+ return sizeof(m_send_buffer) + memusage::DynamicUsage(m_send_buffer);
+}
+
std::pair<size_t, bool> CConnman::SocketSendData(CNode& node) const
{
auto it = node.vSendMsg.begin();
size_t nSentSize = 0;
bool data_left{false}; //!< second return value (whether unsent data remains)
+ std::optional<bool> expected_more;
while (true) {
if (it != node.vSendMsg.end()) {
// If possible, move one message from the send queue to the transport. This fails when
- // there is an existing message still being sent.
+ // there is an existing message still being sent, or (for v2 transports) when the
+ // handshake has not yet completed.
size_t memusage = it->GetMemoryUsage();
if (node.m_transport->SetMessageToSend(*it)) {
// Update memory usage of send buffer (as *it will be deleted).
@@ -928,7 +1590,12 @@ std::pair<size_t, bool> CConnman::SocketSendData(CNode& node) const
++it;
}
}
- const auto& [data, more, msg_type] = node.m_transport->GetBytesToSend();
+ const auto& [data, more, msg_type] = node.m_transport->GetBytesToSend(it != node.vSendMsg.end());
+ // We rely on the 'more' value returned by GetBytesToSend to correctly predict whether more
+ // bytes are still to be sent, to correctly set the MSG_MORE flag. As a sanity check,
+ // verify that the previously returned 'more' was correct.
+ if (expected_more.has_value()) Assume(!data.empty() == *expected_more);
+ expected_more = more;
data_left = !data.empty(); // will be overwritten on next loop if all of data gets sent
int nBytes = 0;
if (!data.empty()) {
@@ -941,9 +1608,7 @@ std::pair<size_t, bool> CConnman::SocketSendData(CNode& node) const
}
int flags = MSG_NOSIGNAL | MSG_DONTWAIT;
#ifdef MSG_MORE
- // We have more to send if either the transport itself has more, or if we have more
- // messages to send.
- if (more || it != node.vSendMsg.end()) {
+ if (more) {
flags |= MSG_MORE;
}
#endif
@@ -1323,9 +1988,10 @@ Sock::EventsPerSock CConnman::GenerateWaitSockets(Span<CNode* const> nodes)
{
LOCK(pnode->cs_vSend);
// Sending is possible if either there are bytes to send right now, or if there will be
- // once a potential message from vSendMsg is handed to the transport.
- const auto& [to_send, _more, _msg_type] = pnode->m_transport->GetBytesToSend();
- select_send = !to_send.empty() || !pnode->vSendMsg.empty();
+ // once a potential message from vSendMsg is handed to the transport. GetBytesToSend
+ // determines both of these in a single call.
+ const auto& [to_send, more, _msg_type] = pnode->m_transport->GetBytesToSend(!pnode->vSendMsg.empty());
+ select_send = !to_send.empty() || more;
}
if (!select_recv && !select_send) continue;
@@ -3007,7 +3673,10 @@ void CConnman::PushMessage(CNode* pnode, CSerializedNetMsg&& msg)
size_t nBytesSent = 0;
{
LOCK(pnode->cs_vSend);
- const auto& [to_send, _more, _msg_type] = pnode->m_transport->GetBytesToSend();
+ // Check if the transport still has unsent bytes, and indicate to it that we're about to
+ // give it a message to send.
+ const auto& [to_send, more, _msg_type] =
+ pnode->m_transport->GetBytesToSend(/*have_next_message=*/true);
const bool queue_was_empty{to_send.empty() && pnode->vSendMsg.empty()};
// Update memory usage of send buffer.
@@ -3016,10 +3685,14 @@ void CConnman::PushMessage(CNode* pnode, CSerializedNetMsg&& msg)
// Move message to vSendMsg queue.
pnode->vSendMsg.push_back(std::move(msg));
- // If there was nothing to send before, attempt "optimistic write":
+ // If there was nothing to send before, and there is now (predicted by the "more" value
+ // returned by the GetBytesToSend call above), attempt "optimistic write":
// because the poll/select loop may pause for SELECT_TIMEOUT_MILLISECONDS before actually
// doing a send, try sending from the calling thread if the queue was empty before.
- if (queue_was_empty) {
+ // With a V1Transport, more will always be true here, because adding a message always
+ // results in sendable bytes there, but with V2Transport this is not the case (it may
+ // still be in the handshake).
+ if (queue_was_empty && more) {
std::tie(nBytesSent, std::ignore) = SocketSendData(*pnode);
}
}
diff --git a/src/net.h b/src/net.h
index 60a15fea55..cf7a240202 100644
--- a/src/net.h
+++ b/src/net.h
@@ -6,6 +6,7 @@
#ifndef BITCOIN_NET_H
#define BITCOIN_NET_H
+#include <bip324.h>
#include <chainparams.h>
#include <common/bloom.h>
#include <compat/compat.h>
@@ -266,8 +267,6 @@ public:
/** Returns true if the current message is complete (so GetReceivedMessage can be called). */
virtual bool ReceivedMessageComplete() const = 0;
- /** Set the deserialization context version for objects returned by GetReceivedMessage. */
- virtual void SetReceiveVersion(int version) = 0;
/** Feed wire bytes to the transport.
*
@@ -300,7 +299,8 @@ public:
* - Span<const uint8_t> to_send: span of bytes to be sent over the wire (possibly empty).
* - bool more: whether there will be more bytes to be sent after the ones in to_send are
* all sent (as signaled by MarkBytesSent()).
- * - const std::string& m_type: message type on behalf of which this is being sent.
+ * - const std::string& m_type: message type on behalf of which this is being sent
+ * ("" for bytes that are not on behalf of any message).
*/
using BytesToSend = std::tuple<
Span<const uint8_t> /*to_send*/,
@@ -308,19 +308,42 @@ public:
const std::string& /*m_type*/
>;
- /** Get bytes to send on the wire.
+ /** Get bytes to send on the wire, if any, along with other information about it.
*
* As a const function, it does not modify the transport's observable state, and is thus safe
* to be called multiple times.
*
- * The bytes returned by this function act as a stream which can only be appended to. This
- * means that with the exception of MarkBytesSent, operations on the transport can only append
- * to what is being returned.
+ * @param[in] have_next_message If true, the "more" return value reports whether more will
+ * be sendable after a SetMessageToSend call. It is set by the caller when they know
+ * they have another message ready to send, and only care about what happens
+ * after that. The have_next_message argument only affects this "more" return value
+ * and nothing else.
*
- * Note that m_type and to_send refer to data that is internal to the transport, and calling
- * any non-const function on this object may invalidate them.
+ * Effectively, there are three possible outcomes about whether there are more bytes
+ * to send:
+ * - Yes: the transport itself has more bytes to send later. For example, for
+ * V1Transport this happens during the sending of the header of a
+ * message, when there is a non-empty payload that follows.
+ * - No: the transport itself has no more bytes to send, but will have bytes to
+ * send if handed a message through SetMessageToSend. In V1Transport this
+ * happens when sending the payload of a message.
+ * - Blocked: the transport itself has no more bytes to send, and is also incapable
+ * of sending anything more at all now, if it were handed another
+ * message to send. This occurs in V2Transport before the handshake is
+ * complete, as the encryption ciphers are not set up for sending
+ * messages before that point.
+ *
+ * The boolean 'more' is true for Yes, false for Blocked, and have_next_message
+ * controls what is returned for No.
+ *
+ * @return a BytesToSend object. The to_send member returned acts as a stream which is only
+ * ever appended to. This means that with the exception of MarkBytesSent (which pops
+ * bytes off the front of later to_sends), operations on the transport can only append
+ * to what is being returned. Also note that m_type and to_send refer to data that is
+ * internal to the transport, and calling any non-const function on this object may
+ * invalidate them.
