aboutsummaryrefslogtreecommitdiff
path: root/src/net.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/net.cpp')
-rw-r--r--src/net.cpp705
1 files changed, 689 insertions, 16 deletions
diff --git a/src/net.cpp b/src/net.cpp
index 4addca0982..3955005dfa 100644
--- a/src/net.cpp
+++ b/src/net.cpp
@@ -867,20 +867,22 @@ bool V1Transport::SetMessageToSend(CSerializedNetMsg& msg) noexcept
return true;
}
-Transport::BytesToSend V1Transport::GetBytesToSend() const noexcept
+Transport::BytesToSend V1Transport::GetBytesToSend(bool have_next_message) const noexcept
{
AssertLockNotHeld(m_send_mutex);
LOCK(m_send_mutex);
if (m_sending_header) {
return {Span{m_header_to_send}.subspan(m_bytes_sent),
- // We have more to send after the header if the message has payload.
- !m_message_to_send.data.empty(),
+ // We have more to send after the header if the message has payload, or if there
+ // is a next message after that.
+ have_next_message || !m_message_to_send.data.empty(),
m_message_to_send.m_type
};
} else {
return {Span{m_message_to_send.data}.subspan(m_bytes_sent),
- // We never have more to send after this message's payload.
- false,
+ // We only have more to send after this message's payload if there is another
+ // message.
+ have_next_message,
m_message_to_send.m_type
};
}
@@ -911,16 +913,676 @@ size_t V1Transport::GetSendMemoryUsage() const noexcept
return m_message_to_send.GetMemoryUsage();
}
+namespace {
+
+/** List of short messages as defined in BIP324, in order.
+ *
+ * Only message types that are actually implemented in this codebase need to be listed, as other
+ * messages get ignored anyway - whether we know how to decode them or not.
+ */
+const std::array<std::string, 33> V2_MESSAGE_IDS = {
+ "", // 12 bytes follow encoding the message type like in V1
+ NetMsgType::ADDR,
+ NetMsgType::BLOCK,
+ NetMsgType::BLOCKTXN,
+ NetMsgType::CMPCTBLOCK,
+ NetMsgType::FEEFILTER,
+ NetMsgType::FILTERADD,
+ NetMsgType::FILTERCLEAR,
+ NetMsgType::FILTERLOAD,
+ NetMsgType::GETBLOCKS,
+ NetMsgType::GETBLOCKTXN,
+ NetMsgType::GETDATA,
+ NetMsgType::GETHEADERS,
+ NetMsgType::HEADERS,
+ NetMsgType::INV,
+ NetMsgType::MEMPOOL,
+ NetMsgType::MERKLEBLOCK,
+ NetMsgType::NOTFOUND,
+ NetMsgType::PING,
+ NetMsgType::PONG,
+ NetMsgType::SENDCMPCT,
+ NetMsgType::TX,
+ NetMsgType::GETCFILTERS,
+ NetMsgType::CFILTER,
+ NetMsgType::GETCFHEADERS,
+ NetMsgType::CFHEADERS,
+ NetMsgType::GETCFCHECKPT,
+ NetMsgType::CFCHECKPT,
+ NetMsgType::ADDRV2,
+ // Unimplemented message types that are assigned in BIP324:
+ "",
+ "",
+ "",
+ ""
+};
+
+class V2MessageMap
+{
+ std::unordered_map<std::string, uint8_t> m_map;
+
+public:
+ V2MessageMap() noexcept
+ {
+ for (size_t i = 1; i < std::size(V2_MESSAGE_IDS); ++i) {
+ m_map.emplace(V2_MESSAGE_IDS[i], i);
+ }
+ }
+
+ std::optional<uint8_t> operator()(const std::string& message_name) const noexcept
+ {
+ auto it = m_map.find(message_name);
+ if (it == m_map.end()) return std::nullopt;
+ return it->second;
+ }
+};
+
+const V2MessageMap V2_MESSAGE_MAP;
+
+} // namespace
+
+V2Transport::V2Transport(NodeId nodeid, bool initiating, int type_in, int version_in) noexcept :
+ m_cipher{}, m_initiating{initiating}, m_nodeid{nodeid},
+ m_v1_fallback{nodeid, type_in, version_in}, m_recv_type{type_in}, m_recv_version{version_in},
+ m_recv_state{initiating ? RecvState::KEY : RecvState::KEY_MAYBE_V1},
+ m_send_state{initiating ? SendState::AWAITING_KEY : SendState::MAYBE_V1}
+{
+ // Construct garbage (including its length) using a FastRandomContext.
+ FastRandomContext rng;
+ size_t garbage_len = rng.randrange(MAX_GARBAGE_LEN + 1);
+ // Initialize the send buffer with ellswift pubkey + garbage.
