aboutsummaryrefslogtreecommitdiff
path: root/target/s390x/tcg/vec_fpu_helper.c
blob: 1bbaa82fe8a8c942a59083711b3e55655a82849a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
/*
 * QEMU TCG support -- s390x vector floating point instruction support
 *
 * Copyright (C) 2019 Red Hat Inc
 *
 * Authors:
 *   David Hildenbrand <david@redhat.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
 * See the COPYING file in the top-level directory.
 */
#include "qemu/osdep.h"
#include "cpu.h"
#include "s390x-internal.h"
#include "vec.h"
#include "tcg_s390x.h"
#include "tcg/tcg-gvec-desc.h"
#include "exec/exec-all.h"
#include "exec/helper-proto.h"
#include "fpu/softfloat.h"

#define VIC_INVALID         0x1
#define VIC_DIVBYZERO       0x2
#define VIC_OVERFLOW        0x3
#define VIC_UNDERFLOW       0x4
#define VIC_INEXACT         0x5

/* returns the VEX. If the VEX is 0, there is no trap */
static uint8_t check_ieee_exc(CPUS390XState *env, uint8_t enr, bool XxC,
                              uint8_t *vec_exc)
{
    uint8_t vece_exc = 0, trap_exc;
    unsigned qemu_exc;

    /* Retrieve and clear the softfloat exceptions */
    qemu_exc = env->fpu_status.float_exception_flags;
    if (qemu_exc == 0) {
        return 0;
    }
    env->fpu_status.float_exception_flags = 0;

    vece_exc = s390_softfloat_exc_to_ieee(qemu_exc);

    /* Add them to the vector-wide s390x exception bits */
    *vec_exc |= vece_exc;

    /* Check for traps and construct the VXC */
    trap_exc = vece_exc & env->fpc >> 24;
    if (trap_exc) {
        if (trap_exc & S390_IEEE_MASK_INVALID) {
            return enr << 4 | VIC_INVALID;
        } else if (trap_exc & S390_IEEE_MASK_DIVBYZERO) {
            return enr << 4 | VIC_DIVBYZERO;
        } else if (trap_exc & S390_IEEE_MASK_OVERFLOW) {
            return enr << 4 | VIC_OVERFLOW;
        } else if (trap_exc & S390_IEEE_MASK_UNDERFLOW) {
            return enr << 4 | VIC_UNDERFLOW;
        } else if (!XxC) {
            g_assert(trap_exc & S390_IEEE_MASK_INEXACT);
            /* inexact has lowest priority on traps */
            return enr << 4 | VIC_INEXACT;
        }
    }
    return 0;
}

static void handle_ieee_exc(CPUS390XState *env, uint8_t vxc, uint8_t vec_exc,
                            uintptr_t retaddr)
{
    if (vxc) {
        /* on traps, the fpc flags are not updated, instruction is suppressed */
        tcg_s390_vector_exception(env, vxc, retaddr);
    }
    if (vec_exc) {
        /* indicate exceptions for all elements combined */
        env->fpc |= vec_exc << 16;
    }
}

static float32 s390_vec_read_float32(const S390Vector *v, uint8_t enr)
{
    return make_float32(s390_vec_read_element32(v, enr));
}

static float64 s390_vec_read_float64(const S390Vector *v, uint8_t enr)
{
    return make_float64(s390_vec_read_element64(v, enr));
}

static float128 s390_vec_read_float128(const S390Vector *v)
{
    return make_float128(s390_vec_read_element64(v, 0),
                         s390_vec_read_element64(v, 1));
}

static void s390_vec_write_float32(S390Vector *v, uint8_t enr, float32 data)
{
    return s390_vec_write_element32(v, enr, data);
}

static void s390_vec_write_float64(S390Vector *v, uint8_t enr, float64 data)
{
    return s390_vec_write_element64(v, enr, data);
}

static void s390_vec_write_float128(S390Vector *v, float128 data)
{
    s390_vec_write_element64(v, 0, data.high);
    s390_vec_write_element64(v, 1, data.low);
}

typedef float32 (*vop32_2_fn)(float32 a, float_status *s);
static void vop32_2(S390Vector *v1, const S390Vector *v2, CPUS390XState *env,
                    bool s, bool XxC, uint8_t erm, vop32_2_fn fn,
                    uintptr_t retaddr)
{
    uint8_t vxc, vec_exc = 0;
    S390Vector tmp = {};
    int i, old_mode;

    old_mode = s390_swap_bfp_rounding_mode(env, erm);
    for (i = 0; i < 4; i++) {
        const float32 a = s390_vec_read_float32(v2, i);

        s390_vec_write_float32(&tmp, i, fn(a, &env->fpu_status));
        vxc = check_ieee_exc(env, i, XxC, &vec_exc);
        if (s || vxc) {
            break;
        }
    }
    s390_restore_bfp_rounding_mode(env, old_mode);
    handle_ieee_exc(env, vxc, vec_exc, retaddr);
    *v1 = tmp;
}