*/
- virtual BytesToSend GetBytesToSend() const noexcept = 0;
+ virtual BytesToSend GetBytesToSend(bool have_next_message) const noexcept = 0;
/** Report how many bytes returned by the last GetBytesToSend() have been sent.
*
@@ -392,14 +415,6 @@ public:
return WITH_LOCK(m_recv_mutex, return CompleteInternal());
}
- void SetReceiveVersion(int nVersionIn) override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex)
- {
- AssertLockNotHeld(m_recv_mutex);
- LOCK(m_recv_mutex);
- hdrbuf.SetVersion(nVersionIn);
- vRecv.SetVersion(nVersionIn);
- }
-
bool ReceivedBytes(Span<const uint8_t>& msg_bytes) override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex)
{
AssertLockNotHeld(m_recv_mutex);
@@ -416,7 +431,221 @@ public:
CNetMessage GetReceivedMessage(std::chrono::microseconds time, bool& reject_message) override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex);
bool SetMessageToSend(CSerializedNetMsg& msg) noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex);
- BytesToSend GetBytesToSend() const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex);
+ BytesToSend GetBytesToSend(bool have_next_message) const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex);
+ void MarkBytesSent(size_t bytes_sent) noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex);
+ size_t GetSendMemoryUsage() const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex);
+};
+
+class V2Transport final : public Transport
+{
+private:
+ /** Contents of the version packet to send. BIP324 stipulates that senders should leave this
+ * empty, and receivers should ignore it. Future extensions can change what is sent as long as
+ * an empty version packet contents is interpreted as no extensions supported. */
+ static constexpr std::array<std::byte, 0> VERSION_CONTENTS = {};
+
+ /** The length of the V1 prefix to match bytes initially received by responders with to
+ * determine if their peer is speaking V1 or V2. */
+ static constexpr size_t V1_PREFIX_LEN = 12;
+
+ // The sender side and receiver side of V2Transport are state machines that are transitioned
+ // through, based on what has been received. The receive state corresponds to the contents of,
+ // and bytes received to, the receive buffer. The send state controls what can be appended to
+ // the send buffer and what can be sent from it.
+
+ /** State type that defines the current contents of the receive buffer and/or how the next
+ * received bytes added to it will be interpreted.
+ *
+ * Diagram:
+ *
+ * start(responder)
+ * |
+ * | start(initiator) /---------\
+ * | | | |
+ * v v v |
+ * KEY_MAYBE_V1 -> KEY -> GARB_GARBTERM -> GARBAUTH -> VERSION -> APP -> APP_READY
+ * |
+ * \-------> V1
+ */
+ enum class RecvState : uint8_t {
+ /** (Responder only) either v2 public key or v1 header.
+ *
+ * This is the initial state for responders, before data has been received to distinguish
+ * v1 from v2 connections. When that happens, the state becomes either KEY (for v2) or V1
+ * (for v1). */
+ KEY_MAYBE_V1,
+
+ /** Public key.
+ *
+ * This is the initial state for initiators, during which the other side's public key is
+ * received. When that information arrives, the ciphers get initialized and the state
+ * becomes GARB_GARBTERM. */
+ KEY,
+
+ /** Garbage and garbage terminator.
+ *
+ * Whenever a byte is received, the last 16 bytes are compared with the expected garbage
+ * terminator. When that happens, the state becomes GARBAUTH. If no matching terminator is
+ * received in 4111 bytes (4095 for the maximum garbage length, and 16 bytes for the
+ * terminator), the connection aborts. */
+ GARB_GARBTERM,
+
+ /** Garbage authentication packet.
+ *
+ * A packet is received, and decrypted/verified with AAD set to the garbage received during
+ * the GARB_GARBTERM state. If that succeeds, the state becomes VERSION. If it fails the
+ * connection aborts. */
+ GARBAUTH,
+
+ /** Version packet.
+ *
+ * A packet is received, and decrypted/verified. If that succeeds, the state becomes APP,
+ * and the decrypted contents is interpreted as version negotiation (currently, that means
+ * ignoring it, but it can be used for negotiating future extensions). If it fails, the
+ * connection aborts. */
+ VERSION,
+
+ /** Application packet.
+ *
+ * A packet is received, and decrypted/verified. If that succeeds, the state becomes
+ * APP_READY and the decrypted contents is kept in m_recv_decode_buffer until it is
+ * retrieved as a message by GetMessage(). */
+ APP,
+
+ /** Nothing (an application packet is available for GetMessage()).
+ *
+ * Nothing can be received in this state. When the message is retrieved by GetMessage,
+ * the state becomes APP again. */
+ APP_READY,
+
+ /** Nothing (this transport is using v1 fallback).
+ *
+ * All receive operations are redirected to m_v1_fallback. */
+ V1,
+ };
+
+ /** State type that controls the sender side.
+ *
+ * Diagram:
+ *
+ * start(responder)
+ * |
+ * | start(initiator)
+ * | |
+ * v v
+ * MAYBE_V1 -> AWAITING_KEY -> READY
+ * |
+ * \-----> V1
+ */
+ enum class SendState : uint8_t {
+ /** (Responder only) Not sending until v1 or v2 is detected.
+ *
+ * This is the initial state for responders. The send buffer contains the public key to
+ * send, but nothing is sent in this state yet. When the receiver determines whether this
+ * is a V1 or V2 connection, the sender state becomes AWAITING_KEY (for v2) or V1 (for v1).
+ */
+ MAYBE_V1,
+
+ /** Waiting for the other side's public key.
+ *
+ * This is the initial state for initiators. The public key is sent out. When the receiver
+ * receives the other side's public key and transitions to GARB_GARBTERM, the sender state
+ * becomes READY. */
+ AWAITING_KEY,
+
+ /** Normal sending state.
+ *
+ * In this state, the ciphers are initialized, so packets can be sent. When this state is
+ * entered, the garbage, garbage terminator, garbage authentication packet, and version
+ * packet are appended to the send buffer (in addition to the key which may still be
+ * there). In this state a message can be provided if the send buffer is empty. */
+ READY,
+
+ /** This transport is using v1 fallback.