+ m_send_buffer.resize(EllSwiftPubKey::size() + garbage_len);
+ std::copy(std::begin(m_cipher.GetOurPubKey()), std::end(m_cipher.GetOurPubKey()), MakeWritableByteSpan(m_send_buffer).begin());
+ rng.fillrand(MakeWritableByteSpan(m_send_buffer).subspan(EllSwiftPubKey::size()));
+}
+
+V2Transport::V2Transport(NodeId nodeid, bool initiating, int type_in, int version_in, const CKey& key, Span<const std::byte> ent32, Span<const uint8_t> garbage) noexcept :
+ m_cipher{key, ent32}, m_initiating{initiating}, m_nodeid{nodeid},
+ m_v1_fallback{nodeid, type_in, version_in}, m_recv_type{type_in}, m_recv_version{version_in},
+ m_recv_state{initiating ? RecvState::KEY : RecvState::KEY_MAYBE_V1},
+ m_send_state{initiating ? SendState::AWAITING_KEY : SendState::MAYBE_V1}
+{
+ assert(garbage.size() <= MAX_GARBAGE_LEN);
+ // Initialize the send buffer with ellswift pubkey + provided garbage.
+ m_send_buffer.resize(EllSwiftPubKey::size() + garbage.size());
+ std::copy(std::begin(m_cipher.GetOurPubKey()), std::end(m_cipher.GetOurPubKey()), MakeWritableByteSpan(m_send_buffer).begin());
+ std::copy(garbage.begin(), garbage.end(), m_send_buffer.begin() + EllSwiftPubKey::size());
+}
+
+void V2Transport::SetReceiveState(RecvState recv_state) noexcept
+{
+ AssertLockHeld(m_recv_mutex);
+ // Enforce allowed state transitions.
+ switch (m_recv_state) {
+ case RecvState::KEY_MAYBE_V1:
+ Assume(recv_state == RecvState::KEY || recv_state == RecvState::V1);
+ break;
+ case RecvState::KEY:
+ Assume(recv_state == RecvState::GARB_GARBTERM);
+ break;
+ case RecvState::GARB_GARBTERM:
+ Assume(recv_state == RecvState::GARBAUTH);
+ break;
+ case RecvState::GARBAUTH:
+ Assume(recv_state == RecvState::VERSION);
+ break;
+ case RecvState::VERSION:
+ Assume(recv_state == RecvState::APP);
+ break;
+ case RecvState::APP:
+ Assume(recv_state == RecvState::APP_READY);
+ break;
+ case RecvState::APP_READY:
+ Assume(recv_state == RecvState::APP);
+ break;
+ case RecvState::V1:
+ Assume(false); // V1 state cannot be left
+ break;
+ }
+ // Change state.
+ m_recv_state = recv_state;
+}
+
+void V2Transport::SetSendState(SendState send_state) noexcept
+{
+ AssertLockHeld(m_send_mutex);
+ // Enforce allowed state transitions.
+ switch (m_send_state) {
+ case SendState::MAYBE_V1:
+ Assume(send_state == SendState::V1 || send_state == SendState::AWAITING_KEY);
+ break;
+ case SendState::AWAITING_KEY:
+ Assume(send_state == SendState::READY);
+ break;
+ case SendState::READY:
+ case SendState::V1:
+ Assume(false); // Final states
+ break;
+ }
+ // Change state.
+ m_send_state = send_state;
+}
+
+bool V2Transport::ReceivedMessageComplete() const noexcept
+{
+ AssertLockNotHeld(m_recv_mutex);
+ LOCK(m_recv_mutex);
+ if (m_recv_state == RecvState::V1) return m_v1_fallback.ReceivedMessageComplete();
+
+ return m_recv_state == RecvState::APP_READY;
+}
+
+void V2Transport::ProcessReceivedMaybeV1Bytes() noexcept
+{
+ AssertLockHeld(m_recv_mutex);
+ AssertLockNotHeld(m_send_mutex);
+ Assume(m_recv_state == RecvState::KEY_MAYBE_V1);
+ // We still have to determine if this is a v1 or v2 connection. The bytes being received could
+ // be the beginning of either a v1 packet (network magic + "version\x00"), or of a v2 public
+ // key. BIP324 specifies that a mismatch with this 12-byte string should trigger sending of the
+ // key.
+ std::array<uint8_t, V1_PREFIX_LEN> v1_prefix = {0, 0, 0, 0, 'v', 'e', 'r', 's', 'i', 'o', 'n', 0};
+ std::copy(std::begin(Params().MessageStart()), std::end(Params().MessageStart()), v1_prefix.begin());
+ Assume(m_recv_buffer.size() <= v1_prefix.size());
+ if (!std::equal(m_recv_buffer.begin(), m_recv_buffer.end(), v1_prefix.begin())) {
+ // Mismatch with v1 prefix, so we can assume a v2 connection.
