summaryrefslogtreecommitdiff
path: root/bip-0352/reference.py
blob: 7882ad1ba0ae18fdd2992b8826b36585952e1bca (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
#!/usr/bin/env python3
# For running the test vectors, run this script:
# ./reference.py send_and_receive_test_vectors.json

import hashlib
import json
from typing import List, Tuple, Dict, cast
from sys import argv, exit
from functools import reduce
from itertools import permutations

# local files
from bech32m import convertbits, bech32_encode, decode, Encoding
from secp256k1 import ECKey, ECPubKey, TaggedHash, NUMS_H
from bitcoin_utils import (
        deser_txid,
        from_hex,
        hash160,
        is_p2pkh,
        is_p2sh,
        is_p2wpkh,
        is_p2tr,
        ser_uint32,
        COutPoint,
        CTxInWitness,
        VinInfo,
    )


def get_pubkey_from_input(vin: VinInfo) -> ECPubKey:
    if is_p2pkh(vin.prevout):
        # skip the first 3 op_codes and grab the 20 byte hash
        # from the scriptPubKey
        spk_hash = vin.prevout[3:3 + 20]
        for i in range(len(vin.scriptSig), 0, -1):
            if i - 33 >= 0:
                # starting from the back, we move over the scriptSig with a 33 byte
                # window (to match a compressed pubkey). we hash this and check if it matches
                # the 20 byte has from the scriptPubKey. for standard scriptSigs, this will match
                # right away because the pubkey is the last item in the scriptSig.
                # if its a non-standard (malleated) scriptSig, we will still find the pubkey if its
                # a compressed pubkey.
                #
                # note: this is an incredibly inefficient implementation, for demonstration purposes only.
                pubkey_bytes = vin.scriptSig[i - 33:i]
                pubkey_hash = hash160(pubkey_bytes)
                if pubkey_hash == spk_hash:
                    pubkey = ECPubKey().set(pubkey_bytes)
                    if (pubkey.valid) & (pubkey.compressed):
                        return pubkey
    if is_p2sh(vin.prevout):
        redeem_script = vin.scriptSig[1:]
        if is_p2wpkh(redeem_script):
            pubkey = ECPubKey().set(vin.txinwitness.scriptWitness.stack[-1])
            if (pubkey.valid) & (pubkey.compressed):
                return pubkey
    if is_p2wpkh(vin.prevout):
        txin = vin.txinwitness
        pubkey = ECPubKey().set(txin.scriptWitness.stack[-1])
        if (pubkey.valid) & (pubkey.compressed):
            return pubkey
    if is_p2tr(vin.prevout):
        witnessStack = vin.txinwitness.scriptWitness.stack
        if (len(witnessStack) >= 1):
            if (len(witnessStack) > 1 and witnessStack[-1][0] == 0x50):
                # Last item is annex
                witnessStack.pop()

            if (len(witnessStack) > 1):
                # Script-path spend
                control_block = witnessStack[-1]
                #  control block is <control byte> <32 byte internal key> and 0 or more <32 byte hash>
                internal_key = control_block[1:33]
                if (internal_key == NUMS_H.to_bytes(32, 'big')):
                    # Skip if NUMS_H
                    return ECPubKey()

            pubkey = ECPubKey().set(vin.prevout[2:])
            if (pubkey.valid) & (pubkey.compressed):
                return pubkey


    return ECPubKey()


def get_input_hash(outpoints: List[COutPoint], sum_input_pubkeys: ECPubKey) -> bytes:
    lowest_outpoint = sorted(outpoints, key=lambda outpoint: outpoint.serialize())[0]
    return TaggedHash("BIP0352/Inputs", lowest_outpoint.serialize() + cast(bytes, sum_input_pubkeys.get_bytes(False)))



def encode_silent_payment_address(B_scan: ECPubKey, B_m: ECPubKey, hrp: str = "tsp", version: int = 0) -> str:
    data = convertbits(cast(bytes, B_scan.get_bytes(False)) + cast(bytes, B_m.get_bytes(False)), 8, 5)
    return bech32_encode(hrp, [version] + cast(List[int], data), Encoding.BECH32M)


def generate_label(b_scan: ECKey, m: int) -> bytes:
    return TaggedHash("BIP0352/Label", b_scan.get_bytes() + ser_uint32(m))


def create_labeled_silent_payment_address(b_scan: ECKey, B_spend: ECPubKey, m: int, hrp: str = "tsp", version: int = 0) -> str:
    G = ECKey().set(1).get_pubkey()
    B_scan = b_scan.get_pubkey()
    B_m = B_spend + generate_label(b_scan, m) * G
    labeled_address = encode_silent_payment_address(B_scan, B_m, hrp, version)