+ *
+ * All send operations are redirected to m_v1_fallback. */
+ V1,
+ };
+
+ /** Cipher state. */
+ BIP324Cipher m_cipher;
+ /** Whether we are the initiator side. */
+ const bool m_initiating;
+ /** NodeId (for debug logging). */
+ const NodeId m_nodeid;
+ /** Encapsulate a V1Transport to fall back to. */
+ V1Transport m_v1_fallback;
+
+ /** Lock for receiver-side fields. */
+ mutable Mutex m_recv_mutex ACQUIRED_BEFORE(m_send_mutex);
+ /** In {GARBAUTH, VERSION, APP}, the decrypted packet length, if m_recv_buffer.size() >=
+ * BIP324Cipher::LENGTH_LEN. Unspecified otherwise. */
+ uint32_t m_recv_len GUARDED_BY(m_recv_mutex) {0};
+ /** Receive buffer; meaning is determined by m_recv_state. */
+ std::vector<uint8_t> m_recv_buffer GUARDED_BY(m_recv_mutex);
+ /** During GARBAUTH, the garbage received during GARB_GARBTERM. */
+ std::vector<uint8_t> m_recv_garbage GUARDED_BY(m_recv_mutex);
+ /** Buffer to put decrypted contents in, for converting to CNetMessage. */
+ std::vector<uint8_t> m_recv_decode_buffer GUARDED_BY(m_recv_mutex);
+ /** Deserialization type. */
+ const int m_recv_type;
+ /** Deserialization version number. */
+ const int m_recv_version;
+ /** Current receiver state. */
+ RecvState m_recv_state GUARDED_BY(m_recv_mutex);
+
+ /** Lock for sending-side fields. If both sending and receiving fields are accessed,
+ * m_recv_mutex must be acquired before m_send_mutex. */
+ mutable Mutex m_send_mutex ACQUIRED_AFTER(m_recv_mutex);
+ /** The send buffer; meaning is determined by m_send_state. */
+ std::vector<uint8_t> m_send_buffer GUARDED_BY(m_send_mutex);
+ /** How many bytes from the send buffer have been sent so far. */
+ uint32_t m_send_pos GUARDED_BY(m_send_mutex) {0};
+ /** Type of the message being sent. */
+ std::string m_send_type GUARDED_BY(m_send_mutex);
+ /** Current sender state. */
+ SendState m_send_state GUARDED_BY(m_send_mutex);
+
+ /** Change the receive state. */
+ void SetReceiveState(RecvState recv_state) noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex);
+ /** Change the send state. */
+ void SetSendState(SendState send_state) noexcept EXCLUSIVE_LOCKS_REQUIRED(m_send_mutex);
+ /** Given a packet's contents, find the message type (if valid), and strip it from contents. */
+ static std::optional<std::string> GetMessageType(Span<const uint8_t>& contents) noexcept;
+ /** Determine how many received bytes can be processed in one go (not allowed in V1 state). */
+ size_t GetMaxBytesToProcess() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex);
+ /** Process bytes in m_recv_buffer, while in KEY_MAYBE_V1 state. */
+ void ProcessReceivedMaybeV1Bytes() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex, !m_send_mutex);
+ /** Process bytes in m_recv_buffer, while in KEY state. */
+ bool ProcessReceivedKeyBytes() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex, !m_send_mutex);
+ /** Process bytes in m_recv_buffer, while in GARB_GARBTERM state. */
+ bool ProcessReceivedGarbageBytes() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex);
+ /** Process bytes in m_recv_buffer, while in GARBAUTH/VERSION/APP state. */
+ bool ProcessReceivedPacketBytes() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex);
+
+public:
+ static constexpr uint32_t MAX_GARBAGE_LEN = 4095;
+
+ /** Construct a V2 transport with securely generated random keys.
+ *
+ * @param[in] nodeid the node's NodeId (only for debug log output).
+ * @param[in] initiating whether we are the initiator side.
+ * @param[in] type_in the serialization type of returned CNetMessages.
+ * @param[in] version_in the serialization version of returned CNetMessages.
+ */
+ V2Transport(NodeId nodeid, bool initiating, int type_in, int version_in) noexcept;
+
+ /** Construct a V2 transport with specified keys and garbage (test use only). */
+ V2Transport(NodeId nodeid, bool initiating, int type_in, int version_in, const CKey& key, Span<const std::byte> ent32, Span<const uint8_t> garbage) noexcept;
+
+ // Receive side functions.
+ bool ReceivedMessageComplete() const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex);
+ bool ReceivedBytes(Span<const uint8_t>& msg_bytes) noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex, !m_send_mutex);
+ CNetMessage GetReceivedMessage(std::chrono::microseconds time, bool& reject_message) noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex);
+
+ // Send side functions.
+ bool SetMessageToSend(CSerializedNetMsg& msg) noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex);
+ BytesToSend GetBytesToSend(bool have_next_message) const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex);
void MarkBytesSent(size_t bytes_sent) noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex);
size_t GetSendMemoryUsage() const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex);
};
diff --git a/src/pubkey.cpp b/src/pubkey.cpp
index 4866feed67..05808e4c22 100644
--- a/src/pubkey.cpp
+++ b/src/pubkey.cpp
@@ -336,6 +336,12 @@ bool CPubKey::Derive(CPubKey& pubkeyChild, ChainCode &ccChild, unsigned int nChi
return true;
}
+EllSwiftPubKey::EllSwiftPubKey(Span<const std::byte> ellswift) noexcept
+{
+ assert(ellswift.size() == SIZE);
+ std::copy(ellswift.begin(), ellswift.end(), m_pubkey.begin());
+}
+
CPubKey EllSwiftPubKey::Decode() const
{
secp256k1_pubkey pubkey;
diff --git a/src/pubkey.h b/src/pubkey.h
index 00defa25a0..274779f9a4 100644
--- a/src/pubkey.h
+++ b/src/pubkey.h
@@ -303,8 +303,7 @@ public:
EllSwiftPubKey() noexcept = default;
/** Construct a new ellswift public key from a given serialization. */
- EllSwiftPubKey(const std::array<std::byte, SIZE>& ellswift) :
- m_pubkey(ellswift) {}
+ EllSwiftPubKey(Span<const std::byte> ellswift) noexcept;
/** Decode to normal compressed CPubKey (for debugging purposes). */
CPubKey Decode() const;
diff --git a/src/test/bip324_tests.cpp b/src/test/bip324_tests.cpp
index 04472611ec..1ed7e23bcf 100644
--- a/src/test/bip324_tests.cpp
+++ b/src/test/bip324_tests.cpp
@@ -38,14 +38,8 @@ void TestBIP324PacketVector(
{
// Convert input from hex to char/byte vectors/arrays.
const auto in_priv_ours = ParseHex(in_priv_ours_hex);
- const auto in_ellswift_ours_vec = ParseHex<std::byte>(in_ellswift_ours_hex);
- assert(in_ellswift_ours_vec.size() == 64);
- std::array<std::byte, 64> in_ellswift_ours;
- std::copy(in_ellswift_ours_vec.begin(), in_ellswift_ours_vec.end(), in_ellswift_ours.begin());
- const auto in_ellswift_theirs_vec = ParseHex<std::byte>(in_ellswift_theirs_hex);
- assert(in_ellswift_theirs_vec.size() == 64);
- std::array<std::byte, 64> in_ellswift_theirs;
- std::copy(in_ellswift_theirs_vec.begin(), in_ellswift_theirs_vec.end(), in_ellswift_theirs.begin());
+ const auto in_ellswift_ours = ParseHex<std::byte>(in_ellswift_ours_hex);
+ const auto in_ellswift_theirs = ParseHex<std::byte>(in_ellswift_theirs_hex);
const auto in_contents = ParseHex<std::byte>(in_contents_hex);
const auto in_aad = ParseHex<std::byte>(in_aad_hex);
const auto mid_send_garbage = ParseHex<std::byte>(mid_send_garbage_hex);
diff --git a/src/test/denialofservice_tests.cpp b/src/test/denialofservice_tests.cpp
index 7f5d587cf6..8c1182b5e1 100644
--- a/src/test/denialofservice_tests.cpp
+++ b/src/test/denialofservice_tests.cpp
@@ -86,7 +86,7 @@ BOOST_AUTO_TEST_CASE(outbound_slow_chain_eviction)
{
LOCK(dummyNode1.cs_vSend);
- const auto& [to_send, _more, _msg_type] = dummyNode1.m_transport->GetBytesToSend();
+ const auto& [to_send, _more, _msg_type] = dummyNode1.m_transport->GetBytesToSend(false);
BOOST_CHECK(!to_send.empty());
}
connman.FlushSendBuffer(dummyNode1);
@@ -97,7 +97,7 @@ BOOST_AUTO_TEST_CASE(outbound_slow_chain_eviction)
BOOST_CHECK(peerman.SendMessages(&dummyNode1)); // should result in getheaders
{
LOCK(dummyNode1.cs_vSend);
- const auto& [to_send, _more, _msg_type] = dummyNode1.m_transport->GetBytesToSend();
+ const auto& [to_send, _more, _msg_type] = dummyNode1.m_transport->GetBytesToSend(false);
BOOST_CHECK(!to_send.empty());
}
// Wait 3 more minutes
diff --git a/src/test/fuzz/p2p_transport_serialization.cpp b/src/test/fuzz/p2p_transport_serialization.cpp
index 2fa5de5008..6e3ef2a707 100644
--- a/src/test/fuzz/p2p_transport_serialization.cpp
+++ b/src/test/fuzz/p2p_transport_serialization.cpp
@@ -25,6 +25,7 @@ std::vector<std::string> g_all_messages;
void initialize_p2p_transport_serialization()
{
+ ECC_Start();
SelectParams(ChainType::REGTEST);
g_all_messages = getAllNetMessageTypes();
std::sort(g_all_messages.begin(), g_all_messages.end());
@@ -92,7 +93,7 @@ FUZZ_TARGET(p2p_transport_serialization, .init = initialize_p2p_transport_serial
assert(queued);
std::optional<bool> known_more;
while (true) {
- const auto& [to_send, more, _msg_type] = send_transport.GetBytesToSend();
+ const auto& [to_send, more, _msg_type] = send_transport.GetBytesToSend(false);
if (known_more) assert(!to_send.empty() == *known_more);
if (to_send.empty()) break;
send_transport.MarkBytesSent(to_send.size());
@@ -124,11 +125,13 @@ void SimulationTest(Transport& initiator, Transport& responder, R& rng, FuzzedDa
// Vectors with bytes last returned by GetBytesToSend() on transport[i].