+ SetReceiveState(RecvState::KEY); // Convert to KEY state, leaving received bytes around.
+ // Transition the sender to AWAITING_KEY state (if not already).
+ LOCK(m_send_mutex);
+ SetSendState(SendState::AWAITING_KEY);
+ } else if (m_recv_buffer.size() == v1_prefix.size()) {
+ // Full match with the v1 prefix, so fall back to v1 behavior.
+ LOCK(m_send_mutex);
+ Span<const uint8_t> feedback{m_recv_buffer};
+ // Feed already received bytes to v1 transport. It should always accept these, because it's
+ // less than the size of a v1 header, and these are the first bytes fed to m_v1_fallback.
+ bool ret = m_v1_fallback.ReceivedBytes(feedback);
+ Assume(feedback.empty());
+ Assume(ret);
+ SetReceiveState(RecvState::V1);
+ SetSendState(SendState::V1);
+ // Reset v2 transport buffers to save memory.
+ m_recv_buffer = {};
+ m_send_buffer = {};
+ } else {
+ // We have not received enough to distinguish v1 from v2 yet. Wait until more bytes come.
+ }
+}
+
+bool V2Transport::ProcessReceivedKeyBytes() noexcept
+{
+ AssertLockHeld(m_recv_mutex);
+ AssertLockNotHeld(m_send_mutex);
+ Assume(m_recv_state == RecvState::KEY);
+ Assume(m_recv_buffer.size() <= EllSwiftPubKey::size());
+
+ // As a special exception, if bytes 4-16 of the key on a responder connection match the
+ // corresponding bytes of a V1 version message, but bytes 0-4 don't match the network magic
+ // (if they did, we'd have switched to V1 state already), assume this is a peer from
+ // another network, and disconnect them. They will almost certainly disconnect us too when
+ // they receive our uniformly random key and garbage, but detecting this case specially
+ // means we can log it.
+ static constexpr std::array<uint8_t, 12> MATCH = {'v', 'e', 'r', 's', 'i', 'o', 'n', 0, 0, 0, 0, 0};
+ static constexpr size_t OFFSET = sizeof(CMessageHeader::MessageStartChars);
+ if (!m_initiating && m_recv_buffer.size() >= OFFSET + MATCH.size()) {
+ if (std::equal(MATCH.begin(), MATCH.end(), m_recv_buffer.begin() + OFFSET)) {
+ LogPrint(BCLog::NET, "V2 transport error: V1 peer with wrong MessageStart %s\n",
+ HexStr(Span(m_recv_buffer).first(OFFSET)));
+ return false;
+ }
+ }
+
+ if (m_recv_buffer.size() == EllSwiftPubKey::size()) {
+ // Other side's key has been fully received, and can now be Diffie-Hellman combined with
+ // our key to initialize the encryption ciphers.
+
+ // Initialize the ciphers.
+ EllSwiftPubKey ellswift(MakeByteSpan(m_recv_buffer));
+ LOCK(m_send_mutex);
+ m_cipher.Initialize(ellswift, m_initiating);
+
+ // Switch receiver state to GARB_GARBTERM.
+ SetReceiveState(RecvState::GARB_GARBTERM);
+ m_recv_buffer.clear();
+
+ // Switch sender state to READY.
+ SetSendState(SendState::READY);
+
+ // Append the garbage terminator to the send buffer.
+ size_t garbage_len = m_send_buffer.size() - EllSwiftPubKey::size();
+ m_send_buffer.resize(m_send_buffer.size() + BIP324Cipher::GARBAGE_TERMINATOR_LEN);
+ std::copy(m_cipher.GetSendGarbageTerminator().begin(),
+ m_cipher.GetSendGarbageTerminator().end(),
+ MakeWritableByteSpan(m_send_buffer).last(BIP324Cipher::GARBAGE_TERMINATOR_LEN).begin());
+
+ // Construct garbage authentication packet in the send buffer (using the garbage data which
+ // is still there).
+ m_send_buffer.resize(m_send_buffer.size() + BIP324Cipher::EXPANSION);
+ m_cipher.Encrypt(
+ /*contents=*/{},
+ /*aad=*/MakeByteSpan(m_send_buffer).subspan(EllSwiftPubKey::size(), garbage_len),
+ /*ignore=*/false,
+ /*output=*/MakeWritableByteSpan(m_send_buffer).last(BIP324Cipher::EXPANSION));
+
+ // Construct version packet in the send buffer.
+ m_send_buffer.resize(m_send_buffer.size() + BIP324Cipher::EXPANSION + VERSION_CONTENTS.size());
+ m_cipher.Encrypt(
+ /*contents=*/VERSION_CONTENTS,
+ /*aad=*/{},
+ /*ignore=*/false,
+ /*output=*/MakeWritableByteSpan(m_send_buffer).last(BIP324Cipher::EXPANSION + VERSION_CONTENTS.size()));
+ } else {
+ // We still have to receive more key bytes.
