diff options
author | Christian Grothoff <christian@grothoff.org> | 2016-08-10 01:01:21 +0200 |
---|---|---|
committer | Christian Grothoff <christian@grothoff.org> | 2016-08-10 01:01:21 +0200 |
commit | cc20319a1abea2a5658f1c6dec0aa297f12af601 (patch) | |
tree | 6e2671fe76c28e5ad1c1c9b65d62d383bde84b73 /doc/paper | |
parent | bbeef4560d2653c5ad489b9d4e02b1c9ae3083df (diff) |
fix minor issues introduced in last reformulation of refresh
Diffstat (limited to 'doc/paper')
-rw-r--r-- | doc/paper/taler.tex | 16 |
1 files changed, 8 insertions, 8 deletions
diff --git a/doc/paper/taler.tex b/doc/paper/taler.tex index c4349837c..ec0c81981 100644 --- a/doc/paper/taler.tex +++ b/doc/paper/taler.tex @@ -781,9 +781,9 @@ generator of the elliptic curve. \end{itemize} We have computed $L_i$ as a Diffie-Hellman shared secret between the transfer key pair $T^{(i)} := \left(t^{(i)}_s,T^{(i)}_p\right)$ - and old coin key pair $C' := \left(c_s', C_p'\right)$, - so that $L_i = H(t^{(i)}_s C'_p)$ too. - Now the customer applies key derivtion functions $\KDF_?$ to $L_i$ to generate + and old coin key pair $C' := \left(c_s', C_p'\right)$; + as a result, $L_i = H(t^{(i)}_s C'_p)$ also holds. + Now the customer applies key derivation functions $\KDF_?$ to $L_i$ to generate \begin{itemize} \item a blinding factor $b^{(i)} = \FDH_K(\KDF_{\textrm{blinding}}(L_i))$. \item $c_s^{(i)} = \KDF_{\textrm{Ed25519}}(L_i)$ @@ -795,7 +795,7 @@ generator of the elliptic curve. The customer saves to disk $\langle C', \vec{t}\rangle$ where $\vec{t} = \langle t^{(1)}_s, \ldots, t^{(\kappa)}_s \rangle$. We observe that $t^{(i)}_s$ suffices to regenerate $C^{(i)}$ and $b^{(i)}$ - using the same key derivtion functions. + using the same key derivation functions. % \item The customer computes $B^{(i)} := B_{b^{(i)}}(\FDH_K(C^{(i)}_p))$ @@ -811,7 +811,7 @@ generator of the elliptic curve. \item The customer commits $\langle C', S_K(C'_p, \gamma) \rangle$ to disk. % \item - Also, the customer computes $\mathfrak{R} := \left(t_s^{(i)}\right)_{i \ne \gamma}$ + Also, the customer assembles $\mathfrak{R} := \left(t_s^{(i)}\right)_{i \ne \gamma}$ and sends $S_{C'}(\mathfrak{R})$ to the exchange. \item \label{step:refresh-ccheck} The exchange checks whether $\mathfrak{R}$ is consistent with @@ -820,15 +820,15 @@ generator of the elliptic curve. \vspace{-2ex} \begin{minipage}{5cm} \begin{align*} - \overline{K}_i :&= H(t_s^{(i)} C_p') \\ - \overline{c}_s^{(i)} :&= \KDF_{\textrm{Ed25519}}(\overline{K}_i) \\ + \overline{L}_i :&= H(t_s^{(i)} C_p') \\ + \overline{c}_s^{(i)} :&= \KDF_{\textrm{Ed25519}}(\overline{L}_i) \\ \overline{C^{(i)}_p} :&= \overline{c}_s^{(i)} G \end{align*} \end{minipage} \begin{minipage}{5cm} \begin{align*} \overline{T_p^{(i)}} :&= t_s^{(i)} G \\ - \overline{b}^{(i)} :&= \FDH_K(\KDF_{\textrm{blinding}}(\overline{K}_i)) \\ + \overline{b}^{(i)} :&= \FDH_K(\KDF_{\textrm{blinding}}(\overline{L}_i)) \\ \overline{B^{(i)}} :&= B_{\overline{b_i}}(\overline{C_p^{(i)}}) \end{align*} \end{minipage} |