    return labeled_address


def decode_silent_payment_address(address: str, hrp: str = "tsp") -> Tuple[ECPubKey, ECPubKey]:
    _, data = decode(hrp, address)
    if data is None:
        return ECPubKey(), ECPubKey()
    B_scan = ECPubKey().set(data[:33])
    B_spend = ECPubKey().set(data[33:])

    return B_scan, B_spend


def create_outputs(input_priv_keys: List[Tuple[ECKey, bool]], outpoints: List[COutPoint], recipients: List[str], hrp="tsp") -> List[str]:
    G = ECKey().set(1).get_pubkey()
    negated_keys = []
    for key, is_xonly in input_priv_keys:
        k = ECKey().set(key.get_bytes())
        if is_xonly and k.get_pubkey().get_y() % 2 != 0:
            k.negate()
        negated_keys.append(k)

    a_sum = sum(negated_keys)
    if not a_sum.valid:
        # Input privkeys sum is zero -> fail
        return []
    input_hash = get_input_hash(outpoints, a_sum * G)
    silent_payment_groups: Dict[ECPubKey, List[ECPubKey]] = {}
    for recipient in recipients:
        B_scan, B_m = decode_silent_payment_address(recipient, hrp=hrp)
        if B_scan in silent_payment_groups:
            silent_payment_groups[B_scan].append(B_m)
        else:
            silent_payment_groups[B_scan] = [B_m]

    outputs = []
    for B_scan, B_m_values in silent_payment_groups.items():
        ecdh_shared_secret = input_hash * a_sum * B_scan
        k = 0
        for B_m in B_m_values:
            t_k = TaggedHash("BIP0352/SharedSecret", ecdh_shared_secret.get_bytes(False) + ser_uint32(k))
            P_km = B_m + t_k * G
            outputs.append(P_km.get_bytes().hex())
            k += 1

    return list(set(outputs))


def scanning(b_scan: ECKey, B_spend: ECPubKey, A_sum: ECPubKey, input_hash: bytes, outputs_to_check: List[ECPubKey], labels: Dict[str, str] = {}) -> List[Dict[str, str]]:
    G = ECKey().set(1).get_pubkey()
    ecdh_shared_secret = input_hash * b_scan * A_sum
    k = 0
    wallet = []
    while True:
        t_k = TaggedHash("BIP0352/SharedSecret", ecdh_shared_secret.get_bytes(False) + ser_uint32(k))
        P_k = B_spend + t_k * G
        for output in outputs_to_check:
            if P_k == output:
                wallet.append({"pub_key": P_k.get_bytes().hex(), "priv_key_tweak": t_k.hex()})
                outputs_to_check.remove(output)
                k += 1
                break
            elif labels:
                m_G_sub = output - P_k
                if m_G_sub.get_bytes(False).hex() in labels:
                    P_km = P_k + m_G_sub
                    wallet.append({
                        "pub_key": P_km.get_bytes().hex(),
                        "priv_key_tweak": (ECKey().set(t_k).add(
                            bytes.fromhex(labels[m_G_sub.get_bytes(False).hex()])
                        )).get_bytes().hex(),
                    })
                    outputs_to_check.remove(output)
                    k += 1
                    break
                else:
                    output.negate()
                    m_G_sub = output - P_k
                    if m_G_sub.get_bytes(False).hex() in labels:
                        P_km = P_k + m_G_sub
                        wallet.append({
                            "pub_key": P_km.get_bytes().hex(),
                            "priv_key_tweak": (ECKey().set(t_k).add(
                                bytes.fromhex(labels[m_G_sub.get_bytes(False).hex()])
                            )).get_bytes().hex(),
                        })
                        outputs_to_check.remove(output)
                        k += 1
                        break
        else:
            break
    return wallet


if __name__ == "__main__":
    if len(argv) != 2 or argv[1] in ('-h', '--help'):
        print("Usage: ./reference.py send_and_receive_test_vectors.json")
        exit(0)

    with open(argv[1], "r") as f:
        test_data = json.loads(f.read())

    # G , needed for generating the labels "database"
    G = ECKey().set(1).get_pubkey()
    for case in test_data:
        print(case["comment"])
        # Test sending
        for sending_test in case["sending"]:
            given = sending_test["given"]
            expected = sending_test["expected"]

            vins = [
                VinInfo(
                    outpoint=COutPoint(hash=deser_txid(input["txid"]), n=input["vout"]),
                    scriptSig=bytes.fromhex(input["scriptSig"]),
                    txinwitness=CTxInWitness().deserialize(from_hex(input["txinwitness"])),
                    prevout=bytes.fromhex(input["prevout"]["scriptPubKey"]["hex"]),
                    private_key=ECKey().set(bytes.fromhex(input["private_key"])),
                )
                for input in given["vin"]
            ]
            # Convert the tuples to lists so they can be easily compared to the json list of lists from the given test vectors
            input_priv_keys = []
            input_pub_keys = []
            for vin in vins:
                pubkey = get_pubkey_from_input(vin)
                if not pubkey.valid:
                    continue
                input_priv_keys.append((
                    vin.private_key,
                    is_p2tr(vin.prevout),
                ))
                input_pub_keys.append(pubkey)

            sending_outputs = []
            if (len(input_pub_keys) > 0):
                outpoints = [vin.outpoint for vin in vins]
                sending_outputs = create_outputs(input_priv_keys, outpoints, given["recipients"], hrp="sp")