+ }
+ return true;
+}
+
+bool V2Transport::ProcessReceivedGarbageBytes() noexcept
+{
+ AssertLockHeld(m_recv_mutex);
+ Assume(m_recv_state == RecvState::GARB_GARBTERM);
+ Assume(m_recv_buffer.size() <= MAX_GARBAGE_LEN + BIP324Cipher::GARBAGE_TERMINATOR_LEN);
+ if (m_recv_buffer.size() >= BIP324Cipher::GARBAGE_TERMINATOR_LEN) {
+ if (MakeByteSpan(m_recv_buffer).last(BIP324Cipher::GARBAGE_TERMINATOR_LEN) == m_cipher.GetReceiveGarbageTerminator()) {
+ // Garbage terminator received. Switch to receiving garbage authentication packet.
+ m_recv_garbage = std::move(m_recv_buffer);
+ m_recv_garbage.resize(m_recv_garbage.size() - BIP324Cipher::GARBAGE_TERMINATOR_LEN);
+ m_recv_buffer.clear();
+ SetReceiveState(RecvState::GARBAUTH);
+ } else if (m_recv_buffer.size() == MAX_GARBAGE_LEN + BIP324Cipher::GARBAGE_TERMINATOR_LEN) {
+ // We've reached the maximum length for garbage + garbage terminator, and the
+ // terminator still does not match. Abort.
+ LogPrint(BCLog::NET, "V2 transport error: missing garbage terminator, peer=%d\n", m_nodeid);
+ return false;
+ } else {
+ // We still need to receive more garbage and/or garbage terminator bytes.
+ }
+ } else {
+ // We have less than GARBAGE_TERMINATOR_LEN (16) bytes, so we certainly need to receive
+ // more first.
+ }
+ return true;
+}
+
+bool V2Transport::ProcessReceivedPacketBytes() noexcept
+{
+ AssertLockHeld(m_recv_mutex);
+ Assume(m_recv_state == RecvState::GARBAUTH || m_recv_state == RecvState::VERSION ||
+ m_recv_state == RecvState::APP);
+
+ // The maximum permitted contents length for a packet, consisting of:
+ // - 0x00 byte: indicating long message type encoding
+ // - 12 bytes of message type
+ // - payload
+ static constexpr size_t MAX_CONTENTS_LEN =
+ 1 + CMessageHeader::COMMAND_SIZE +
+ std::min<size_t>(MAX_SIZE, MAX_PROTOCOL_MESSAGE_LENGTH);
+
+ if (m_recv_buffer.size() == BIP324Cipher::LENGTH_LEN) {
+ // Length descriptor received.
+ m_recv_len = m_cipher.DecryptLength(MakeByteSpan(m_recv_buffer));
+ if (m_recv_len > MAX_CONTENTS_LEN) {
+ LogPrint(BCLog::NET, "V2 transport error: packet too large (%u bytes), peer=%d\n", m_recv_len, m_nodeid);
+ return false;
+ }
+ } else if (m_recv_buffer.size() > BIP324Cipher::LENGTH_LEN && m_recv_buffer.size() == m_recv_len + BIP324Cipher::EXPANSION) {
+ // Ciphertext received, decrypt it into m_recv_decode_buffer.
+ // Note that it is impossible to reach this branch without hitting the branch above first,
+ // as GetMaxBytesToProcess only allows up to LENGTH_LEN into the buffer before that point.
+ m_recv_decode_buffer.resize(m_recv_len);
+ bool ignore{false};
+ Span<const std::byte> aad;
+ if (m_recv_state == RecvState::GARBAUTH) aad = MakeByteSpan(m_recv_garbage);
+ bool ret = m_cipher.Decrypt(
+ /*input=*/MakeByteSpan(m_recv_buffer).subspan(BIP324Cipher::LENGTH_LEN),
+ /*aad=*/aad,
+ /*ignore=*/ignore,
+ /*contents=*/MakeWritableByteSpan(m_recv_decode_buffer));
+ if (!ret) {
+ LogPrint(BCLog::NET, "V2 transport error: packet decryption failure (%u bytes), peer=%d\n", m_recv_len, m_nodeid);
+ return false;
+ }
+ // Feed the last 4 bytes of the Poly1305 authentication tag (and its timing) into our RNG.
+ RandAddEvent(ReadLE32(m_recv_buffer.data() + m_recv_buffer.size() - 4));
+
+ // At this point we have a valid packet decrypted into m_recv_decode_buffer. Depending on
+ // the current state, decide what to do with it.
+ switch (m_recv_state) {
+ case RecvState::GARBAUTH:
+ // Ignore flag does not matter for garbage authentication. Any valid packet functions
+ // as authentication. Receive and process the version packet next.