std::array<std::vector<uint8_t>, 2> to_send;
- // Last returned 'more' values (if still relevant) by transport[i]->GetBytesToSend().
- std::array<std::optional<bool>, 2> last_more;
+ // Last returned 'more' values (if still relevant) by transport[i]->GetBytesToSend(), for
+ // both have_next_message false and true.
+ std::array<std::optional<bool>, 2> last_more, last_more_next;
- // Whether more bytes to be sent are expected on transport[i].
- std::array<std::optional<bool>, 2> expect_more;
+ // Whether more bytes to be sent are expected on transport[i], before and after
+ // SetMessageToSend().
+ std::array<std::optional<bool>, 2> expect_more, expect_more_next;
// Function to consume a message type.
auto msg_type_fn = [&]() {
@@ -177,18 +180,27 @@ void SimulationTest(Transport& initiator, Transport& responder, R& rng, FuzzedDa
// Wrapper around transport[i]->GetBytesToSend() that performs sanity checks.
auto bytes_to_send_fn = [&](int side) -> Transport::BytesToSend {
- const auto& [bytes, more, msg_type] = transports[side]->GetBytesToSend();
+ // Invoke GetBytesToSend twice (for have_next_message = {false, true}). This function does
+ // not modify state (it's const), and only the "more" return value should differ between
+ // the calls.
+ const auto& [bytes, more_nonext, msg_type] = transports[side]->GetBytesToSend(false);
+ const auto& [bytes_next, more_next, msg_type_next] = transports[side]->GetBytesToSend(true);
// Compare with expected more.
if (expect_more[side].has_value()) assert(!bytes.empty() == *expect_more[side]);
+ // Verify consistency between the two results.
+ assert(bytes == bytes_next);
+ assert(msg_type == msg_type_next);
+ if (more_nonext) assert(more_next);
// Compare with previously reported output.
assert(to_send[side].size() <= bytes.size());
assert(to_send[side] == Span{bytes}.first(to_send[side].size()));
to_send[side].resize(bytes.size());
std::copy(bytes.begin(), bytes.end(), to_send[side].begin());
- // Remember 'more' result.
- last_more[side] = {more};
+ // Remember 'more' results.
+ last_more[side] = {more_nonext};
+ last_more_next[side] = {more_next};
// Return.
- return {bytes, more, msg_type};
+ return {bytes, more_nonext, msg_type};
};
// Function to make side send a new message.
@@ -199,7 +211,8 @@ void SimulationTest(Transport& initiator, Transport& responder, R& rng, FuzzedDa
CSerializedNetMsg msg = next_msg[side].Copy();
bool queued = transports[side]->SetMessageToSend(msg);
// Update expected more data.
- expect_more[side] = std::nullopt;
+ expect_more[side] = expect_more_next[side];
+ expect_more_next[side] = std::nullopt;
// Verify consistency of GetBytesToSend after SetMessageToSend
bytes_to_send_fn(/*side=*/side);
if (queued) {
@@ -223,6 +236,7 @@ void SimulationTest(Transport& initiator, Transport& responder, R& rng, FuzzedDa
// If all to-be-sent bytes were sent, move last_more data to expect_more data.
if (send_now == bytes.size()) {
expect_more[side] = last_more[side];
+ expect_more_next[side] = last_more_next[side];
}
// Remove the bytes from the last reported to-be-sent vector.
assert(to_send[side].size() >= send_now);
@@ -251,6 +265,7 @@ void SimulationTest(Transport& initiator, Transport& responder, R& rng, FuzzedDa
// Clear cached expected 'more' information: if certainly no more data was to be sent
// before, receiving bytes makes this uncertain.
if (expect_more[!side] == false) expect_more[!side] = std::nullopt;
+ if (expect_more_next[!side] == false) expect_more_next[!side] = std::nullopt;
// Verify consistency of GetBytesToSend after ReceivedBytes
bytes_to_send_fn(/*side=*/!side);
bool progress = to_recv.size() < old_len;
@@ -320,6 +335,40 @@ std::unique_ptr<Transport> MakeV1Transport(NodeId nodeid) noexcept
return std::make_unique<V1Transport>(nodeid, SER_NETWORK, INIT_PROTO_VERSION);
}
+template<typename RNG>
+std::unique_ptr<Transport> MakeV2Transport(NodeId nodeid, bool initiator, RNG& rng, FuzzedDataProvider& provider)
+{
+ // Retrieve key
+ auto key = ConsumePrivateKey(provider);
+ if (!key.IsValid()) return {};
+ // Construct garbage
+ size_t garb_len = provider.ConsumeIntegralInRange<size_t>(0, V2Transport::MAX_GARBAGE_LEN);
+ std::vector<uint8_t> garb;
+ if (garb_len <= 64) {
+ // When the garbage length is up to 64 bytes, read it directly from the fuzzer input.
+ garb = provider.ConsumeBytes<uint8_t>(garb_len);
+ garb.resize(garb_len);
+ } else {
+ // If it's longer, generate it from the RNG. This avoids having large amounts of
+ // (hopefully) irrelevant data needing to be stored in the fuzzer data.
+ for (auto& v : garb) v = uint8_t(rng());
+ }
+ // Retrieve entropy
+ auto ent = provider.ConsumeBytes<std::byte>(32);
+ ent.resize(32);
+ // Use as entropy SHA256(ent || garbage). This prevents a situation where the fuzzer manages to
+ // include the garbage terminator (which is a function of both ellswift keys) in the garbage.
+ // This is extremely unlikely (~2^-116) with random keys/garbage, but the fuzzer can choose
+ // both non-randomly and dependently. Since the entropy is hashed anyway inside the ellswift
+ // computation, no coverage should be lost by using a hash as entropy, and it removes the
+ // possibility of garbage that happens to contain what is effectively a hash of the keys.
+ CSHA256().Write(UCharCast(ent.data()), ent.size())
+ .Write(garb.data(), garb.size())
+ .Finalize(UCharCast(ent.data()));
+
+ return std::make_unique<V2Transport>(nodeid, initiator, SER_NETWORK, INIT_PROTO_VERSION, key, ent, garb);
+}
+
} // namespace
FUZZ_TARGET(p2p_transport_bidirectional, .init = initialize_p2p_transport_serialization)
@@ -332,3 +381,25 @@ FUZZ_TARGET(p2p_transport_bidirectional, .init = initialize_p2p_transport_serial
if (!t1 || !t2) return;
SimulationTest(*t1, *t2, rng, provider);
}
+
+FUZZ_TARGET(p2p_transport_bidirectional_v2, .init = initialize_p2p_transport_serialization)
+{
+ // Test with two V2 transports talking to each other.
