aboutsummaryrefslogtreecommitdiff
path: root/tests/rtc-test.c
blob: f23ac3a6cf104485d63d7f3f93962036eb236220 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
/*
 * QTest testcase for the MC146818 real-time clock
 *
 * Copyright IBM, Corp. 2012
 *
 * Authors:
 *  Anthony Liguori   <aliguori@us.ibm.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
 * See the COPYING file in the top-level directory.
 *
 */
#include "libqtest.h"
#include "hw/mc146818rtc_regs.h"

#include <glib.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>

static uint8_t base = 0x70;

static int bcd2dec(int value)
{
    return (((value >> 4) & 0x0F) * 10) + (value & 0x0F);
}

static int dec2bcd(int value)
{
    return ((value / 10) << 4) | (value % 10);
}

static uint8_t cmos_read(uint8_t reg)
{
    outb(base + 0, reg);
    return inb(base + 1);
}

static void cmos_write(uint8_t reg, uint8_t val)
{
    outb(base + 0, reg);
    outb(base + 1, val);
}

static int tm_cmp(struct tm *lhs, struct tm *rhs)
{
    time_t a, b;
    struct tm d1, d2;

    memcpy(&d1, lhs, sizeof(d1));
    memcpy(&d2, rhs, sizeof(d2));

    a = mktime(&d1);
    b = mktime(&d2);

    if (a < b) {
        return -1;
    } else if (a > b) {
        return 1;
    }

    return 0;
}

#if 0
static void print_tm(struct tm *tm)
{
    printf("%04d-%02d-%02d %02d:%02d:%02d\n",
           tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
           tm->tm_hour, tm->tm_min, tm->tm_sec, tm->tm_gmtoff);
}
#endif

static void cmos_get_date_time(struct tm *date)
{
    int base_year = 2000, hour_offset;
    int sec, min, hour, mday, mon, year;
    time_t ts;
    struct tm dummy;

    sec = cmos_read(RTC_SECONDS);
    min = cmos_read(RTC_MINUTES);
    hour = cmos_read(RTC_HOURS);
    mday = cmos_read(RTC_DAY_OF_MONTH);
    mon = cmos_read(RTC_MONTH);
    year = cmos_read(RTC_YEAR);

    if ((cmos_read(RTC_REG_B) & REG_B_DM) == 0) {
        sec = bcd2dec(sec);
        min = bcd2dec(min);
        hour = bcd2dec(hour);
        mday = bcd2dec(mday);
        mon = bcd2dec(mon);
        year = bcd2dec(year);
        hour_offset = 80;
    } else {
        hour_offset = 0x80;
    }

    if ((cmos_read(0x0B) & REG_B_24H) == 0) {
        if (hour >= hour_offset) {
            hour -= hour_offset;
            hour += 12;
        }
    }

    ts = time(NULL);
    localtime_r(&ts, &dummy);

    date->tm_isdst = dummy.tm_isdst;
    date->tm_sec = sec;
    date->tm_min = min;
    date->tm_hour = hour;
    date->tm_mday = mday;
    date->tm_mon = mon - 1;
    date->tm_year = base_year + year - 1900;
    date->tm_gmtoff = 0;

    ts = mktime(date);
}

static void check_time(int wiggle)
{
    struct tm start, date[4], end;
    struct tm *datep;
    time_t ts;

    /*
     * This check assumes a few things.  First, we cannot guarantee that we get
     * a consistent reading from the wall clock because we may hit an edge of
     * the clock while reading.  To work around this, we read four clock readings
     * such that at least two of them should match.  We need to assume that one
     * reading is corrupt so we need four readings to ensure that we have at
     * least two consecutive identical readings
     *
     * It's also possible that we'll cross an edge reading the host clock so
     * simply check to make sure that the clock reading is within the period of
     * when we expect it to be.
     */

    ts = time(NULL);
    gmtime_r(&ts, &start);

    cmos_get_date_time(&date[0]);
    cmos_get_date_time(&date[1]);
    cmos_get_date_time(&date[2]);
    cmos_get_date_time(&date[3]);

    ts = time(NULL);
    gmtime_r(&ts, &end);

    if (tm_cmp(&date[0], &date[1]) == 0) {
        datep = &date[0];
    } else if (tm_cmp(&date[1], &date[2]) == 0) {
        datep = &date[1];
    } else if (tm_cmp(&date[2], &date[3]) == 0) {
        datep = &date[2];
    } else {
        g_assert_not_reached();
    }

    if (!(tm_cmp(&start, datep) <= 0 && tm_cmp(datep, &end) <= 0)) {
        long t, s;

        start.tm_isdst = datep->tm_isdst;

        t = (long)mktime(datep);
        s = (long)mktime(&start);
        if (t < s) {
            g_test_message("RTC is %ld second(s) behind wall-clock\n", (s - t));
        } else {
            g_test_message("RTC is %ld second(s) ahead of wall-clock\n", (t - s));
        }

        g_assert_cmpint(ABS(t - s), <=, wiggle);
    }
}

static int wiggle = 2;

static void bcd_check_time(void)
{
    /* Set BCD mode */
    cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) & ~REG_B_DM);
    check_time(wiggle);
}

static void dec_check_time(void)
{
    /* Set DEC mode */
    cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) | REG_B_DM);
    check_time(wiggle);
}

static void set_alarm_time(struct tm *tm)
{
    int sec;

    sec = tm->tm_sec;

    if ((cmos_read(RTC_REG_B) & REG_B_DM) == 0) {
        sec = dec2bcd(sec);
    }

    cmos_write(RTC_SECONDS_ALARM, sec);
    cmos_write(RTC_MINUTES_ALARM, RTC_ALARM_DONT_CARE);
    cmos_write(RTC_HOURS_ALARM, RTC_ALARM_DONT_CARE);
}

static void alarm_time(void)
{
    struct tm now;
    time_t ts;
    int i;

    ts = time(NULL);
    gmtime_r(&ts, &now);

    /* set DEC mode */
    cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) | REG_B_DM);

    g_assert(!get_irq(RTC_ISA_IRQ));
    cmos_read(RTC_REG_C);

    now.tm_sec = (now.tm_sec + 2) % 60;
    set_alarm_time(&now);
    cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) | REG_B_AIE);

    for (i = 0; i < 2 + wiggle; i++) {
        if (get_irq(RTC_ISA_IRQ)) {
            break;
        }

        clock_step(1000000000);
    }

    g_assert(get_irq(RTC_ISA_IRQ));
    g_assert((cmos_read(RTC_REG_C) & REG_C_AF) != 0);
    g_assert(cmos_read(RTC_REG_C) == 0);
}

/* success if no crash or abort */
static void fuzz_registers(void)
{
    unsigned int i;

    for (i = 0; i < 1000; i++) {
        uint8_t reg, val;

        reg = (uint8_t)g_test_rand_int_range(0, 16);
        val = (uint8_t)g_test_rand_int_range(0, 256);

        cmos_write(reg, val);
        cmos_read(reg);
    }
}

int main(int argc, char **argv)
{
    QTestState *s = NULL;
    int ret;

    g_test_init(&argc, &argv, NULL);

    s = qtest_start("-display none -rtc clock=vm");
    qtest_irq_intercept_in(s, "ioapic");

    qtest_add_func("/rtc/bcd/check-time", bcd_check_time);
    qtest_add_func("/rtc/dec/check-time", dec_check_time);
    qtest_add_func("/rtc/alarm-time", alarm_time);
    qtest_add_func("/rtc/fuzz-registers", fuzz_registers);
    ret = g_test_run();

    if (s) {
        qtest_quit(s);
    }

    return ret;
}