+ SetReceiveState(RecvState::VERSION);
+ m_recv_garbage = {};
+ break;
+ case RecvState::VERSION:
+ if (!ignore) {
+ // Version message received; transition to application phase. The contents is
+ // ignored, but can be used for future extensions.
+ SetReceiveState(RecvState::APP);
+ }
+ break;
+ case RecvState::APP:
+ if (!ignore) {
+ // Application message decrypted correctly. It can be extracted using GetMessage().
+ SetReceiveState(RecvState::APP_READY);
+ }
+ break;
+ default:
+ // Any other state is invalid (this function should not have been called).
+ Assume(false);
+ }
+ // Wipe the receive buffer where the next packet will be received into.
+ m_recv_buffer = {};
+ // In all but APP_READY state, we can wipe the decoded contents.
+ if (m_recv_state != RecvState::APP_READY) m_recv_decode_buffer = {};
+ } else {
+ // We either have less than 3 bytes, so we don't know the packet's length yet, or more
+ // than 3 bytes but less than the packet's full ciphertext. Wait until those arrive.
+ }
+ return true;
+}
+
+size_t V2Transport::GetMaxBytesToProcess() noexcept
+{
+ AssertLockHeld(m_recv_mutex);
+ switch (m_recv_state) {
+ case RecvState::KEY_MAYBE_V1:
+ // During the KEY_MAYBE_V1 state we do not allow more than the length of v1 prefix into the
+ // receive buffer.
+ Assume(m_recv_buffer.size() <= V1_PREFIX_LEN);
+ // As long as we're not sure if this is a v1 or v2 connection, don't receive more than what
+ // is strictly necessary to distinguish the two (12 bytes). If we permitted more than
+ // the v1 header size (24 bytes), we may not be able to feed the already-received bytes
+ // back into the m_v1_fallback V1 transport.
+ return V1_PREFIX_LEN - m_recv_buffer.size();
+ case RecvState::KEY:
+ // During the KEY state, we only allow the 64-byte key into the receive buffer.
+ Assume(m_recv_buffer.size() <= EllSwiftPubKey::size());
+ // As long as we have not received the other side's public key, don't receive more than
+ // that (64 bytes), as garbage follows, and locating the garbage terminator requires the
+ // key exchange first.
+ return EllSwiftPubKey::size() - m_recv_buffer.size();
+ case RecvState::GARB_GARBTERM:
+ // Process garbage bytes one by one (because terminator may appear anywhere).
+ return 1;
+ case RecvState::GARBAUTH:
+ case RecvState::VERSION:
+ case RecvState::APP:
+ // These three states all involve decoding a packet. Process the length descriptor first,
+ // so that we know where the current packet ends (and we don't process bytes from the next
+ // packet or decoy yet). Then, process the ciphertext bytes of the current packet.
+ if (m_recv_buffer.size() < BIP324Cipher::LENGTH_LEN) {
+ return BIP324Cipher::LENGTH_LEN - m_recv_buffer.size();
+ } else {
+ // Note that BIP324Cipher::EXPANSION is the total difference between contents size
+ // and encoded packet size, which includes the 3 bytes due to the packet length.
+ // When transitioning from receiving the packet length to receiving its ciphertext,
+ // the encrypted packet length is left in the receive buffer.
+ return BIP324Cipher::EXPANSION + m_recv_len - m_recv_buffer.size();
+ }
+ case RecvState::APP_READY:
+ // No bytes can be processed until GetMessage() is called.
+ return 0;
+ case RecvState::V1:
+ // Not allowed (must be dealt with by the caller).
+ Assume(false);
+ return 0;
+ }
+ Assume(false); // unreachable
+ return 0;
+}
+
+bool V2Transport::ReceivedBytes(Span<const uint8_t>& msg_bytes) noexcept
+{
+ AssertLockNotHeld(m_recv_mutex);
+ /** How many bytes to allocate in the receive buffer at most above what is received so far. */
+ static constexpr size_t MAX_RESERVE_AHEAD = 256 * 1024;
+
+ LOCK(m_recv_mutex);
+ if (m_recv_state == RecvState::V1) return m_v1_fallback.ReceivedBytes(msg_bytes);
+
+ // Process the provided bytes in msg_bytes in a loop. In each iteration a nonzero number of
+ // bytes (decided by GetMaxBytesToProcess) are taken from the beginning om msg_bytes, and
+ // appended to m_recv_buffer. Then, depending on the receiver state, one of the
+ // ProcessReceived*Bytes functions is called to process the bytes in that buffer.
+ while (!msg_bytes.empty()) {
+ // Decide how many bytes to copy from msg_bytes to m_recv_buffer.
+ size_t max_read = GetMaxBytesToProcess();
+
+ // Reserve space in the buffer if there is not enough.