typedef float64 (*vop64_2_fn)(float64 a, float_status *s);
static void vop64_2(S390Vector *v1, const S390Vector *v2, CPUS390XState *env,
                    bool s, bool XxC, uint8_t erm, vop64_2_fn fn,
                    uintptr_t retaddr)
{
    uint8_t vxc, vec_exc = 0;
    S390Vector tmp = {};
    int i, old_mode;

    old_mode = s390_swap_bfp_rounding_mode(env, erm);
    for (i = 0; i < 2; i++) {
        const float64 a = s390_vec_read_float64(v2, i);

        s390_vec_write_float64(&tmp, i, fn(a, &env->fpu_status));
        vxc = check_ieee_exc(env, i, XxC, &vec_exc);
        if (s || vxc) {
            break;
        }
    }
    s390_restore_bfp_rounding_mode(env, old_mode);
    handle_ieee_exc(env, vxc, vec_exc, retaddr);
    *v1 = tmp;
}

typedef float128 (*vop128_2_fn)(float128 a, float_status *s);
static void vop128_2(S390Vector *v1, const S390Vector *v2, CPUS390XState *env,
                    bool s, bool XxC, uint8_t erm, vop128_2_fn fn,
                    uintptr_t retaddr)
{
    const float128 a = s390_vec_read_float128(v2);
    uint8_t vxc, vec_exc = 0;
    S390Vector tmp = {};
    int old_mode;

    old_mode = s390_swap_bfp_rounding_mode(env, erm);
    s390_vec_write_float128(&tmp, fn(a, &env->fpu_status));
    vxc = check_ieee_exc(env, 0, XxC, &vec_exc);
    s390_restore_bfp_rounding_mode(env, old_mode);
    handle_ieee_exc(env, vxc, vec_exc, retaddr);
    *v1 = tmp;
}

static float32 vcdg32(float32 a, float_status *s)
{
    return int32_to_float32(a, s);
}

static float32 vcdlg32(float32 a, float_status *s)
{
    return uint32_to_float32(a, s);
}

static float32 vcgd32(float32 a, float_status *s)
{
    const float32 tmp = float32_to_int32(a, s);

    return float32_is_any_nan(a) ? INT32_MIN : tmp;
}

static float32 vclgd32(float32 a, float_status *s)
{
    const float32 tmp = float32_to_uint32(a, s);

    return float32_is_any_nan(a) ? 0 : tmp;
}

static float64 vcdg64(float64 a, float_status *s)
{
    return int64_to_float64(a, s);
}

static float64 vcdlg64(float64 a, float_status *s)
{
    return uint64_to_float64(a, s);
}

static float64 vcgd64(float64 a, float_status *s)
{
    const float64 tmp = float64_to_int64(a, s);

    return float64_is_any_nan(a) ? INT64_MIN : tmp;
}

static float64 vclgd64(float64 a, float_status *s)
{
    const float64 tmp = float64_to_uint64(a, s);

    return float64_is_any_nan(a) ? 0 : tmp;
}

#define DEF_GVEC_VOP2_FN(NAME, FN, BITS)                                       \
void HELPER(gvec_##NAME##BITS)(void *v1, const void *v2, CPUS390XState *env,   \
                               uint32_t desc)                                  \
{                                                                              \
    const uint8_t erm = extract32(simd_data(desc), 4, 4);                      \
    const bool se = extract32(simd_data(desc), 3, 1);                          \
    const bool XxC = extract32(simd_data(desc), 2, 1);                         \
                                                                               \
    vop##BITS##_2(v1, v2, env, se, XxC, erm, FN, GETPC());                     \
}

#define DEF_GVEC_VOP2_32(NAME)                                                 \
DEF_GVEC_VOP2_FN(NAME, NAME##32, 32)

#define DEF_GVEC_VOP2_64(NAME)                                                 \
DEF_GVEC_VOP2_FN(NAME, NAME##64, 64)

#define DEF_GVEC_VOP2(NAME, OP)                                                \
DEF_GVEC_VOP2_FN(NAME, float32_##OP, 32)                                       \
DEF_GVEC_VOP2_FN(NAME, float64_##OP, 64)                                       \
DEF_GVEC_VOP2_FN(NAME, float128_##OP, 128)