+ FuzzedDataProvider provider{buffer.data(), buffer.size()};
+ XoRoShiRo128PlusPlus rng(provider.ConsumeIntegral<uint64_t>());
+ auto t1 = MakeV2Transport(NodeId{0}, true, rng, provider);
+ auto t2 = MakeV2Transport(NodeId{1}, false, rng, provider);
+ if (!t1 || !t2) return;
+ SimulationTest(*t1, *t2, rng, provider);
+}
+
+FUZZ_TARGET(p2p_transport_bidirectional_v1v2, .init = initialize_p2p_transport_serialization)
+{
+ // Test with a V1 initiator talking to a V2 responder.
+ FuzzedDataProvider provider{buffer.data(), buffer.size()};
+ XoRoShiRo128PlusPlus rng(provider.ConsumeIntegral<uint64_t>());
+ auto t1 = MakeV1Transport(NodeId{0});
+ auto t2 = MakeV2Transport(NodeId{1}, false, rng, provider);
+ if (!t1 || !t2) return;
+ SimulationTest(*t1, *t2, rng, provider);
+}
diff --git a/src/test/net_tests.cpp b/src/test/net_tests.cpp
index 295cb78b36..900e311d22 100644
--- a/src/test/net_tests.cpp
+++ b/src/test/net_tests.cpp
@@ -15,6 +15,7 @@
#include <serialize.h>
#include <span.h>
#include <streams.h>
+#include <test/util/random.h>
#include <test/util/setup_common.h>
#include <test/util/validation.h>
#include <timedata.h>
@@ -1005,4 +1006,530 @@ BOOST_AUTO_TEST_CASE(advertise_local_address)
RemoveLocal(addr_cjdns);
}
+namespace {
+
+/** A class for scenario-based tests of V2Transport
+ *
+ * Each V2TransportTester encapsulates a V2Transport (the one being tested), and can be told to
+ * interact with it. To do so, it also encapsulates a BIP324Cipher to act as the other side. A
+ * second V2Transport is not used, as doing so would not permit scenarios that involve sending
+ * invalid data, or ones scenarios using BIP324 features that are not implemented on the sending
+ * side (like decoy packets).
+ */
+class V2TransportTester
+{
+ V2Transport m_transport; //!< V2Transport being tested
+ BIP324Cipher m_cipher; //!< Cipher to help with the other side
+ bool m_test_initiator; //!< Whether m_transport is the initiator (true) or responder (false)
+
+ std::vector<uint8_t> m_sent_garbage; //!< The garbage we've sent to m_transport.
+ std::vector<uint8_t> m_to_send; //!< Bytes we have queued up to send to m_transport.
+ std::vector<uint8_t> m_received; //!< Bytes we have received from m_transport.
+ std::deque<CSerializedNetMsg> m_msg_to_send; //!< Messages to be sent *by* m_transport to us.
+
+public:
+ /** Construct a tester object. test_initiator: whether the tested transport is initiator. */
+ V2TransportTester(bool test_initiator) :
+ m_transport(0, test_initiator, SER_NETWORK, INIT_PROTO_VERSION),
+ m_test_initiator(test_initiator) {}
+
+ /** Data type returned by Interact:
+ *
+ * - std::nullopt: transport error occurred
+ * - otherwise: a vector of
+ * - std::nullopt: invalid message received
+ * - otherwise: a CNetMessage retrieved
+ */
+ using InteractResult = std::optional<std::vector<std::optional<CNetMessage>>>;
+
+ /** Send/receive scheduled/available bytes and messages.
+ *
+ * This is the only function that interacts with the transport being tested; everything else is
+ * scheduling things done by Interact(), or processing things learned by it.
+ */
+ InteractResult Interact()
+ {
+ std::vector<std::optional<CNetMessage>> ret;
+ while (true) {
+ bool progress{false};
+ // Send bytes from m_to_send to the transport.
+ if (!m_to_send.empty()) {
+ Span<const uint8_t> to_send = Span{m_to_send}.first(1 + InsecureRandRange(m_to_send.size()));
+ size_t old_len = to_send.size();
+ if (!m_transport.ReceivedBytes(to_send)) {
+ return std::nullopt; // transport error occurred
+ }
+ if (old_len != to_send.size()) {
+ progress = true;
+ m_to_send.erase(m_to_send.begin(), m_to_send.begin() + (old_len - to_send.size()));
+ }
+ }
+ // Retrieve messages received by the transport.
+ if (m_transport.ReceivedMessageComplete() && (!progress || InsecureRandBool())) {
+ bool reject{false};
+ auto msg = m_transport.GetReceivedMessage({}, reject);
+ if (reject) {
+ ret.push_back(std::nullopt);
+ } else {
+ ret.push_back(std::move(msg));
+ }
+ progress = true;
+ }
+ // Enqueue a message to be sent by the transport to us.
+ if (!m_msg_to_send.empty() && (!progress || InsecureRandBool())) {
+ if (m_transport.SetMessageToSend(m_msg_to_send.front())) {
+ m_msg_to_send.pop_front();
+ progress = true;
+ }
+ }
+ // Receive bytes from the transport.
+ const auto& [recv_bytes, _more, _msg_type] = m_transport.GetBytesToSend(!m_msg_to_send.empty());
+ if (!recv_bytes.empty() && (!progress || InsecureRandBool())) {
+ size_t to_receive = 1 + InsecureRandRange(recv_bytes.size());
+ m_received.insert(m_received.end(), recv_bytes.begin(), recv_bytes.begin() + to_receive);
+ progress = true;
+ m_transport.MarkBytesSent(to_receive);
+ }
+ if (!progress) break;
+ }
+ return ret;
+ }
+
+ /** Expose the cipher. */
+ BIP324Cipher& GetCipher() { return m_cipher; }
+
+ /** Schedule bytes to be sent to the transport. */
+ void Send(Span<const uint8_t> data)
+ {
+ m_to_send.insert(m_to_send.end(), data.begin(), data.end());
+ }
+
+ /** Send V1 version message header to the transport. */
+ void SendV1Version(const CMessageHeader::MessageStartChars& magic)
+ {
+ CMessageHeader hdr(magic, "version", 126 + InsecureRandRange(11));
+ CDataStream ser(SER_NETWORK, CLIENT_VERSION);
+ ser << hdr;
+ m_to_send.insert(m_to_send.end(), UCharCast(ser.data()), UCharCast(ser.data() + ser.size()));
+ }
+
+ /** Schedule bytes to be sent to the transport. */
+ void Send(Span<const std::byte> data) { Send(MakeUCharSpan(data)); }
+
+ /** Schedule our ellswift key to be sent to the transport. */
+ void SendKey() { Send(m_cipher.GetOurPubKey()); }
+
+ /** Schedule specified garbage to be sent to the transport. */
+ void SendGarbage(Span<const uint8_t> garbage)
+ {
+ // Remember the specified garbage (so we can use it for constructing the garbage
+ // authentication packet).
+ m_sent_garbage.assign(garbage.begin(), garbage.end());
+ // Schedule it for sending.
+ Send(m_sent_garbage);
+ }
+
+ /** Schedule garbage (of specified length) to be sent to the transport. */
+ void SendGarbage(size_t garbage_len)
+ {
+ // Generate random garbage and send it.