+ if (m_recv_buffer.size() + std::min(msg_bytes.size(), max_read) > m_recv_buffer.capacity()) {
+ switch (m_recv_state) {
+ case RecvState::KEY_MAYBE_V1:
+ case RecvState::KEY:
+ case RecvState::GARB_GARBTERM:
+ // During the initial states (key/garbage), allocate once to fit the maximum (4111
+ // bytes).
+ m_recv_buffer.reserve(MAX_GARBAGE_LEN + BIP324Cipher::GARBAGE_TERMINATOR_LEN);
+ break;
+ case RecvState::GARBAUTH:
+ case RecvState::VERSION:
+ case RecvState::APP: {
+ // During states where a packet is being received, as much as is expected but never
+ // more than MAX_RESERVE_AHEAD bytes in addition to what is received so far.
+ // This means attackers that want to cause us to waste allocated memory are limited
+ // to MAX_RESERVE_AHEAD above the largest allowed message contents size, and to
+ // MAX_RESERVE_AHEAD more than they've actually sent us.
+ size_t alloc_add = std::min(max_read, msg_bytes.size() + MAX_RESERVE_AHEAD);
+ m_recv_buffer.reserve(m_recv_buffer.size() + alloc_add);
+ break;
+ }
+ case RecvState::APP_READY:
+ // The buffer is empty in this state.
+ Assume(m_recv_buffer.empty());
+ break;
+ case RecvState::V1:
+ // Should have bailed out above.
+ Assume(false);
+ break;
+ }
+ }
+
+ // Can't read more than provided input.
+ max_read = std::min(msg_bytes.size(), max_read);
+ // Copy data to buffer.
+ m_recv_buffer.insert(m_recv_buffer.end(), UCharCast(msg_bytes.data()), UCharCast(msg_bytes.data() + max_read));
+ msg_bytes = msg_bytes.subspan(max_read);
+
+ // Process data in the buffer.
+ switch (m_recv_state) {
+ case RecvState::KEY_MAYBE_V1:
+ ProcessReceivedMaybeV1Bytes();
+ if (m_recv_state == RecvState::V1) return true;
+ break;
+
+ case RecvState::KEY:
+ if (!ProcessReceivedKeyBytes()) return false;
+ break;
+
+ case RecvState::GARB_GARBTERM:
+ if (!ProcessReceivedGarbageBytes()) return false;
+ break;
+
+ case RecvState::GARBAUTH:
+ case RecvState::VERSION:
+ case RecvState::APP:
+ if (!ProcessReceivedPacketBytes()) return false;
+ break;
+
+ case RecvState::APP_READY:
+ return true;
+
+ case RecvState::V1:
+ // We should have bailed out before.
+ Assume(false);
+ break;
+ }
+ // Make sure we have made progress before continuing.
+ Assume(max_read > 0);
+ }
+
+ return true;
+}
+
+std::optional<std::string> V2Transport::GetMessageType(Span<const uint8_t>& contents) noexcept
+{
+ if (contents.size() == 0) return std::nullopt; // Empty contents
+ uint8_t first_byte = contents[0];
+ contents = contents.subspan(1); // Strip first byte.
+
+ if (first_byte != 0) {
+ // Short (1 byte) encoding.
+ if (first_byte < std::size(V2_MESSAGE_IDS)) {
+ // Valid short message id.
+ return V2_MESSAGE_IDS[first_byte];
+ } else {
+ // Unknown short message id.
+ return std::nullopt;
+ }
+ }
+
+ if (contents.size() < CMessageHeader::COMMAND_SIZE) {
+ return std::nullopt; // Long encoding needs 12 message type bytes.
+ }
+
+ size_t msg_type_len{0};
+ while (msg_type_len < CMessageHeader::COMMAND_SIZE && contents[msg_type_len] != 0) {
+ // Verify that message type bytes before the first 0x00 are in range.
+ if (contents[msg_type_len] < ' ' || contents[msg_type_len] > 0x7F) {
+ return {};
+ }
+ ++msg_type_len;
+ }
+ std::string ret{reinterpret_cast<const char*>(contents.data()), msg_type_len};
+ while (msg_type_len < CMessageHeader::COMMAND_SIZE) {
+ // Verify that message type bytes after the first 0x00 are also 0x00.
+ if (contents[msg_type_len] != 0) return {};
+ ++msg_type_len;
+ }
+ // Strip message type bytes of contents.