DEF_GVEC_VOP2_32(vcdg)
DEF_GVEC_VOP2_32(vcdlg)
DEF_GVEC_VOP2_32(vcgd)
DEF_GVEC_VOP2_32(vclgd)
DEF_GVEC_VOP2_64(vcdg)
DEF_GVEC_VOP2_64(vcdlg)
DEF_GVEC_VOP2_64(vcgd)
DEF_GVEC_VOP2_64(vclgd)
DEF_GVEC_VOP2(vfi, round_to_int)
DEF_GVEC_VOP2(vfsq, sqrt)

typedef float32 (*vop32_3_fn)(float32 a, float32 b, float_status *s);
static void vop32_3(S390Vector *v1, const S390Vector *v2, const S390Vector *v3,
                    CPUS390XState *env, bool s, vop32_3_fn fn,
                    uintptr_t retaddr)
{
    uint8_t vxc, vec_exc = 0;
    S390Vector tmp = {};
    int i;

    for (i = 0; i < 4; i++) {
        const float32 a = s390_vec_read_float32(v2, i);
        const float32 b = s390_vec_read_float32(v3, i);

        s390_vec_write_float32(&tmp, i, fn(a, b, &env->fpu_status));
        vxc = check_ieee_exc(env, i, false, &vec_exc);
        if (s || vxc) {
            break;
        }
    }
    handle_ieee_exc(env, vxc, vec_exc, retaddr);
    *v1 = tmp;
}

typedef float64 (*vop64_3_fn)(float64 a, float64 b, float_status *s);
static void vop64_3(S390Vector *v1, const S390Vector *v2, const S390Vector *v3,
                    CPUS390XState *env, bool s, vop64_3_fn fn,
                    uintptr_t retaddr)
{
    uint8_t vxc, vec_exc = 0;
    S390Vector tmp = {};
    int i;

    for (i = 0; i < 2; i++) {
        const float64 a = s390_vec_read_float64(v2, i);
        const float64 b = s390_vec_read_float64(v3, i);

        s390_vec_write_float64(&tmp, i, fn(a, b, &env->fpu_status));
        vxc = check_ieee_exc(env, i, false, &vec_exc);
        if (s || vxc) {
            break;
        }
    }
    handle_ieee_exc(env, vxc, vec_exc, retaddr);
    *v1 = tmp;
}

typedef float128 (*vop128_3_fn)(float128 a, float128 b, float_status *s);
static void vop128_3(S390Vector *v1, const S390Vector *v2, const S390Vector *v3,
                     CPUS390XState *env, bool s, vop128_3_fn fn,
                     uintptr_t retaddr)
{
    const float128 a = s390_vec_read_float128(v2);
    const float128 b = s390_vec_read_float128(v3);
    uint8_t vxc, vec_exc = 0;
    S390Vector tmp = {};

    s390_vec_write_float128(&tmp, fn(a, b, &env->fpu_status));
    vxc = check_ieee_exc(env, 0, false, &vec_exc);
    handle_ieee_exc(env, vxc, vec_exc, retaddr);
    *v1 = tmp;
}

#define DEF_GVEC_VOP3_B(NAME, OP, BITS)                                        \
void HELPER(gvec_##NAME##BITS)(void *v1, const void *v2, const void *v3,       \
                              CPUS390XState *env, uint32_t desc)               \
{                                                                              \
    const bool se = extract32(simd_data(desc), 3, 1);                          \
                                                                               \
    vop##BITS##_3(v1, v2, v3, env, se, float##BITS##_##OP, GETPC());           \
}

#define DEF_GVEC_VOP3(NAME, OP)                                                \
DEF_GVEC_VOP3_B(NAME, OP, 32)                                                  \
DEF_GVEC_VOP3_B(NAME, OP, 64)                                                  \
DEF_GVEC_VOP3_B(NAME, OP, 128)

DEF_GVEC_VOP3(vfa, add)
DEF_GVEC_VOP3(vfs, sub)
DEF_GVEC_VOP3(vfd, div)
DEF_GVEC_VOP3(vfm, mul)

static int wfc32(const S390Vector *v1, const S390Vector *v2,
                 CPUS390XState *env, bool signal, uintptr_t retaddr)
{
    /* only the zero-indexed elements are compared */
    const float32 a = s390_vec_read_float32(v1, 0);
    const float32 b = s390_vec_read_float32(v2, 0);
    uint8_t vxc, vec_exc = 0;
    int cmp;

    if (signal) {
        cmp = float32_compare(a, b, &env->fpu_status);
    } else {
        cmp = float32_compare_quiet(a, b, &env->fpu_status);
    }
    vxc = check_ieee_exc(env, 0, false, &vec_exc);
    handle_ieee_exc(env, vxc, vec_exc, retaddr);

    return float_comp_to_cc(env, cmp);
}

static int wfc64(const S390Vector *v1, const S390Vector *v2,
                 CPUS390XState *env, bool signal, uintptr_t retaddr)
{
    /* only the zero-indexed elements are compared */
    const float64 a = s390_vec_read_float64(v1, 0);
    const float64 b = s390_vec_read_float64(v2, 0);
    uint8_t vxc, vec_exc = 0;
    int cmp;

    if (signal) {
        cmp = float64_compare(a, b, &env->fpu_status);
    } else {
        cmp = float64_compare_quiet(a, b, &env->fpu_status);
    }
    vxc = check_ieee_exc(env, 0, false, &vec_exc);
    handle_ieee_exc(env, vxc, vec_exc, retaddr);

