aboutsummaryrefslogtreecommitdiff
path: root/target/tricore/fpu_helper.c
blob: 5d38aea143af77116f2250def0e4b0873b77b0b0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
/*
 *  TriCore emulation for qemu: fpu helper.
 *
 *  Copyright (c) 2016 Bastian Koppelmann University of Paderborn
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 */

#include "qemu/osdep.h"
#include "cpu.h"
#include "exec/helper-proto.h"
#include "fpu/softfloat.h"

#define QUIET_NAN 0x7fc00000
#define ADD_NAN   0x7fc00001
#define SQRT_NAN  0x7fc00004
#define DIV_NAN   0x7fc00008
#define MUL_NAN   0x7fc00002
#define FPU_FS PSW_USB_C
#define FPU_FI PSW_USB_V
#define FPU_FV PSW_USB_SV
#define FPU_FZ PSW_USB_AV
#define FPU_FU PSW_USB_SAV

#define float32_sqrt_nan make_float32(SQRT_NAN)
#define float32_quiet_nan make_float32(QUIET_NAN)

/* we don't care about input_denormal */
static inline uint8_t f_get_excp_flags(CPUTriCoreState *env)
{
    return get_float_exception_flags(&env->fp_status)
           & (float_flag_invalid
              | float_flag_overflow
              | float_flag_underflow
              | float_flag_output_denormal
              | float_flag_divbyzero
              | float_flag_inexact);
}

static inline float32 f_maddsub_nan_result(float32 arg1, float32 arg2,
                                           float32 arg3, float32 result,
                                           uint32_t muladd_negate_c)
{
    uint32_t aSign, bSign, cSign;
    uint32_t aExp, bExp, cExp;

    if (float32_is_any_nan(arg1) || float32_is_any_nan(arg2) ||
        float32_is_any_nan(arg3)) {
        return QUIET_NAN;
    } else if (float32_is_infinity(arg1) && float32_is_zero(arg2)) {
        return MUL_NAN;
    } else if (float32_is_zero(arg1) && float32_is_infinity(arg2)) {
        return MUL_NAN;
    } else {
        aSign = arg1 >> 31;
        bSign = arg2 >> 31;
        cSign = arg3 >> 31;

        aExp = (arg1 >> 23) & 0xff;
        bExp = (arg2 >> 23) & 0xff;
        cExp = (arg3 >> 23) & 0xff;

        if (muladd_negate_c) {
            cSign ^= 1;
        }
        if (((aExp == 0xff) || (bExp == 0xff)) && (cExp == 0xff)) {
            if (aSign ^ bSign ^ cSign) {
                return ADD_NAN;
            }
        }
    }

    return result;
}

static void f_update_psw_flags(CPUTriCoreState *env, uint8_t flags)
{
    uint8_t some_excp = 0;
    set_float_exception_flags(0, &env->fp_status);

    if (flags & float_flag_invalid) {
        env->FPU_FI = 1 << 31;
        some_excp = 1;
    }

    if (flags & float_flag_overflow) {
        env->FPU_FV = 1 << 31;
        some_excp = 1;
    }

    if (flags & float_flag_underflow || flags & float_flag_output_denormal) {
        env->FPU_FU = 1 << 31;
        some_excp = 1;
    }

    if (flags & float_flag_divbyzero) {
        env->FPU_FZ = 1 << 31;
        some_excp = 1;
    }

    if (flags & float_flag_inexact || flags & float_flag_output_denormal) {
        env->PSW |= 1 << 26;
        some_excp = 1;
    }

