1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
|
#include "qemu/osdep.h"
#include "ui/console.h"
#include "cursor_hidden.xpm"
#include "cursor_left_ptr.xpm"
/* for creating built-in cursors */
static QEMUCursor *cursor_parse_xpm(const char *xpm[])
{
QEMUCursor *c;
uint32_t ctab[128];
unsigned int width, height, colors, chars;
unsigned int line = 0, i, r, g, b, x, y, pixel;
char name[16];
uint8_t idx;
/* parse header line: width, height, #colors, #chars */
if (sscanf(xpm[line], "%u %u %u %u",
&width, &height, &colors, &chars) != 4) {
fprintf(stderr, "%s: header parse error: \"%s\"\n",
__func__, xpm[line]);
return NULL;
}
if (chars != 1) {
fprintf(stderr, "%s: chars != 1 not supported\n", __func__);
return NULL;
}
line++;
/* parse color table */
for (i = 0; i < colors; i++, line++) {
if (sscanf(xpm[line], "%c c %15s", &idx, name) == 2) {
if (sscanf(name, "#%02x%02x%02x", &r, &g, &b) == 3) {
ctab[idx] = (0xff << 24) | (b << 16) | (g << 8) | r;
continue;
}
if (strcmp(name, "None") == 0) {
ctab[idx] = 0x00000000;
continue;
}
}
fprintf(stderr, "%s: color parse error: \"%s\"\n",
__func__, xpm[line]);
return NULL;
}
/* parse pixel data */
c = cursor_alloc(width, height);
assert(c != NULL);
for (pixel = 0, y = 0; y < height; y++, line++) {
for (x = 0; x < height; x++, pixel++) {
idx = xpm[line][x];
c->data[pixel] = ctab[idx];
}
}
return c;
}
/* nice for debugging */
void cursor_print_ascii_art(QEMUCursor *c, const char *prefix)
{
uint32_t *data = c->data;
int x,y;
for (y = 0; y < c->height; y++) {
fprintf(stderr, "%s: %2d: |", prefix, y);
for (x = 0; x < c->width; x++, data++) {
if ((*data & 0xff000000) != 0xff000000) {
fprintf(stderr, " "); /* transparent */
} else if ((*data & 0x00ffffff) == 0x00ffffff) {
fprintf(stderr, "."); /* white */
} else if ((*data & 0x00ffffff) == 0x00000000) {
fprintf(stderr, "X"); /* black */
} else {
fprintf(stderr, "o"); /* other */
}
}
fprintf(stderr, "|\n");
}
}
QEMUCursor *cursor_builtin_hidden(void)
{
return cursor_parse_xpm(cursor_hidden_xpm);
}
QEMUCursor *cursor_builtin_left_ptr(void)
{
return cursor_parse_xpm(cursor_left_ptr_xpm);
}
QEMUCursor *cursor_alloc(uint16_t width, uint16_t height)
{
QEMUCursor *c;
size_t datasize = width * height * sizeof(uint32_t);
/* Modern physical hardware typically uses 512x512 sprites */
if (width > 512 || height > 512) {
return NULL;
}
c = g_malloc0(sizeof(QEMUCursor) + datasize);
c->width = width;
c->height = height;
c->refcount = 1;
return c;
}
QEMUCursor *cursor_ref(QEMUCursor *c)
{
c->refcount++;
return c;
}
void cursor_unref(QEMUCursor *c)
{
if (c == NULL)
return;
c->refcount--;
if (c->refcount)
return;
g_free(c);
}
int cursor_get_mono_bpl(QEMUCursor *c)
{
return DIV_ROUND_UP(c->width, 8);
}
void cursor_set_mono(QEMUCursor *c,
uint32_t foreground, uint32_t background, uint8_t *image,
int transparent, uint8_t *mask)
{
uint32_t *data = c->data;
uint8_t bit;
int x,y,bpl;
bool expand_bitmap_only = image == mask;
bool has_inverted_colors = false;
const uint32_t inverted = 0x80000000;
/*
* Converts a monochrome bitmap with XOR mask 'image' and AND mask 'mask':
* https://docs.microsoft.com/en-us/windows-hardware/drivers/display/drawing-monochrome-pointers
*/
bpl = cursor_get_mono_bpl(c);
for (y = 0; y < c->height; y++) {
bit = 0x80;
for (x = 0; x < c->width; x++, data++) {
if (transparent && mask[x/8] & bit) {
if (!expand_bitmap_only && image[x / 8] & bit) {
*data = inverted;
has_inverted_colors = true;
} else {
*data = 0x00000000;
}
} else if (!transparent && !(mask[x/8] & bit)) {
*data = 0x00000000;
} else if (image[x/8] & bit) {
*data = 0xff000000 | foreground;
} else {
*data = 0xff000000 | background;
}
bit >>= 1;
if (bit == 0) {
bit = 0x80;
}
}
mask += bpl;
image += bpl;
}
/*
* If there are any pixels with inverted colors, create an outline (fill
* transparent neighbors with the background color) and use the foreground
* color as "inverted" color.
*/
if (has_inverted_colors) {
data = c->data;
for (y = 0; y < c->height; y++) {
for (x = 0; x < c->width; x++, data++) {
if (*data == 0 /* transparent */ &&
((x > 0 && data[-1] == inverted) ||
(x + 1 < c->width && data[1] == inverted) ||
(y > 0 && data[-c->width] == inverted) ||
(y + 1 < c->height && data[c->width] == inverted))) {
*data = 0xff000000 | background;
}
}
}
data = c->data;
for (x = 0; x < c->width * c->height; x++, data++) {
if (*data == inverted) {
*data = 0xff000000 | foreground;
}
}
}
}
void cursor_get_mono_mask(QEMUCursor *c, int transparent, uint8_t *mask)
{
uint32_t *data = c->data;
uint8_t bit;
int x,y,bpl;
bpl = cursor_get_mono_bpl(c);
memset(mask, 0, bpl * c->height);
for (y = 0; y < c->height; y++) {
bit = 0x80;
for (x = 0; x < c->width; x++, data++) {
if ((*data & 0x80000000) == 0x0) { /* Alpha < 0x80 (128) */
if (transparent != 0) {
mask[x/8] |= bit;
}
} else {
if (transparent == 0) {
mask[x/8] |= bit;
}
}
bit >>= 1;
if (bit == 0) {
bit = 0x80;
}
}
mask += bpl;
}
}
|