    return float_comp_to_cc(env, cmp);
}

static int wfc128(const S390Vector *v1, const S390Vector *v2,
                  CPUS390XState *env, bool signal, uintptr_t retaddr)
{
    /* only the zero-indexed elements are compared */
    const float128 a = s390_vec_read_float128(v1);
    const float128 b = s390_vec_read_float128(v2);
    uint8_t vxc, vec_exc = 0;
    int cmp;

    if (signal) {
        cmp = float128_compare(a, b, &env->fpu_status);
    } else {
        cmp = float128_compare_quiet(a, b, &env->fpu_status);
    }
    vxc = check_ieee_exc(env, 0, false, &vec_exc);
    handle_ieee_exc(env, vxc, vec_exc, retaddr);

    return float_comp_to_cc(env, cmp);
}

#define DEF_GVEC_WFC_B(NAME, SIGNAL, BITS)                                     \
void HELPER(gvec_##NAME##BITS)(const void *v1, const void *v2,                 \
                               CPUS390XState *env, uint32_t desc)              \
{                                                                              \
    env->cc_op = wfc##BITS(v1, v2, env, SIGNAL, GETPC());                      \
}

#define DEF_GVEC_WFC(NAME, SIGNAL)                                             \
     DEF_GVEC_WFC_B(NAME, SIGNAL, 32)                                          \
     DEF_GVEC_WFC_B(NAME, SIGNAL, 64)                                          \
     DEF_GVEC_WFC_B(NAME, SIGNAL, 128)

DEF_GVEC_WFC(wfc, false)
DEF_GVEC_WFC(wfk, true)

typedef bool (*vfc32_fn)(float32 a, float32 b, float_status *status);
static int vfc32(S390Vector *v1, const S390Vector *v2, const S390Vector *v3,
                 CPUS390XState *env, bool s, vfc32_fn fn, uintptr_t retaddr)
{
    uint8_t vxc, vec_exc = 0;
    S390Vector tmp = {};
    int match = 0;
    int i;

    for (i = 0; i < 4; i++) {
        const float32 a = s390_vec_read_float32(v2, i);
        const float32 b = s390_vec_read_float32(v3, i);

        /* swap the order of the parameters, so we can use existing functions */
        if (fn(b, a, &env->fpu_status)) {
            match++;
            s390_vec_write_element32(&tmp, i, -1u);
        }
        vxc = check_ieee_exc(env, i, false, &vec_exc);
        if (s || vxc) {
            break;
        }
    }

    handle_ieee_exc(env, vxc, vec_exc, retaddr);
    *v1 = tmp;
    if (match) {
        return s || match == 4 ? 0 : 1;
    }
    return 3;
}

typedef bool (*vfc64_fn)(float64 a, float64 b, float_status *status);
static int vfc64(S390Vector *v1, const S390Vector *v2, const S390Vector *v3,
                 CPUS390XState *env, bool s, vfc64_fn fn, uintptr_t retaddr)
{
    uint8_t vxc, vec_exc = 0;
    S390Vector tmp = {};
    int match = 0;
    int i;

    for (i = 0; i < 2; i++) {
        const float64 a = s390_vec_read_float64(v2, i);
        const float64 b = s390_vec_read_float64(v3, i);

        /* swap the order of the parameters, so we can use existing functions */
        if (fn(b, a, &env->fpu_status)) {
            match++;
            s390_vec_write_element64(&tmp, i, -1ull);
        }
        vxc = check_ieee_exc(env, i, false, &vec_exc);
        if (s || vxc) {
            break;
        }
    }

    handle_ieee_exc(env, vxc, vec_exc, retaddr);
    *v1 = tmp;
    if (match) {
        return s || match == 2 ? 0 : 1;
    }
    return 3;
}

typedef bool (*vfc128_fn)(float128 a, float128 b, float_status *status);
static int vfc128(S390Vector *v1, const S390Vector *v2, const S390Vector *v3,
                 CPUS390XState *env, bool s, vfc128_fn fn, uintptr_t retaddr)
{
    const float128 a = s390_vec_read_float128(v2);
    const float128 b = s390_vec_read_float128(v3);
    uint8_t vxc, vec_exc = 0;
    S390Vector tmp = {};
    bool match = false;

    /* swap the order of the parameters, so we can use existing functions */
    if (fn(b, a, &env->fpu_status)) {
        match = true;
        s390_vec_write_element64(&tmp, 0, -1ull);
        s390_vec_write_element64(&tmp, 1, -1ull);
    }
    vxc = check_ieee_exc(env, 0, false, &vec_exc);
    handle_ieee_exc(env, vxc, vec_exc, retaddr);
    *v1 = tmp;
    return match ? 0 : 3;
}