+ SendGarbage(g_insecure_rand_ctx.randbytes<uint8_t>(garbage_len));
+ }
+
+ /** Schedule garbage (with valid random length) to be sent to the transport. */
+ void SendGarbage()
+ {
+ SendGarbage(InsecureRandRange(V2Transport::MAX_GARBAGE_LEN + 1));
+ }
+
+ /** Schedule a message to be sent to us by the transport. */
+ void AddMessage(std::string m_type, std::vector<uint8_t> payload)
+ {
+ CSerializedNetMsg msg;
+ msg.m_type = std::move(m_type);
+ msg.data = std::move(payload);
+ m_msg_to_send.push_back(std::move(msg));
+ }
+
+ /** Expect ellswift key to have been received from transport and process it.
+ *
+ * Many other V2TransportTester functions cannot be called until after ReceiveKey() has been
+ * called, as no encryption keys are set up before that point.
+ */
+ void ReceiveKey()
+ {
+ // When processing a key, enough bytes need to have been received already.
+ BOOST_REQUIRE(m_received.size() >= EllSwiftPubKey::size());
+ // Initialize the cipher using it (acting as the opposite side of the tested transport).
+ m_cipher.Initialize(MakeByteSpan(m_received).first(EllSwiftPubKey::size()), !m_test_initiator);
+ // Strip the processed bytes off the front of the receive buffer.
+ m_received.erase(m_received.begin(), m_received.begin() + EllSwiftPubKey::size());
+ }
+
+ /** Schedule an encrypted packet with specified content/aad/ignore to be sent to transport
+ * (only after ReceiveKey). */
+ void SendPacket(Span<const uint8_t> content, Span<const uint8_t> aad = {}, bool ignore = false)
+ {
+ // Use cipher to construct ciphertext.
+ std::vector<std::byte> ciphertext;
+ ciphertext.resize(content.size() + BIP324Cipher::EXPANSION);
+ m_cipher.Encrypt(
+ /*contents=*/MakeByteSpan(content),
+ /*aad=*/MakeByteSpan(aad),
+ /*ignore=*/ignore,
+ /*output=*/ciphertext);
+ // Schedule it for sending.
+ Send(ciphertext);
+ }
+
+ /** Schedule garbage terminator and authentication packet to be sent to the transport (only
+ * after ReceiveKey). */
+ void SendGarbageTermAuth(size_t garb_auth_data_len = 0, bool garb_auth_ignore = false)
+ {
+ // Generate random data to include in the garbage authentication packet (ignored by peer).
+ auto garb_auth_data = g_insecure_rand_ctx.randbytes<uint8_t>(garb_auth_data_len);
+ // Schedule the garbage terminator to be sent.
+ Send(m_cipher.GetSendGarbageTerminator());
+ // Schedule the garbage authentication packet to be sent.
+ SendPacket(/*content=*/garb_auth_data, /*aad=*/m_sent_garbage, /*ignore=*/garb_auth_ignore);
+ }
+
+ /** Schedule version packet to be sent to the transport (only after ReceiveKey). */
+ void SendVersion(Span<const uint8_t> version_data = {}, bool vers_ignore = false)
+ {
+ SendPacket(/*content=*/version_data, /*aad=*/{}, /*ignore=*/vers_ignore);
+ }
+
+ /** Expect a packet to have been received from transport, process it, and return its contents
+ * (only after ReceiveKey). By default, decoys are skipped. */
+ std::vector<uint8_t> ReceivePacket(Span<const std::byte> aad = {}, bool skip_decoy = true)
+ {
+ std::vector<uint8_t> contents;
+ // Loop as long as there are ignored packets that are to be skipped.
+ while (true) {
+ // When processing a packet, at least enough bytes for its length descriptor must be received.
+ BOOST_REQUIRE(m_received.size() >= BIP324Cipher::LENGTH_LEN);
+ // Decrypt the content length.
+ size_t size = m_cipher.DecryptLength(MakeByteSpan(Span{m_received}.first(BIP324Cipher::LENGTH_LEN)));
+ // Check that the full packet is in the receive buffer.
+ BOOST_REQUIRE(m_received.size() >= size + BIP324Cipher::EXPANSION);
+ // Decrypt the packet contents.
+ contents.resize(size);
+ bool ignore{false};
+ bool ret = m_cipher.Decrypt(
+ /*input=*/MakeByteSpan(
+ Span{m_received}.first(size + BIP324Cipher::EXPANSION).subspan(BIP324Cipher::LENGTH_LEN)),
+ /*aad=*/aad,
+ /*ignore=*/ignore,
+ /*contents=*/MakeWritableByteSpan(contents));
+ BOOST_CHECK(ret);
+ // Strip the processed packet's bytes off the front of the receive buffer.
+ m_received.erase(m_received.begin(), m_received.begin() + size + BIP324Cipher::EXPANSION);
+ // Stop if the ignore bit is not set on this packet, or if we choose to not honor it.
+ if (!ignore || !skip_decoy) break;
+ }
+ return contents;
+ }
+
+ /** Expect garbage, garbage terminator, and garbage auth packet to have been received, and
+ * process them (only after ReceiveKey). */
+ void ReceiveGarbage()
+ {
+ // Figure out the garbage length.
+ size_t garblen;
+ for (garblen = 0; garblen <= V2Transport::MAX_GARBAGE_LEN; ++garblen) {
+ BOOST_REQUIRE(m_received.size() >= garblen + BIP324Cipher::GARBAGE_TERMINATOR_LEN);
+ auto term_span = MakeByteSpan(Span{m_received}.subspan(garblen, BIP324Cipher::GARBAGE_TERMINATOR_LEN));
+ if (term_span == m_cipher.GetReceiveGarbageTerminator()) break;
+ }
+ // Copy the garbage to a buffer.
+ std::vector<uint8_t> garbage(m_received.begin(), m_received.begin() + garblen);
+ // Strip garbage + garbage terminator off the front of the receive buffer.
+ m_received.erase(m_received.begin(), m_received.begin() + garblen + BIP324Cipher::GARBAGE_TERMINATOR_LEN);
+ // Process the expected garbage authentication packet. Such a packet still functions as one
+ // even when its ignore bit is set to true, so we do not skip decoy packets here.
+ ReceivePacket(/*aad=*/MakeByteSpan(garbage), /*skip_decoy=*/false);
+ }
+
+ /** Expect version packet to have been received, and process it (only after ReceiveKey). */
+ void ReceiveVersion()
+ {
+ auto contents = ReceivePacket();
+ // Version packets from real BIP324 peers are expected to be empty, despite the fact that
+ // this class supports *sending* non-empty version packets (to test that BIP324 peers
+ // correctly ignore version packet contents).
+ BOOST_CHECK(contents.empty());
+ }
+
+ /** Expect application packet to have been received, with specified short id and payload.
+ * (only after ReceiveKey). */
+ void ReceiveMessage(uint8_t short_id, Span<const uint8_t> payload)
+ {
+ auto ret = ReceivePacket();
+ BOOST_CHECK(ret.size() == payload.size() + 1);
+ BOOST_CHECK(ret[0] == short_id);
+ BOOST_CHECK(Span{ret}.subspan(1) == payload);
+ }
+
+ /** Expect application packet to have been received, with specified 12-char message type and
+ * payload (only after ReceiveKey). */
+ void ReceiveMessage(const std::string& m_type, Span<const uint8_t> payload)
+ {
+ auto ret = ReceivePacket();
+ BOOST_REQUIRE(ret.size() == payload.size() + 1 + CMessageHeader::COMMAND_SIZE);
+ BOOST_CHECK(ret[0] == 0);
+ for (unsigned i = 0; i < 12; ++i) {
+ if (i < m_type.size()) {
+ BOOST_CHECK(ret[1 + i] == m_type[i]);
+ } else {
+ BOOST_CHECK(ret[1 + i] == 0);
+ }
+ }
+ BOOST_CHECK(Span{ret}.subspan(1 + CMessageHeader::COMMAND_SIZE) == payload);
+ }
+
+ /** Schedule an encrypted packet with specified message type and payload to be sent to
+ * transport (only after ReceiveKey). */
+ void SendMessage(std::string mtype, Span<const uint8_t> payload)
+ {
+ // Construct contents consisting of 0x00 + 12-byte message type + payload.