    env->FPU_FS = some_excp;
}

#define FADD_SUB(op)                                                           \
uint32_t helper_f##op(CPUTriCoreState *env, uint32_t r1, uint32_t r2)          \
{                                                                              \
    float32 arg1 = make_float32(r1);                                           \
    float32 arg2 = make_float32(r2);                                           \
    uint32_t flags;                                                            \
    float32 f_result;                                                          \
                                                                               \
    f_result = float32_##op(arg2, arg1, &env->fp_status);                      \
    flags = f_get_excp_flags(env);                                             \
    if (flags) {                                                               \
        /* If the output is a NaN, but the inputs aren't,                      \
           we return a unique value.  */                                       \
        if ((flags & float_flag_invalid)                                       \
            && !float32_is_any_nan(arg1)                                       \
            && !float32_is_any_nan(arg2)) {                                    \
            f_result = ADD_NAN;                                                \
        }                                                                      \
        f_update_psw_flags(env, flags);                                        \
    } else {                                                                   \
        env->FPU_FS = 0;                                                       \
    }                                                                          \
    return (uint32_t)f_result;                                                 \
}
FADD_SUB(add)
FADD_SUB(sub)

uint32_t helper_fmul(CPUTriCoreState *env, uint32_t r1, uint32_t r2)
{
    uint32_t flags;
    float32 arg1 = make_float32(r1);
    float32 arg2 = make_float32(r2);
    float32 f_result;

    f_result = float32_mul(arg1, arg2, &env->fp_status);

    flags = f_get_excp_flags(env);
    if (flags) {
        /* If the output is a NaN, but the inputs aren't,
           we return a unique value.  */
        if ((flags & float_flag_invalid)
            && !float32_is_any_nan(arg1)
            && !float32_is_any_nan(arg2)) {
                f_result = MUL_NAN;
        }
        f_update_psw_flags(env, flags);
    } else {
        env->FPU_FS = 0;
    }
    return (uint32_t)f_result;

}

/*
 * Target TriCore QSEED.F significand Lookup Table
 *
 * The QSEED.F output significand depends on the least-significant
 * exponent bit and the 6 most-significant significand bits.
 *
 * IEEE 754 float datatype
 * partitioned into Sign (S), Exponent (E) and Significand (M):
 *
 * S   E E E E E E E E   M M M M M M ...
 *    |             |               |
 *    +------+------+-------+-------+
 *           |              |
 *          for        lookup table
 *      calculating     index for
 *        output E       output M
 *
 * This lookup table was extracted by analyzing QSEED output
 * from the real hardware
 */
static const uint8_t target_qseed_significand_table[128] = {
    253, 252, 245, 244, 239, 238, 231, 230, 225, 224, 217, 216,
    211, 210, 205, 204, 201, 200, 195, 194, 189, 188, 185, 184,
    179, 178, 175, 174, 169, 168, 165, 164, 161, 160, 157, 156,
    153, 152, 149, 148, 145, 144, 141, 140, 137, 136, 133, 132,
    131, 130, 127, 126, 123, 122, 121, 120, 117, 116, 115, 114,
    111, 110, 109, 108, 103, 102, 99, 98, 93, 92, 89, 88, 83,
    82, 79, 78, 75, 74, 71, 70, 67, 66, 63, 62, 59, 58, 55,
    54, 53, 52, 49, 48, 45, 44, 43, 42, 39, 38, 37, 36, 33,
    32, 31, 30, 27, 26, 25, 24, 23, 22, 19, 18, 17, 16, 15,
    14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2
};

uint32_t helper_qseed(CPUTriCoreState *env, uint32_t r1)
{
    uint32_t arg1, S, E, M, E_minus_one, m_idx;
    uint32_t new_E, new_M, new_S, result;

    arg1 = make_float32(r1);