#define DEF_GVEC_VFC_B(NAME, OP, BITS)                                         \
void HELPER(gvec_##NAME##BITS)(void *v1, const void *v2, const void *v3,       \
                               CPUS390XState *env, uint32_t desc)              \
{                                                                              \
    const bool se = extract32(simd_data(desc), 3, 1);                          \
    const bool sq = extract32(simd_data(desc), 2, 1);                          \
    vfc##BITS##_fn fn = sq ? float##BITS##_##OP : float##BITS##_##OP##_quiet;  \
                                                                               \
    vfc##BITS(v1, v2, v3, env, se, fn, GETPC());                               \
}                                                                              \
                                                                               \
void HELPER(gvec_##NAME##BITS##_cc)(void *v1, const void *v2, const void *v3,  \
                                    CPUS390XState *env, uint32_t desc)         \
{                                                                              \
    const bool se = extract32(simd_data(desc), 3, 1);                          \
    const bool sq = extract32(simd_data(desc), 2, 1);                          \
    vfc##BITS##_fn fn = sq ? float##BITS##_##OP : float##BITS##_##OP##_quiet;  \
                                                                               \
    env->cc_op = vfc##BITS(v1, v2, v3, env, se, fn, GETPC());                  \
}

#define DEF_GVEC_VFC(NAME, OP)                                                 \
DEF_GVEC_VFC_B(NAME, OP, 32)                                                   \
DEF_GVEC_VFC_B(NAME, OP, 64)                                                   \
DEF_GVEC_VFC_B(NAME, OP, 128)                                                  \

DEF_GVEC_VFC(vfce, eq)
DEF_GVEC_VFC(vfch, lt)
DEF_GVEC_VFC(vfche, le)

void HELPER(gvec_vfll32)(void *v1, const void *v2, CPUS390XState *env,
                         uint32_t desc)
{
    const bool s = extract32(simd_data(desc), 3, 1);
    uint8_t vxc, vec_exc = 0;
    S390Vector tmp = {};
    int i;

    for (i = 0; i < 2; i++) {
        /* load from even element */
        const float32 a = s390_vec_read_element32(v2, i * 2);
        const uint64_t ret = float32_to_float64(a, &env->fpu_status);

        s390_vec_write_element64(&tmp, i, ret);
        /* indicate the source element */
        vxc = check_ieee_exc(env, i * 2, false, &vec_exc);
        if (s || vxc) {
            break;
        }
    }
    handle_ieee_exc(env, vxc, vec_exc, GETPC());
    *(S390Vector *)v1 = tmp;
}

void HELPER(gvec_vfll64)(void *v1, const void *v2, CPUS390XState *env,
                         uint32_t desc)
{
    /* load from even element */
    const float128 ret = float64_to_float128(s390_vec_read_float64(v2, 0),
                                             &env->fpu_status);
    uint8_t vxc, vec_exc = 0;

    vxc = check_ieee_exc(env, 0, false, &vec_exc);
    handle_ieee_exc(env, vxc, vec_exc, GETPC());
    s390_vec_write_float128(v1, ret);
}

void HELPER(gvec_vflr64)(void *v1, const void *v2, CPUS390XState *env,
                         uint32_t desc)
{
    const uint8_t erm = extract32(simd_data(desc), 4, 4);
    const bool s = extract32(simd_data(desc), 3, 1);
    const bool XxC = extract32(simd_data(desc), 2, 1);
    uint8_t vxc, vec_exc = 0;
    S390Vector tmp = {};
    int i, old_mode;

    old_mode = s390_swap_bfp_rounding_mode(env, erm);
    for (i = 0; i < 2; i++) {
        float64 a = s390_vec_read_element64(v2, i);
        uint32_t ret = float64_to_float32(a, &env->fpu_status);

        /* place at even element */
        s390_vec_write_element32(&tmp, i * 2, ret);
        /* indicate the source element */
        vxc = check_ieee_exc(env, i, XxC, &vec_exc);
        if (s || vxc) {
            break;
        }
    }
    s390_restore_bfp_rounding_mode(env, old_mode);
    handle_ieee_exc(env, vxc, vec_exc, GETPC());
    *(S390Vector *)v1 = tmp;
}

void HELPER(gvec_vflr128)(void *v1, const void *v2, CPUS390XState *env,
                          uint32_t desc)
{
    const uint8_t erm = extract32(simd_data(desc), 4, 4);
    const bool XxC = extract32(simd_data(desc), 2, 1);
    uint8_t vxc, vec_exc = 0;
    int old_mode;
    float64 ret;

    old_mode = s390_swap_bfp_rounding_mode(env, erm);
    ret = float128_to_float64(s390_vec_read_float128(v2), &env->fpu_status);
    vxc = check_ieee_exc(env, 0, XxC, &vec_exc);
    s390_restore_bfp_rounding_mode(env, old_mode);
    handle_ieee_exc(env, vxc, vec_exc, GETPC());