                # Note: order doesn't matter for creating/finding the outputs. However, different orderings of the recipient addresses
                # will produce different generated outputs if sending to multiple silent payment addresses belonging to the
                # same sender but with different labels. Because of this, expected["outputs"] contains all possible valid output sets,
                # based on all possible permutations of recipient address orderings. Must match exactly one of the possible output sets.
                assert(any(set(sending_outputs) == set(lst) for lst in expected["outputs"])), "Sending test failed"
            else:
                assert(sending_outputs == expected["outputs"][0] == []), "Sending test failed"

        # Test receiving
        msg = hashlib.sha256(b"message").digest()
        aux = hashlib.sha256(b"random auxiliary data").digest()
        for receiving_test in case["receiving"]:
            given = receiving_test["given"]
            expected = receiving_test["expected"]
            outputs_to_check = [
                ECPubKey().set(bytes.fromhex(p)) for p in given["outputs"]
            ]
            vins = [
                VinInfo(
                    outpoint=COutPoint(hash=deser_txid(input["txid"]), n=input["vout"]),
                    scriptSig=bytes.fromhex(input["scriptSig"]),
                    txinwitness=CTxInWitness().deserialize(from_hex(input["txinwitness"])),
                    prevout=bytes.fromhex(input["prevout"]["scriptPubKey"]["hex"]),
                )
                for input in given["vin"]
            ]
            # Check that the given inputs for the receiving test match what was generated during the sending test
            receiving_addresses = []
            b_scan = ECKey().set(bytes.fromhex(given["key_material"]["scan_priv_key"]))
            b_spend = ECKey().set(
                bytes.fromhex(given["key_material"]["spend_priv_key"])
            )
            B_scan = b_scan.get_pubkey()
            B_spend = b_spend.get_pubkey()
            receiving_addresses.append(
                encode_silent_payment_address(B_scan, B_spend, hrp="sp")
            )
            if given["labels"]:
                for label in given["labels"]:
                    receiving_addresses.append(
                        create_labeled_silent_payment_address(
                            b_scan, B_spend, m=label, hrp="sp"
                        )
                    )

            # Check that the silent payment addresses match for the given BIP32 seed and labels dictionary
            assert (receiving_addresses == expected["addresses"]), "Receiving addresses don't match"
            input_pub_keys = []
            for vin in vins:
                pubkey = get_pubkey_from_input(vin)
                if not pubkey.valid:
                    continue
                input_pub_keys.append(pubkey)

            add_to_wallet = []
            if (len(input_pub_keys) > 0):
                A_sum = reduce(lambda x, y: x + y, input_pub_keys)
                input_hash = get_input_hash([vin.outpoint for vin in vins], A_sum)
                pre_computed_labels = {
                    (generate_label(b_scan, label) * G).get_bytes(False).hex(): generate_label(b_scan, label).hex()
                    for label in given["labels"]
                }
                add_to_wallet = scanning(
                    b_scan=b_scan,
                    B_spend=B_spend,
                    A_sum=A_sum,
                    input_hash=input_hash,
                    outputs_to_check=outputs_to_check,
                    labels=pre_computed_labels,
                )

            # Check that the private key is correct for the found output public key
            for output in add_to_wallet:
                pub_key = ECPubKey().set(bytes.fromhex(output["pub_key"]))
                full_private_key = b_spend.add(bytes.fromhex(output["priv_key_tweak"]))
                if full_private_key.get_pubkey().get_y() % 2 != 0:
                    full_private_key.negate()

                sig = full_private_key.sign_schnorr(msg, aux)
                assert pub_key.verify_schnorr(sig, msg), f"Invalid signature for {pub_key}"
                output["signature"] = sig.hex()

            # Note: order doesn't matter for creating/finding the outputs. However, different orderings of the recipient addresses
            # will produce different generated outputs if sending to multiple silent payment addresses belonging to the
            # same sender but with different labels. Because of this, expected["outputs"] contains all possible valid output sets,
            # based on all possible permutations of recipient address orderings. Must match exactly one of the possible found output
            # sets in expected["outputs"]
            generated_set = {frozenset(d.items()) for d in add_to_wallet}
            expected_set = {frozenset(d.items()) for d in expected["outputs"]}
            assert generated_set == expected_set, "Receive test failed"


    print("All tests passed")