    /* fetch IEEE-754 fields S, E and the uppermost 6-bit of M */
    S = extract32(arg1, 31, 1);
    E = extract32(arg1, 23, 8);
    M = extract32(arg1, 17, 6);

    if (float32_is_any_nan(arg1)) {
        result = float32_quiet_nan;
    } else if (float32_is_zero_or_denormal(arg1)) {
        if (float32_is_neg(arg1)) {
            result = float32_infinity | (1 << 31);
        } else {
            result = float32_infinity;
        }
    } else if (float32_is_neg(arg1)) {
        result = float32_sqrt_nan;
    } else if (float32_is_infinity(arg1)) {
        result = float32_zero;
    } else {
        E_minus_one = E - 1;
        m_idx = ((E_minus_one & 1) << 6) | M;
        new_S = S;
        new_E = 0xBD - E_minus_one / 2;
        new_M = target_qseed_significand_table[m_idx];

        result = 0;
        result = deposit32(result, 31, 1, new_S);
        result = deposit32(result, 23, 8, new_E);
        result = deposit32(result, 15, 8, new_M);
    }

    if (float32_is_signaling_nan(arg1, &env->fp_status)
        || result == float32_sqrt_nan) {
        env->FPU_FI = 1 << 31;
        env->FPU_FS = 1;
    } else {
        env->FPU_FS = 0;
    }

    return (uint32_t) result;
}

uint32_t helper_fdiv(CPUTriCoreState *env, uint32_t r1, uint32_t r2)
{
    uint32_t flags;
    float32 arg1 = make_float32(r1);
    float32 arg2 = make_float32(r2);
    float32 f_result;

    f_result = float32_div(arg1, arg2 , &env->fp_status);

    flags = f_get_excp_flags(env);
    if (flags) {
        /* If the output is a NaN, but the inputs aren't,
           we return a unique value.  */
        if ((flags & float_flag_invalid)
            && !float32_is_any_nan(arg1)
            && !float32_is_any_nan(arg2)) {
                f_result = DIV_NAN;
        }
        f_update_psw_flags(env, flags);
    } else {
        env->FPU_FS = 0;
    }

    return (uint32_t)f_result;
}

uint32_t helper_fmadd(CPUTriCoreState *env, uint32_t r1,
                      uint32_t r2, uint32_t r3)
{
    uint32_t flags;
    float32 arg1 = make_float32(r1);
    float32 arg2 = make_float32(r2);
    float32 arg3 = make_float32(r3);
    float32 f_result;

    f_result = float32_muladd(arg1, arg2, arg3, 0, &env->fp_status);

    flags = f_get_excp_flags(env);
    if (flags) {
        if (flags & float_flag_invalid) {
            arg1 = float32_squash_input_denormal(arg1, &env->fp_status);
            arg2 = float32_squash_input_denormal(arg2, &env->fp_status);
            arg3 = float32_squash_input_denormal(arg3, &env->fp_status);
            f_result = f_maddsub_nan_result(arg1, arg2, arg3, f_result, 0);
        }
        f_update_psw_flags(env, flags);
    } else {
        env->FPU_FS = 0;
    }
    return (uint32_t)f_result;
}

uint32_t helper_fmsub(CPUTriCoreState *env, uint32_t r1,
                      uint32_t r2, uint32_t r3)
{
    uint32_t flags;
    float32 arg1 = make_float32(r1);
    float32 arg2 = make_float32(r2);
    float32 arg3 = make_float32(r3);
    float32 f_result;

    f_result = float32_muladd(arg1, arg2, arg3, float_muladd_negate_product,
                              &env->fp_status);

    flags = f_get_excp_flags(env);
    if (flags) {
        if (flags & float_flag_invalid) {
            arg1 = float32_squash_input_denormal(arg1, &env->fp_status);
            arg2 = float32_squash_input_denormal(arg2, &env->fp_status);
            arg3 = float32_squash_input_denormal(arg3, &env->fp_status);

            f_result = f_maddsub_nan_result(arg1, arg2, arg3, f_result, 1);
        }
        f_update_psw_flags(env, flags);
    } else {
        env->FPU_FS = 0;
    }
    return (uint32_t)f_result;
}

uint32_t helper_fcmp(CPUTriCoreState *env, uint32_t r1, uint32_t r2)
{
    uint32_t result, flags;
    float32 arg1 = make_float32(r1);
    float32 arg2 = make_float32(r2);