    /* place at even element, odd element is unpredictable */
    s390_vec_write_float64(v1, 0, ret);
}

static void vfma32(S390Vector *v1, const S390Vector *v2, const S390Vector *v3,
                   const S390Vector *v4, CPUS390XState *env, bool s, int flags,
                   uintptr_t retaddr)
{
    uint8_t vxc, vec_exc = 0;
    S390Vector tmp = {};
    int i;

    for (i = 0; i < 4; i++) {
        const float32 a = s390_vec_read_float32(v3, i);
        const float32 b = s390_vec_read_float32(v2, i);
        const float32 c = s390_vec_read_float32(v4, i);
        float32 ret = float32_muladd(a, b, c, flags, &env->fpu_status);

        s390_vec_write_float32(&tmp, i, ret);
        vxc = check_ieee_exc(env, i, false, &vec_exc);
        if (s || vxc) {
            break;
        }
    }
    handle_ieee_exc(env, vxc, vec_exc, retaddr);
    *v1 = tmp;
}

static void vfma64(S390Vector *v1, const S390Vector *v2, const S390Vector *v3,
                   const S390Vector *v4, CPUS390XState *env, bool s, int flags,
                   uintptr_t retaddr)
{
    uint8_t vxc, vec_exc = 0;
    S390Vector tmp = {};
    int i;

    for (i = 0; i < 2; i++) {
        const float64 a = s390_vec_read_float64(v3, i);
        const float64 b = s390_vec_read_float64(v2, i);
        const float64 c = s390_vec_read_float64(v4, i);
        const float64 ret = float64_muladd(a, b, c, flags, &env->fpu_status);

        s390_vec_write_float64(&tmp, i, ret);
        vxc = check_ieee_exc(env, i, false, &vec_exc);
        if (s || vxc) {
            break;
        }
    }
    handle_ieee_exc(env, vxc, vec_exc, retaddr);
    *v1 = tmp;
}

static void vfma128(S390Vector *v1, const S390Vector *v2, const S390Vector *v3,
                    const S390Vector *v4, CPUS390XState *env, bool s, int flags,
                    uintptr_t retaddr)
{
    const float128 a = s390_vec_read_float128(v3);
    const float128 b = s390_vec_read_float128(v2);
    const float128 c = s390_vec_read_float128(v4);
    uint8_t vxc, vec_exc = 0;
    float128 ret;

    ret = float128_muladd(a, b, c, flags, &env->fpu_status);
    vxc = check_ieee_exc(env, 0, false, &vec_exc);
    handle_ieee_exc(env, vxc, vec_exc, retaddr);
    s390_vec_write_float128(v1, ret);
}

#define DEF_GVEC_VFMA_B(NAME, FLAGS, BITS)                                     \
void HELPER(gvec_##NAME##BITS)(void *v1, const void *v2, const void *v3,       \
                               const void *v4, CPUS390XState *env,             \
                               uint32_t desc)                                  \
{                                                                              \
    const bool se = extract32(simd_data(desc), 3, 1);                          \
                                                                               \
    vfma##BITS(v1, v2, v3, v4, env, se, FLAGS, GETPC());                       \
}

#define DEF_GVEC_VFMA(NAME, FLAGS)                                             \
    DEF_GVEC_VFMA_B(NAME, FLAGS, 32)                                           \
    DEF_GVEC_VFMA_B(NAME, FLAGS, 64)                                           \
    DEF_GVEC_VFMA_B(NAME, FLAGS, 128)

DEF_GVEC_VFMA(vfma, 0)
DEF_GVEC_VFMA(vfms, float_muladd_negate_c)
DEF_GVEC_VFMA(vfnma, float_muladd_negate_result)
DEF_GVEC_VFMA(vfnms, float_muladd_negate_c | float_muladd_negate_result)

void HELPER(gvec_vftci32)(void *v1, const void *v2, CPUS390XState *env,
                          uint32_t desc)
{
    uint16_t i3 = extract32(simd_data(desc), 4, 12);
    bool s = extract32(simd_data(desc), 3, 1);
    int i, match = 0;

    for (i = 0; i < 4; i++) {
        float32 a = s390_vec_read_float32(v2, i);

        if (float32_dcmask(env, a) & i3) {
            match++;
            s390_vec_write_element32(v1, i, -1u);
        } else {
            s390_vec_write_element32(v1, i, 0);
        }
        if (s) {
            break;
        }
    }

    if (match == 4 || (s && match)) {
        env->cc_op = 0;
    } else if (match) {
        env->cc_op = 1;
    } else {
        env->cc_op = 3;
    }
}

void HELPER(gvec_vftci64)(void *v1, const void *v2, CPUS390XState *env,
                          uint32_t desc)
{
    const uint16_t i3 = extract32(simd_data(desc), 4, 12);
    const bool s = extract32(simd_data(desc), 3, 1);
    int i, match = 0;

    for (i = 0; i < 2; i++) {
        const float64 a = s390_vec_read_float64(v2, i);

        if (float64_dcmask(env, a) & i3) {
            match++;
            s390_vec_write_element64(v1, i, -1ull);
        } else {
            s390_vec_write_element64(v1, i, 0);
        }
        if (s) {
            break;
        }
    }