+ contents = contents.subspan(CMessageHeader::COMMAND_SIZE);
+ return {std::move(ret)};
+}
+
+CNetMessage V2Transport::GetReceivedMessage(std::chrono::microseconds time, bool& reject_message) noexcept
+{
+ AssertLockNotHeld(m_recv_mutex);
+ LOCK(m_recv_mutex);
+ if (m_recv_state == RecvState::V1) return m_v1_fallback.GetReceivedMessage(time, reject_message);
+
+ Assume(m_recv_state == RecvState::APP_READY);
+ Span<const uint8_t> contents{m_recv_decode_buffer};
+ auto msg_type = GetMessageType(contents);
+ CDataStream ret(m_recv_type, m_recv_version);
+ CNetMessage msg{std::move(ret)};
+ // Note that BIP324Cipher::EXPANSION also includes the length descriptor size.
+ msg.m_raw_message_size = m_recv_decode_buffer.size() + BIP324Cipher::EXPANSION;
+ if (msg_type) {
+ reject_message = false;
+ msg.m_type = std::move(*msg_type);
+ msg.m_time = time;
+ msg.m_message_size = contents.size();
+ msg.m_recv.resize(contents.size());
+ std::copy(contents.begin(), contents.end(), UCharCast(msg.m_recv.data()));
+ } else {
+ LogPrint(BCLog::NET, "V2 transport error: invalid message type (%u bytes contents), peer=%d\n", m_recv_decode_buffer.size(), m_nodeid);
+ reject_message = true;
+ }
+ m_recv_decode_buffer = {};
+ SetReceiveState(RecvState::APP);
+
+ return msg;
+}
+
+bool V2Transport::SetMessageToSend(CSerializedNetMsg& msg) noexcept
+{
+ AssertLockNotHeld(m_send_mutex);
+ LOCK(m_send_mutex);
+ if (m_send_state == SendState::V1) return m_v1_fallback.SetMessageToSend(msg);
+ // We only allow adding a new message to be sent when in the READY state (so the packet cipher
+ // is available) and the send buffer is empty. This limits the number of messages in the send
+ // buffer to just one, and leaves the responsibility for queueing them up to the caller.
+ if (!(m_send_state == SendState::READY && m_send_buffer.empty())) return false;
+ // Construct contents (encoding message type + payload).
+ std::vector<uint8_t> contents;
+ auto short_message_id = V2_MESSAGE_MAP(msg.m_type);
+ if (short_message_id) {
+ contents.resize(1 + msg.data.size());
+ contents[0] = *short_message_id;
+ std::copy(msg.data.begin(), msg.data.end(), contents.begin() + 1);
+ } else {
+ // Initialize with zeroes, and then write the message type string starting at offset 1.
+ // This means contents[0] and the unused positions in contents[1..13] remain 0x00.
+ contents.resize(1 + CMessageHeader::COMMAND_SIZE + msg.data.size(), 0);
+ std::copy(msg.m_type.begin(), msg.m_type.end(), contents.data() + 1);
+ std::copy(msg.data.begin(), msg.data.end(), contents.begin() + 1 + CMessageHeader::COMMAND_SIZE);
+ }
+ // Construct ciphertext in send buffer.
+ m_send_buffer.resize(contents.size() + BIP324Cipher::EXPANSION);
+ m_cipher.Encrypt(MakeByteSpan(contents), {}, false, MakeWritableByteSpan(m_send_buffer));
+ m_send_type = msg.m_type;
+ // Release memory
+ msg.data = {};
+ return true;
+}
+
+Transport::BytesToSend V2Transport::GetBytesToSend(bool have_next_message) const noexcept
+{
+ AssertLockNotHeld(m_send_mutex);
+ LOCK(m_send_mutex);
+ if (m_send_state == SendState::V1) return m_v1_fallback.GetBytesToSend(have_next_message);
+
+ // We do not send anything in MAYBE_V1 state (as we don't know if the peer is v1 or v2),
+ // despite there being data in the send buffer in that state.
+ if (m_send_state == SendState::MAYBE_V1) return {{}, false, m_send_type};
+ Assume(m_send_pos <= m_send_buffer.size());
+ return {
+ Span{m_send_buffer}.subspan(m_send_pos),
+ // We only have more to send after the current m_send_buffer if there is a (next)
+ // message to be sent, and we're capable of sending packets. */
+ have_next_message && m_send_state == SendState::READY,
+ m_send_type
+ };
+}
+
+void V2Transport::MarkBytesSent(size_t bytes_sent) noexcept
+{
+ AssertLockNotHeld(m_send_mutex);
+ LOCK(m_send_mutex);
+ if (m_send_state == SendState::V1) return m_v1_fallback.MarkBytesSent(bytes_sent);
+
+ m_send_pos += bytes_sent;
+ Assume(m_send_pos <= m_send_buffer.size());
+ // Only wipe the buffer when everything is sent in the READY state. In the AWAITING_KEY state
+ // we still need the garbage that's in the send buffer to construct the garbage authentication
+ // packet.