+ std::vector<uint8_t> contents(1 + CMessageHeader::COMMAND_SIZE + payload.size());
+ std::copy(mtype.begin(), mtype.end(), reinterpret_cast<char*>(contents.data() + 1));
+ std::copy(payload.begin(), payload.end(), contents.begin() + 1 + CMessageHeader::COMMAND_SIZE);
+ // Send a packet with that as contents.
+ SendPacket(contents);
+ }
+
+ /** Schedule an encrypted packet with specified short message id and payload to be sent to
+ * transport (only after ReceiveKey). */
+ void SendMessage(uint8_t short_id, Span<const uint8_t> payload)
+ {
+ // Construct contents consisting of short_id + payload.
+ std::vector<uint8_t> contents(1 + payload.size());
+ contents[0] = short_id;
+ std::copy(payload.begin(), payload.end(), contents.begin() + 1);
+ // Send a packet with that as contents.
+ SendPacket(contents);
+ }
+
+ /** Introduce a bit error in the data scheduled to be sent. */
+ void Damage()
+ {
+ m_to_send[InsecureRandRange(m_to_send.size())] ^= (uint8_t{1} << InsecureRandRange(8));
+ }
+};
+
+} // namespace
+
+BOOST_AUTO_TEST_CASE(v2transport_test)
+{
+ // A mostly normal scenario, testing a transport in initiator mode.
+ for (int i = 0; i < 10; ++i) {
+ V2TransportTester tester(true);
+ auto ret = tester.Interact();
+ BOOST_REQUIRE(ret && ret->empty());
+ tester.SendKey();
+ tester.SendGarbage();
+ tester.ReceiveKey();
+ tester.SendGarbageTermAuth();
+ tester.SendVersion();
+ ret = tester.Interact();
+ BOOST_REQUIRE(ret && ret->empty());
+ tester.ReceiveGarbage();
+ tester.ReceiveVersion();
+ auto msg_data_1 = g_insecure_rand_ctx.randbytes<uint8_t>(InsecureRandRange(100000));
+ auto msg_data_2 = g_insecure_rand_ctx.randbytes<uint8_t>(InsecureRandRange(1000));
+ tester.SendMessage(uint8_t(4), msg_data_1); // cmpctblock short id
+ tester.SendMessage(0, {}); // Invalidly encoded message
+ tester.SendMessage("tx", msg_data_2); // 12-character encoded message type
+ ret = tester.Interact();
+ BOOST_REQUIRE(ret && ret->size() == 3);
+ BOOST_CHECK((*ret)[0] && (*ret)[0]->m_type == "cmpctblock" && Span{(*ret)[0]->m_recv} == MakeByteSpan(msg_data_1));
+ BOOST_CHECK(!(*ret)[1]);
+ BOOST_CHECK((*ret)[2] && (*ret)[2]->m_type == "tx" && Span{(*ret)[2]->m_recv} == MakeByteSpan(msg_data_2));
+
+ // Then send a message with a bit error, expecting failure.
+ tester.SendMessage("bad", msg_data_1);
+ tester.Damage();
+ ret = tester.Interact();
+ BOOST_CHECK(!ret);
+ }
+
+ // Normal scenario, with a transport in responder node.
+ for (int i = 0; i < 10; ++i) {
+ V2TransportTester tester(false);
+ tester.SendKey();
+ tester.SendGarbage();
+ auto ret = tester.Interact();
+ BOOST_REQUIRE(ret && ret->empty());
+ tester.ReceiveKey();
+ tester.SendGarbageTermAuth();
+ tester.SendVersion();
+ ret = tester.Interact();
+ BOOST_REQUIRE(ret && ret->empty());
+ tester.ReceiveGarbage();
+ tester.ReceiveVersion();
+ auto msg_data_1 = g_insecure_rand_ctx.randbytes<uint8_t>(InsecureRandRange(100000));
+ auto msg_data_2 = g_insecure_rand_ctx.randbytes<uint8_t>(InsecureRandRange(1000));
+ tester.SendMessage(uint8_t(14), msg_data_1); // inv short id
+ tester.SendMessage(uint8_t(19), msg_data_2); // pong short id
+ ret = tester.Interact();
+ BOOST_REQUIRE(ret && ret->size() == 2);
+ BOOST_CHECK((*ret)[0] && (*ret)[0]->m_type == "inv" && Span{(*ret)[0]->m_recv} == MakeByteSpan(msg_data_1));
+ BOOST_CHECK((*ret)[1] && (*ret)[1]->m_type == "pong" && Span{(*ret)[1]->m_recv} == MakeByteSpan(msg_data_2));
+
+ // Then send a too-large message.
+ auto msg_data_3 = g_insecure_rand_ctx.randbytes<uint8_t>(4005000);
+ tester.SendMessage(uint8_t(11), msg_data_3); // getdata short id
+ ret = tester.Interact();
+ BOOST_CHECK(!ret);
+ }
+
+ // Various valid but unusual scenarios.