    if (match == 2 || (s && match)) {
        env->cc_op = 0;
    } else if (match) {
        env->cc_op = 1;
    } else {
        env->cc_op = 3;
    }
}

void HELPER(gvec_vftci128)(void *v1, const void *v2, CPUS390XState *env,
                           uint32_t desc)
{
    const float128 a = s390_vec_read_float128(v2);
    uint16_t i3 = extract32(simd_data(desc), 4, 12);

    if (float128_dcmask(env, a) & i3) {
        env->cc_op = 0;
        s390_vec_write_element64(v1, 0, -1ull);
        s390_vec_write_element64(v1, 1, -1ull);
    } else {
        env->cc_op = 3;
        s390_vec_write_element64(v1, 0, 0);
        s390_vec_write_element64(v1, 1, 0);
    }
}

typedef enum S390MinMaxType {
    S390_MINMAX_TYPE_IEEE = 0,
    S390_MINMAX_TYPE_JAVA,
    S390_MINMAX_TYPE_C_MACRO,
    S390_MINMAX_TYPE_CPP,
    S390_MINMAX_TYPE_F,
} S390MinMaxType;

typedef enum S390MinMaxRes {
    S390_MINMAX_RES_MINMAX = 0,
    S390_MINMAX_RES_A,
    S390_MINMAX_RES_B,
    S390_MINMAX_RES_SILENCE_A,
    S390_MINMAX_RES_SILENCE_B,
} S390MinMaxRes;

static S390MinMaxRes vfmin_res(uint16_t dcmask_a, uint16_t dcmask_b,
                               S390MinMaxType type, float_status *s)
{
    const bool neg_a = dcmask_a & DCMASK_NEGATIVE;
    const bool nan_a = dcmask_a & DCMASK_NAN;
    const bool nan_b = dcmask_b & DCMASK_NAN;

    g_assert(type > S390_MINMAX_TYPE_IEEE && type <= S390_MINMAX_TYPE_F);

    if (unlikely((dcmask_a | dcmask_b) & DCMASK_NAN)) {
        const bool sig_a = dcmask_a & DCMASK_SIGNALING_NAN;
        const bool sig_b = dcmask_b & DCMASK_SIGNALING_NAN;

        if ((dcmask_a | dcmask_b) & DCMASK_SIGNALING_NAN) {
            s->float_exception_flags |= float_flag_invalid;
        }
        switch (type) {
        case S390_MINMAX_TYPE_JAVA:
            if (sig_a) {
                return S390_MINMAX_RES_SILENCE_A;
            } else if (sig_b) {
                return S390_MINMAX_RES_SILENCE_B;
            }
            return nan_a ? S390_MINMAX_RES_A : S390_MINMAX_RES_B;
        case S390_MINMAX_TYPE_F:
            return nan_b ? S390_MINMAX_RES_A : S390_MINMAX_RES_B;
        case S390_MINMAX_TYPE_C_MACRO:
            s->float_exception_flags |= float_flag_invalid;
            return S390_MINMAX_RES_B;
        case S390_MINMAX_TYPE_CPP:
            s->float_exception_flags |= float_flag_invalid;
            return S390_MINMAX_RES_A;
        default:
            g_assert_not_reached();
        }
    } else if (unlikely((dcmask_a & DCMASK_ZERO) && (dcmask_b & DCMASK_ZERO))) {
        switch (type) {
        case S390_MINMAX_TYPE_JAVA:
            return neg_a ? S390_MINMAX_RES_A : S390_MINMAX_RES_B;
        case S390_MINMAX_TYPE_C_MACRO:
            return S390_MINMAX_RES_B;
        case S390_MINMAX_TYPE_F:
            return !neg_a ? S390_MINMAX_RES_B : S390_MINMAX_RES_A;
        case S390_MINMAX_TYPE_CPP:
            return S390_MINMAX_RES_A;
        default:
            g_assert_not_reached();
        }
    }
    return S390_MINMAX_RES_MINMAX;
}

static S390MinMaxRes vfmax_res(uint16_t dcmask_a, uint16_t dcmask_b,
                               S390MinMaxType type, float_status *s)
{
    g_assert(type > S390_MINMAX_TYPE_IEEE && type <= S390_MINMAX_TYPE_F);

    if (unlikely((dcmask_a | dcmask_b) & DCMASK_NAN)) {
        const bool sig_a = dcmask_a & DCMASK_SIGNALING_NAN;
        const bool sig_b = dcmask_b & DCMASK_SIGNALING_NAN;
        const bool nan_a = dcmask_a & DCMASK_NAN;
        const bool nan_b = dcmask_b & DCMASK_NAN;

