1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
|
#!/usr/bin/python
# -*- coding: utf-8 -*-
# Copyright (C) 2008-2013 Team XBMC
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
import time
import sys
import struct
import math
import binascii
from bluetooth import set_l2cap_mtu
SX_SELECT = 1 << 0
SX_L3 = 1 << 1
SX_R3 = 1 << 2
SX_START = 1 << 3
SX_DUP = 1 << 4
SX_DRIGHT = 1 << 5
SX_DDOWN = 1 << 6
SX_DLEFT = 1 << 7
SX_L2 = 1 << 8
SX_R2 = 1 << 9
SX_L1 = 1 << 10
SX_R1 = 1 << 11
SX_TRIANGLE = 1 << 12
SX_CIRCLE = 1 << 13
SX_X = 1 << 14
SX_SQUARE = 1 << 15
SX_POWER = 1 << 16
SX_LSTICK_X = 0
SX_LSTICK_Y = 1
SX_RSTICK_X = 2
SX_RSTICK_Y = 3
# (map, key, amount index, axis)
keymap_sixaxis = {
SX_X : ('XG', 'A', 0, 0),
SX_CIRCLE : ('XG', 'B', 0, 0),
SX_SQUARE : ('XG', 'X', 0, 0),
SX_TRIANGLE : ('XG', 'Y', 0, 0),
SX_DUP : ('XG', 'dpadup', 0, 0),
SX_DDOWN : ('XG', 'dpaddown', 0, 0),
SX_DLEFT : ('XG', 'dpadleft', 0, 0),
SX_DRIGHT : ('XG', 'dpadright', 0, 0),
SX_START : ('XG', 'start', 0, 0),
SX_SELECT : ('XG', 'back', 0, 0),
SX_R1 : ('XG', 'white', 0, 0),
SX_R2 : ('XG', 'rightanalogtrigger', 6, 1),
SX_L2 : ('XG', 'leftanalogtrigger', 5, 1),
SX_L1 : ('XG', 'black', 0, 0),
SX_L3 : ('XG', 'leftthumbbutton', 0, 0),
SX_R3 : ('XG', 'rightthumbbutton', 0, 0),
}
# (data index, left map, left action, right map, right action)
axismap_sixaxis = {
SX_LSTICK_X : ('XG', 'leftthumbstickleft' , 'leftthumbstickright'),
SX_LSTICK_Y : ('XG', 'leftthumbstickup' , 'leftthumbstickdown'),
SX_RSTICK_X : ('XG', 'rightthumbstickleft', 'rightthumbstickright'),
SX_RSTICK_Y : ('XG', 'rightthumbstickup' , 'rightthumbstickdown'),
}
# to make sure all combination keys are checked first
# we sort the keymap's button codes in reverse order
# this guranties that any bit combined button code
# will be processed first
keymap_sixaxis_keys = keymap_sixaxis.keys()
keymap_sixaxis_keys.sort()
keymap_sixaxis_keys.reverse()
def getkeys(bflags):
keys = [];
for k in keymap_sixaxis_keys:
if (k & bflags) == k:
keys.append(k)
bflags = bflags & ~k
return keys;
def normalize(val):
upperlimit = 65281
lowerlimit = 2
val_range = upperlimit - lowerlimit
offset = 10000
val = (val + val_range / 2) % val_range
upperlimit -= offset
lowerlimit += offset
if val < lowerlimit:
val = lowerlimit
if val > upperlimit:
val = upperlimit
val = ((float(val) - offset) / (float(upperlimit) -
lowerlimit)) * 65535.0
if val <= 0:
val = 1
return val
def normalize_axis(val, deadzone):
val = float(val) - 127.5
val = val / 127.5
if abs(val) < deadzone:
return 0.0
if val > 0.0:
val = (val - deadzone) / (1.0 - deadzone)
else:
val = (val + deadzone) / (1.0 - deadzone)
return 65536.0 * val
def normalize_angle(val, valrange):
valrange *= 2
val = val / valrange
if val > 1.0:
val = 1.0
if val < -1.0:
val = -1.0
return (val + 0.5) * 65535.0
def average(array):
val = 0
for i in array:
val += i
return val / len(array)
def smooth(arr, val):
cnt = len(arr)
arr.insert(0, val)
arr.pop(cnt)
return average(arr)