+ for (int i = 0; i < 50; ++i) {
+ /** Whether an initiator or responder is being tested. */
+ bool initiator = InsecureRandBool();
+ /** Use either 0 bytes or the maximum possible (4095 bytes) garbage length. */
+ size_t garb_len = InsecureRandBool() ? 0 : V2Transport::MAX_GARBAGE_LEN;
+ /** Sometimes, use non-empty contents in the garbage authentication packet (which is to be ignored). */
+ size_t garb_auth_data_len = InsecureRandBool() ? 0 : InsecureRandRange(100000);
+ /** Whether to set the ignore bit on the garbage authentication packet (it still functions as garbage authentication). */
+ bool garb_ignore = InsecureRandBool();
+ /** How many decoy packets to send before the version packet. */
+ unsigned num_ignore_version = InsecureRandRange(10);
+ /** What data to send in the version packet (ignored by BIP324 peers, but reserved for future extensions). */
+ auto ver_data = g_insecure_rand_ctx.randbytes<uint8_t>(InsecureRandBool() ? 0 : InsecureRandRange(1000));
+ /** Whether to immediately send key and garbage out (required for responders, optional otherwise). */
+ bool send_immediately = !initiator || InsecureRandBool();
+ /** How many decoy packets to send before the first and second real message. */
+ unsigned num_decoys_1 = InsecureRandRange(1000), num_decoys_2 = InsecureRandRange(1000);
+ V2TransportTester tester(initiator);
+ if (send_immediately) {
+ tester.SendKey();
+ tester.SendGarbage(garb_len);
+ }
+ auto ret = tester.Interact();
+ BOOST_REQUIRE(ret && ret->empty());
+ if (!send_immediately) {
+ tester.SendKey();
+ tester.SendGarbage(garb_len);
+ }
+ tester.ReceiveKey();
+ tester.SendGarbageTermAuth(garb_auth_data_len, garb_ignore);
+ for (unsigned v = 0; v < num_ignore_version; ++v) {
+ size_t ver_ign_data_len = InsecureRandBool() ? 0 : InsecureRandRange(1000);
+ auto ver_ign_data = g_insecure_rand_ctx.randbytes<uint8_t>(ver_ign_data_len);
+ tester.SendVersion(ver_ign_data, true);
+ }
+ tester.SendVersion(ver_data, false);
+ ret = tester.Interact();
+ BOOST_REQUIRE(ret && ret->empty());
+ tester.ReceiveGarbage();
+ tester.ReceiveVersion();
+ for (unsigned d = 0; d < num_decoys_1; ++d) {
+ auto decoy_data = g_insecure_rand_ctx.randbytes<uint8_t>(InsecureRandRange(1000));
+ tester.SendPacket(/*content=*/decoy_data, /*aad=*/{}, /*ignore=*/true);
+ }
+ auto msg_data_1 = g_insecure_rand_ctx.randbytes<uint8_t>(InsecureRandRange(4000000));
+ tester.SendMessage(uint8_t(28), msg_data_1);
+ for (unsigned d = 0; d < num_decoys_2; ++d) {
+ auto decoy_data = g_insecure_rand_ctx.randbytes<uint8_t>(InsecureRandRange(1000));
+ tester.SendPacket(/*content=*/decoy_data, /*aad=*/{}, /*ignore=*/true);
+ }
+ auto msg_data_2 = g_insecure_rand_ctx.randbytes<uint8_t>(InsecureRandRange(1000));
+ tester.SendMessage(uint8_t(13), msg_data_2); // headers short id
+ // Send invalidly-encoded message
+ tester.SendMessage(std::string("blocktxn\x00\x00\x00a", CMessageHeader::COMMAND_SIZE), {});
+ tester.SendMessage("foobar", {}); // test receiving unknown message type
+ tester.AddMessage("barfoo", {}); // test sending unknown message type
+ ret = tester.Interact();
+ BOOST_REQUIRE(ret && ret->size() == 4);
+ BOOST_CHECK((*ret)[0] && (*ret)[0]->m_type == "addrv2" && Span{(*ret)[0]->m_recv} == MakeByteSpan(msg_data_1));
+ BOOST_CHECK((*ret)[1] && (*ret)[1]->m_type == "headers" && Span{(*ret)[1]->m_recv} == MakeByteSpan(msg_data_2));
+ BOOST_CHECK(!(*ret)[2]);
+ BOOST_CHECK((*ret)[3] && (*ret)[3]->m_type == "foobar" && (*ret)[3]->m_recv.empty());
+ tester.ReceiveMessage("barfoo", {});
+ }
+
+ // Too long garbage (initiator).
+ {
+ V2TransportTester tester(true);
+ auto ret = tester.Interact();
+ BOOST_REQUIRE(ret && ret->empty());
+ tester.SendKey();
+ tester.SendGarbage(V2Transport::MAX_GARBAGE_LEN + 1);
+ tester.ReceiveKey();
+ tester.SendGarbageTermAuth();
+ ret = tester.Interact();
+ BOOST_CHECK(!ret);
+ }
+
+ // Too long garbage (responder).
+ {
+ V2TransportTester tester(false);
+ tester.SendKey();
+ tester.SendGarbage(V2Transport::MAX_GARBAGE_LEN + 1);
+ auto ret = tester.Interact();
+ BOOST_REQUIRE(ret && ret->empty());
+ tester.ReceiveKey();
+ tester.SendGarbageTermAuth();
+ ret = tester.Interact();
+ BOOST_CHECK(!ret);
+ }
+
+ // Send garbage that includes the first 15 garbage terminator bytes somewhere.
+ {
+ V2TransportTester tester(true);
+ auto ret = tester.Interact();
+ BOOST_REQUIRE(ret && ret->empty());
+ tester.SendKey();
+ tester.ReceiveKey();
+ /** The number of random garbage bytes before the included first 15 bytes of terminator. */
+ size_t len_before = InsecureRandRange(V2Transport::MAX_GARBAGE_LEN - 16 + 1);
+ /** The number of random garbage bytes after it. */
+ size_t len_after = InsecureRandRange(V2Transport::MAX_GARBAGE_LEN - 16 - len_before + 1);
+ // Construct len_before + 16 + len_after random bytes.
+ auto garbage = g_insecure_rand_ctx.randbytes<uint8_t>(len_before + 16 + len_after);
+ // Replace the designed 16 bytes in the middle with the to-be-sent garbage terminator.
+ auto garb_term = MakeUCharSpan(tester.GetCipher().GetSendGarbageTerminator());
+ std::copy(garb_term.begin(), garb_term.begin() + 16, garbage.begin() + len_before);
+ // Introduce a bit error in the last byte of that copied garbage terminator, making only
+ // the first 15 of them match.
+ garbage[len_before + 15] ^= (uint8_t(1) << InsecureRandRange(8));
+ tester.SendGarbage(garbage);
+ tester.SendGarbageTermAuth();
+ tester.SendVersion();
+ ret = tester.Interact();
+ BOOST_REQUIRE(ret && ret->empty());
+ tester.ReceiveGarbage();
+ tester.ReceiveVersion();
+ auto msg_data_1 = g_insecure_rand_ctx.randbytes<uint8_t>(4000000); // test that receiving 4M payload works
+ auto msg_data_2 = g_insecure_rand_ctx.randbytes<uint8_t>(4000000); // test that sending 4M payload works
+ tester.SendMessage(uint8_t(InsecureRandRange(223) + 33), {}); // unknown short id
+ tester.SendMessage(uint8_t(2), msg_data_1); // "block" short id
+ tester.AddMessage("blocktxn", msg_data_2); // schedule blocktxn to be sent to us
+ ret = tester.Interact();
+ BOOST_REQUIRE(ret && ret->size() == 2);
+ BOOST_CHECK(!(*ret)[0]);
+ BOOST_CHECK((*ret)[1] && (*ret)[1]->m_type == "block" && Span{(*ret)[1]->m_recv} == MakeByteSpan(msg_data_1));
+ tester.ReceiveMessage(uint8_t(3), msg_data_2); // "blocktxn" short id
+ }
+
+ // Send correct network's V1 header
+ {
+ V2TransportTester tester(false);
+ tester.SendV1Version(Params().MessageStart());
+ auto ret = tester.Interact();
+ BOOST_CHECK(ret);
+ }
+
+ // Send wrong network's V1 header
+ {
+ V2TransportTester tester(false);
+ tester.SendV1Version(CChainParams::Main()->MessageStart());
+ auto ret = tester.Interact();
+ BOOST_CHECK(!ret);
+ }
+}
+
BOOST_AUTO_TEST_SUITE_END()
diff --git a/src/test/util/net.cpp b/src/test/util/net.cpp
index 5696f8d13c..dc64c0b4c1 100644
--- a/src/test/util/net.cpp
+++ b/src/test/util/net.cpp
@@ -78,7 +78,7 @@ void ConnmanTestMsg::FlushSendBuffer(CNode& node) const
node.vSendMsg.clear();
node.m_send_memusage = 0;
while (true) {
- const auto& [to_send, _more, _msg_type] = node.m_transport->GetBytesToSend();
+ const auto& [to_send, _more, _msg_type] = node.m_transport->GetBytesToSend(false);
if (to_send.empty()) break;
node.m_transport->MarkBytesSent(to_send.size());
}
@@ -90,7 +90,7 @@ bool ConnmanTestMsg::ReceiveMsgFrom(CNode& node, CSerializedNetMsg&& ser_msg) co
assert(queued);
bool complete{false};
while (true) {
- const auto& [to_send, _more, _msg_type] = node.m_transport->GetBytesToSend();
+ const auto& [to_send, _more, _msg_type] = node.m_transport->GetBytesToSend(false);
if (to_send.empty()) break;
NodeReceiveMsgBytes(node, to_send, complete);
node.m_transport->MarkBytesSent(to_send.size());