    set_flush_inputs_to_zero(0, &env->fp_status);

    result = 1 << (float32_compare_quiet(arg1, arg2, &env->fp_status) + 1);
    result |= float32_is_denormal(arg1) << 4;
    result |= float32_is_denormal(arg2) << 5;

    flags = f_get_excp_flags(env);
    if (flags) {
        f_update_psw_flags(env, flags);
    } else {
        env->FPU_FS = 0;
    }

    set_flush_inputs_to_zero(1, &env->fp_status);
    return result;
}

uint32_t helper_ftoi(CPUTriCoreState *env, uint32_t arg)
{
    float32 f_arg = make_float32(arg);
    int32_t result, flags;

    result = float32_to_int32(f_arg, &env->fp_status);

    flags = f_get_excp_flags(env);
    if (flags) {
        if (float32_is_any_nan(f_arg)) {
            result = 0;
        }
        f_update_psw_flags(env, flags);
    } else {
        env->FPU_FS = 0;
    }
    return (uint32_t)result;
}

uint32_t helper_hptof(CPUTriCoreState *env, uint32_t arg)
{
    float16 f_arg = make_float16(arg);
    uint32_t result = 0;
    int32_t flags = 0;

    /*
     * if we have any NAN we need to move the top 2 and lower 8 input mantissa
     * bits to the top 2 and lower 8 output mantissa bits respectively.
     * Softfloat on the other hand uses the top 10 mantissa bits.
     */
    if (float16_is_any_nan(f_arg)) {
        if (float16_is_signaling_nan(f_arg, &env->fp_status)) {
            flags |= float_flag_invalid;
        }
        result = 0;
        result = float32_set_sign(result, f_arg >> 15);
        result = deposit32(result, 23, 8, 0xff);
        result = deposit32(result, 21, 2, extract32(f_arg, 8, 2));
        result = deposit32(result, 0, 8, extract32(f_arg, 0, 8));
    } else {
        set_flush_inputs_to_zero(0, &env->fp_status);
        result = float16_to_float32(f_arg, true, &env->fp_status);
        set_flush_inputs_to_zero(1, &env->fp_status);
        flags = f_get_excp_flags(env);
    }

    if (flags) {
        f_update_psw_flags(env, flags);
    } else {
        env->FPU_FS = 0;
    }

    return result;
}

uint32_t helper_ftohp(CPUTriCoreState *env, uint32_t arg)
{
    float32 f_arg = make_float32(arg);
    uint32_t result = 0;
    int32_t flags = 0;

    /*
     * if we have any NAN we need to move the top 2 and lower 8 input mantissa
     * bits to the top 2 and lower 8 output mantissa bits respectively.
     * Softfloat on the other hand uses the top 10 mantissa bits.
     */
    if (float32_is_any_nan(f_arg)) {
        if (float32_is_signaling_nan(f_arg, &env->fp_status)) {
            flags |= float_flag_invalid;
        }
        result = float16_set_sign(result, arg >> 31);
        result = deposit32(result, 10, 5, 0x1f);
        result = deposit32(result, 8, 2, extract32(arg, 21, 2));
        result = deposit32(result, 0, 8, extract32(arg, 0, 8));
        if (extract32(result, 0, 10) == 0) {
            result |= (1 << 8);
        }
    } else {
        set_flush_to_zero(0, &env->fp_status);
        result = float32_to_float16(f_arg, true, &env->fp_status);
        set_flush_to_zero(1, &env->fp_status);
        flags = f_get_excp_flags(env);
    }

    if (flags) {
        f_update_psw_flags(env, flags);
    } else {
        env->FPU_FS = 0;
    }

    return result;
}

uint32_t helper_itof(CPUTriCoreState *env, uint32_t arg)
{
    float32 f_result;
    uint32_t flags;
    f_result = int32_to_float32(arg, &env->fp_status);