+ if (m_send_state == SendState::READY && m_send_pos == m_send_buffer.size()) {
+ m_send_pos = 0;
+ m_send_buffer = {};
+ }
+}
+
+size_t V2Transport::GetSendMemoryUsage() const noexcept
+{
+ AssertLockNotHeld(m_send_mutex);
+ LOCK(m_send_mutex);
+ if (m_send_state == SendState::V1) return m_v1_fallback.GetSendMemoryUsage();
+
+ return sizeof(m_send_buffer) + memusage::DynamicUsage(m_send_buffer);
+}
+
std::pair<size_t, bool> CConnman::SocketSendData(CNode& node) const
{
auto it = node.vSendMsg.begin();
size_t nSentSize = 0;
bool data_left{false}; //!< second return value (whether unsent data remains)
+ std::optional<bool> expected_more;
while (true) {
if (it != node.vSendMsg.end()) {
// If possible, move one message from the send queue to the transport. This fails when
- // there is an existing message still being sent.
+ // there is an existing message still being sent, or (for v2 transports) when the
+ // handshake has not yet completed.
size_t memusage = it->GetMemoryUsage();
if (node.m_transport->SetMessageToSend(*it)) {
// Update memory usage of send buffer (as *it will be deleted).
@@ -928,7 +1590,12 @@ std::pair<size_t, bool> CConnman::SocketSendData(CNode& node) const
++it;
}
}
- const auto& [data, more, msg_type] = node.m_transport->GetBytesToSend();
+ const auto& [data, more, msg_type] = node.m_transport->GetBytesToSend(it != node.vSendMsg.end());
+ // We rely on the 'more' value returned by GetBytesToSend to correctly predict whether more
+ // bytes are still to be sent, to correctly set the MSG_MORE flag. As a sanity check,
+ // verify that the previously returned 'more' was correct.
+ if (expected_more.has_value()) Assume(!data.empty() == *expected_more);
+ expected_more = more;
data_left = !data.empty(); // will be overwritten on next loop if all of data gets sent
int nBytes = 0;
if (!data.empty()) {
@@ -941,9 +1608,7 @@ std::pair<size_t, bool> CConnman::SocketSendData(CNode& node) const
}
int flags = MSG_NOSIGNAL | MSG_DONTWAIT;
#ifdef MSG_MORE
- // We have more to send if either the transport itself has more, or if we have more
- // messages to send.
- if (more || it != node.vSendMsg.end()) {
+ if (more) {
flags |= MSG_MORE;
}
#endif
@@ -1323,9 +1988,10 @@ Sock::EventsPerSock CConnman::GenerateWaitSockets(Span<CNode* const> nodes)
{
LOCK(pnode->cs_vSend);
// Sending is possible if either there are bytes to send right now, or if there will be
- // once a potential message from vSendMsg is handed to the transport.
- const auto& [to_send, _more, _msg_type] = pnode->m_transport->GetBytesToSend();
- select_send = !to_send.empty() || !pnode->vSendMsg.empty();
+ // once a potential message from vSendMsg is handed to the transport. GetBytesToSend
+ // determines both of these in a single call.
+ const auto& [to_send, more, _msg_type] = pnode->m_transport->GetBytesToSend(!pnode->vSendMsg.empty());
+ select_send = !to_send.empty() || more;
}
if (!select_recv && !select_send) continue;
@@ -3007,7 +3673,10 @@ void CConnman::PushMessage(CNode* pnode, CSerializedNetMsg&& msg)
size_t nBytesSent = 0;
{
LOCK(pnode->cs_vSend);
- const auto& [to_send, _more, _msg_type] = pnode->m_transport->GetBytesToSend();
+ // Check if the transport still has unsent bytes, and indicate to it that we're about to
+ // give it a message to send.
+ const auto& [to_send, more, _msg_type] =
+ pnode->m_transport->GetBytesToSend(/*have_next_message=*/true);
const bool queue_was_empty{to_send.empty() && pnode->vSendMsg.empty()};
// Update memory usage of send buffer.
@@ -3016,10 +3685,14 @@ void CConnman::PushMessage(CNode* pnode, CSerializedNetMsg&& msg)
// Move message to vSendMsg queue.
pnode->vSendMsg.push_back(std::move(msg));
- // If there was nothing to send before, attempt "optimistic write":
+ // If there was nothing to send before, and there is now (predicted by the "more" value
+ // returned by the GetBytesToSend call above), attempt "optimistic write":
// because the poll/select loop may pause for SELECT_TIMEOUT_MILLISECONDS before actually
// doing a send, try sending from the calling thread if the queue was empty before.
- if (queue_was_empty) {
+ // With a V1Transport, more will always be true here, because adding a message always
+ // results in sendable bytes there, but with V2Transport this is not the case (it may
+ // still be in the handshake).
+ if (queue_was_empty && more) {
std::tie(nBytesSent, std::ignore) = SocketSendData(*pnode);
}
}