def set_l2cap_mtu2(sock, mtu):
SOL_L2CAP = 6
L2CAP_OPTIONS = 1
s = sock.getsockopt (SOL_L2CAP, L2CAP_OPTIONS, 12)
o = list( struct.unpack ("HHHBBBH", s) )
o[0] = o[1] = mtu
s = struct.pack ("HHHBBBH", *o)
try:
sock.setsockopt (SOL_L2CAP, L2CAP_OPTIONS, s)
except:
print "Warning: Unable to set mtu"
class sixaxis():
def __init__(self, xbmc, control_sock, interrupt_sock):
self.xbmc = xbmc
self.num_samples = 16
self.sumx = [0] * self.num_samples
self.sumy = [0] * self.num_samples
self.sumr = [0] * self.num_samples
self.axis_amount = [0, 0, 0, 0]
self.released = set()
self.pressed = set()
self.pending = set()
self.held = set()
self.psflags = 0
self.psdown = 0
self.mouse_enabled = 0
set_l2cap_mtu2(control_sock, 64)
set_l2cap_mtu2(interrupt_sock, 64)
time.sleep(0.25) # If we ask to quickly here, it sometimes doesn't start
# sixaxis needs this to enable it
# 0x53 => HIDP_TRANS_SET_REPORT | HIDP_DATA_RTYPE_FEATURE
control_sock.send("\x53\xf4\x42\x03\x00\x00")
data = control_sock.recv(1)
# This command will turn on the gyro and set the leds
# I wonder if turning on the gyro makes it draw more current??
# it's probably a flag somewhere in the following command
# HID Command: HIDP_TRANS_SET_REPORT | HIDP_DATA_RTYPE_OUTPUT
# HID Report:1
bytes = [0x52, 0x1]
bytes.extend([0x00, 0x00, 0x00])
bytes.extend([0xFF, 0x72])
bytes.extend([0x00, 0x00, 0x00, 0x00])
bytes.extend([0x02]) # 0x02 LED1, 0x04 LED2 ... 0x10 LED4
# The following sections should set the blink frequncy of
# the leds on the controller, but i've not figured out how.
# These values where suggusted in a mailing list, but no explination
# for how they should be combined to the 5 bytes per led
#0xFF = 0.5Hz
#0x80 = 1Hz
#0x40 = 2Hz
bytes.extend([0xFF, 0x00, 0x01, 0x00, 0x01]) #LED4 [0xff, 0xff, 0x10, 0x10, 0x10]
bytes.extend([0xFF, 0x00, 0x01, 0x00, 0x01]) #LED3 [0xff, 0x40, 0x08, 0x10, 0x10]
bytes.extend([0xFF, 0x00, 0x01, 0x00, 0x01]) #LED2 [0xff, 0x00, 0x10, 0x30, 0x30]
bytes.extend([0xFF, 0x00, 0x01, 0x00, 0x01]) #LED1 [0xff, 0x00, 0x10, 0x40, 0x10]
bytes.extend([0x00, 0x00, 0x00, 0x00, 0x00])
bytes.extend([0x00, 0x00, 0x00, 0x00, 0x00])
control_sock.send(struct.pack("42B", *bytes))
data = control_sock.recv(1)
def __del__(self):
self.close()
def close(self):
for key in (self.held | self.pressed):
(mapname, action, amount, axis) = keymap_sixaxis[key]
self.xbmc.send_button_state(map=mapname, button=action, amount=0, down=0, axis=axis)
self.held = set()
self.pressed = set()
def process_socket(self, isock):
data = isock.recv(50)
if data == None:
return False
return self.process_data(data)
def process_data(self, data):
if len(data) < 3:
return False
# make sure this is the correct report
if struct.unpack("BBB", data[0:3]) != (0xa1, 0x01, 0x00):
return False
if len(data) >= 48:
v1 = struct.unpack("h", data[42:44])
v2 = struct.unpack("h", data[44:46])
v3 = struct.unpack("h", data[46:48])
else:
v1 = [0,0]
v2 = [0,0]
v3 = [0,0]
if len(data) >= 50:
v4 = struct.unpack("h", data[48:50])
else:
v4 = [0,0]
ax = float(v1[0])
ay = float(v2[0])
az = float(v3[0])
rz = float(v4[0])
at = math.sqrt(ax*ax + ay*ay + az*az)
bflags = struct.unpack("<I", data[3:7])[0]
if len(data) > 27:
pressure = struct.unpack("BBBBBBBBBBBB", data[15:27])
else:
pressure = [0,0,0,0,0,0,0,0,0,0,0,0,0]
roll = -math.atan2(ax, math.sqrt(ay*ay + az*az))
pitch = math.atan2(ay, math.sqrt(ax*ax + az*az))
pitch -= math.radians(20);
xpos = normalize_angle(roll, math.radians(30))
ypos = normalize_angle(pitch, math.radians(30))
axis = struct.unpack("BBBB", data[7:11])
return self.process_input(bflags, pressure, axis, xpos, ypos)
def process_input(self, bflags, pressure, axis, xpos, ypos):
xval = smooth(self.sumx, xpos)
yval = smooth(self.sumy, ypos)
analog = False
for i in range(4):
config = axismap_sixaxis[i]
self.axis_amount[i] = self.send_singleaxis(axis[i], self.axis_amount[i], config[0], config[1], config[2])
if self.axis_amount[i] != 0:
analog = True
# send the mouse position to xbmc
if self.mouse_enabled == 1:
self.xbmc.send_mouse_position(xval, yval)
if (bflags & SX_POWER) == SX_POWER:
if self.psdown:
if (time.time() - self.psdown) > 5:
for key in (self.held | self.pressed):
(mapname, action, amount, axis) = keymap_sixaxis[key]
self.xbmc.send_button_state(map=mapname, button=action, amount=0, down=0, axis=axis)
raise Exception("PS3 Sixaxis powering off, user request")
else:
self.psdown = time.time()
else:
if self.psdown:
self.mouse_enabled = 1 - self.mouse_enabled
self.psdown = 0
keys = set(getkeys(bflags))
self.released = (self.pressed | self.held) - keys
self.held = (self.pressed | self.held) - self.released
self.pressed = (keys - self.held) & self.pending
self.pending = (keys - self.held)
for key in self.released:
(mapname, action, amount, axis) = keymap_sixaxis[key]
self.xbmc.send_button_state(map=mapname, button=action, amount=0, down=0, axis=axis)
for key in self.held:
(mapname, action, amount, axis) = keymap_sixaxis[key]
if amount > 0:
amount = pressure[amount-1] * 256
self.xbmc.send_button_state(map=mapname, button=action, amount=amount, down=1, axis=axis)
for key in self.pressed:
(mapname, action, amount, axis) = keymap_sixaxis[key]
if amount > 0:
amount = pressure[amount-1] * 256
self.xbmc.send_button_state(map=mapname, button=action, amount=amount, down=1, axis=axis)
if analog or keys or self.mouse_enabled:
return True
else:
return False
def send_singleaxis(self, axis, last_amount, mapname, action_min, action_pos):
amount = normalize_axis(axis, 0.30)
if last_amount < 0:
last_action = action_min
elif last_amount > 0:
last_action = action_pos
else:
last_action = None
if amount < 0:
new_action = action_min
elif amount > 0:
new_action = action_pos
else:
new_action = None
if last_action and new_action != last_action:
self.xbmc.send_button_state(map=mapname, button=last_action, amount=0, axis=1)
if new_action and amount != last_amount:
self.xbmc.send_button_state(map=mapname, button=new_action, amount=abs(amount), axis=1)
return amount
|