    flags = f_get_excp_flags(env);
    if (flags) {
        f_update_psw_flags(env, flags);
    } else {
        env->FPU_FS = 0;
    }
    return (uint32_t)f_result;
}

uint32_t helper_utof(CPUTriCoreState *env, uint32_t arg)
{
    float32 f_result;
    uint32_t flags;

    f_result = uint32_to_float32(arg, &env->fp_status);

    flags = f_get_excp_flags(env);
    if (flags) {
        f_update_psw_flags(env, flags);
    } else {
        env->FPU_FS = 0;
    }
    return (uint32_t)f_result;
}

uint32_t helper_ftoiz(CPUTriCoreState *env, uint32_t arg)
{
    float32 f_arg = make_float32(arg);
    uint32_t result;
    int32_t flags;

    result = float32_to_int32_round_to_zero(f_arg, &env->fp_status);

    flags = f_get_excp_flags(env);
    if (flags & float_flag_invalid) {
        flags &= ~float_flag_inexact;
        if (float32_is_any_nan(f_arg)) {
            result = 0;
        }
    }

    if (flags) {
        f_update_psw_flags(env, flags);
    } else {
        env->FPU_FS = 0;
    }

    return result;
}

uint32_t helper_ftou(CPUTriCoreState *env, uint32_t arg)
{
    float32 f_arg = make_float32(arg);
    uint32_t result;
    int32_t flags = 0;

    result = float32_to_uint32(f_arg, &env->fp_status);

    flags = f_get_excp_flags(env);
    if (flags & float_flag_invalid) {
        flags &= ~float_flag_inexact;
        if (float32_is_any_nan(f_arg)) {
            result = 0;
        }
    /*
     * we need to check arg < 0.0 before rounding as TriCore needs to raise
     * float_flag_invalid as well. For instance, when we have a negative
     * exponent and sign, softfloat would only raise float_flat_inexact.
     */
    } else if (float32_lt_quiet(f_arg, 0, &env->fp_status)) {
        flags = float_flag_invalid;
        result = 0;
    }

    if (flags) {
        f_update_psw_flags(env, flags);
    } else {
        env->FPU_FS = 0;
    }
    return result;
}

uint32_t helper_ftouz(CPUTriCoreState *env, uint32_t arg)
{
    float32 f_arg = make_float32(arg);
    uint32_t result;
    int32_t flags;

    result = float32_to_uint32_round_to_zero(f_arg, &env->fp_status);

    flags = f_get_excp_flags(env);
    if (flags & float_flag_invalid) {
        flags &= ~float_flag_inexact;
        if (float32_is_any_nan(f_arg)) {
            result = 0;
        }
    /*
     * we need to check arg < 0.0 before rounding as TriCore needs to raise
     * float_flag_invalid as well. For instance, when we have a negative
     * exponent and sign, softfloat would only raise float_flat_inexact.
     */
    } else if (float32_lt_quiet(f_arg, 0, &env->fp_status)) {
        flags = float_flag_invalid;
        result = 0;
    }

    if (flags) {
        f_update_psw_flags(env, flags);
    } else {
        env->FPU_FS = 0;
    }
    return result;
}

void helper_updfl(CPUTriCoreState *env, uint32_t arg)
{
    env->FPU_FS =  extract32(arg, 7, 1) & extract32(arg, 15, 1);
    env->FPU_FI = (extract32(arg, 6, 1) & extract32(arg, 14, 1)) << 31;
    env->FPU_FV = (extract32(arg, 5, 1) & extract32(arg, 13, 1)) << 31;
    env->FPU_FZ = (extract32(arg, 4, 1) & extract32(arg, 12, 1)) << 31;
    env->FPU_FU = (extract32(arg, 3, 1) & extract32(arg, 11, 1)) << 31;
    /* clear FX and RM */
    env->PSW &= ~(extract32(arg, 10, 1) << 26);
    env->PSW |= (extract32(arg, 2, 1) & extract32(arg, 10, 1)) << 26;

    fpu_set_state(env);
}