        if ((dcmask_a | dcmask_b) & DCMASK_SIGNALING_NAN) {
            s->float_exception_flags |= float_flag_invalid;
        }
        switch (type) {
        case S390_MINMAX_TYPE_JAVA:
            if (sig_a) {
                return S390_MINMAX_RES_SILENCE_A;
            } else if (sig_b) {
                return S390_MINMAX_RES_SILENCE_B;
            }
            return nan_a ? S390_MINMAX_RES_A : S390_MINMAX_RES_B;
        case S390_MINMAX_TYPE_F:
            return nan_b ? S390_MINMAX_RES_A : S390_MINMAX_RES_B;
        case S390_MINMAX_TYPE_C_MACRO:
            s->float_exception_flags |= float_flag_invalid;
            return S390_MINMAX_RES_B;
        case S390_MINMAX_TYPE_CPP:
            s->float_exception_flags |= float_flag_invalid;
            return S390_MINMAX_RES_A;
        default:
            g_assert_not_reached();
        }
    } else if (unlikely((dcmask_a & DCMASK_ZERO) && (dcmask_b & DCMASK_ZERO))) {
        const bool neg_a = dcmask_a & DCMASK_NEGATIVE;

        switch (type) {
        case S390_MINMAX_TYPE_JAVA:
        case S390_MINMAX_TYPE_F:
            return neg_a ? S390_MINMAX_RES_B : S390_MINMAX_RES_A;
        case S390_MINMAX_TYPE_C_MACRO:
            return S390_MINMAX_RES_B;
        case S390_MINMAX_TYPE_CPP:
            return S390_MINMAX_RES_A;
        default:
            g_assert_not_reached();
        }
    }
    return S390_MINMAX_RES_MINMAX;
}

static S390MinMaxRes vfminmax_res(uint16_t dcmask_a, uint16_t dcmask_b,
                                  S390MinMaxType type, bool is_min,
                                  float_status *s)
{
    return is_min ? vfmin_res(dcmask_a, dcmask_b, type, s) :
                    vfmax_res(dcmask_a, dcmask_b, type, s);
}

static void vfminmax32(S390Vector *v1, const S390Vector *v2,
                       const S390Vector *v3, CPUS390XState *env,
                       S390MinMaxType type, bool is_min, bool is_abs, bool se,
                       uintptr_t retaddr)
{
    float_status *s = &env->fpu_status;
    uint8_t vxc, vec_exc = 0;
    S390Vector tmp = {};
    int i;

    for (i = 0; i < 4; i++) {
        float32 a = s390_vec_read_float32(v2, i);
        float32 b = s390_vec_read_float32(v3, i);
        float32 result;

        if (type != S390_MINMAX_TYPE_IEEE) {
            S390MinMaxRes res;

            if (is_abs) {
                a = float32_abs(a);
                b = float32_abs(b);
            }

            res = vfminmax_res(float32_dcmask(env, a), float32_dcmask(env, b),
                               type, is_min, s);
            switch (res) {
            case S390_MINMAX_RES_MINMAX:
                result = is_min ? float32_min(a, b, s) : float32_max(a, b, s);
                break;
            case S390_MINMAX_RES_A:
                result = a;
                break;
            case S390_MINMAX_RES_B:
                result = b;
                break;
            case S390_MINMAX_RES_SILENCE_A:
                result = float32_silence_nan(a, s);
                break;
            case S390_MINMAX_RES_SILENCE_B:
                result = float32_silence_nan(b, s);
                break;
            default:
                g_assert_not_reached();
            }
        } else if (!is_abs) {
            result = is_min ? float32_minnum(a, b, &env->fpu_status) :
                              float32_maxnum(a, b, &env->fpu_status);
        } else {
            result = is_min ? float32_minnummag(a, b, &env->fpu_status) :
                              float32_maxnummag(a, b, &env->fpu_status);
        }

        s390_vec_write_float32(&tmp, i, result);
        vxc = check_ieee_exc(env, i, false, &vec_exc);
        if (se || vxc) {
            break;
        }
    }
    handle_ieee_exc(env, vxc, vec_exc, retaddr);
    *v1 = tmp;
}

static void vfminmax64(S390Vector *v1, const S390Vector *v2,
                       const S390Vector *v3, CPUS390XState *env,
                       S390MinMaxType type, bool is_min, bool is_abs, bool se,
                       uintptr_t retaddr)
{
    float_status *s = &env->fpu_status;
    uint8_t vxc, vec_exc = 0;
    S390Vector tmp = {};
    int i;

    for (i = 0; i < 2; i++) {
        float64 a = s390_vec_read_float64(v2, i);
        float64 b = s390_vec_read_float64(v3, i);
        float64 result;

        if (type != S390_MINMAX_TYPE_IEEE) {
            S390MinMaxRes res;

            if (is_abs) {
                a = float64_abs(a);
                b = float64_abs(b);
            }

            res = vfminmax_res(float64_dcmask(env, a), float64_dcmask(env, b),
                               type, is_min, s);
            switch (res) {
            case S390_MINMAX_RES_MINMAX:
                result = is_min ? float64_min(a, b, s) : float64_max(a, b, s);
                break;
            case S390_MINMAX_RES_A:
                result = a;
                break;
            case S390_MINMAX_RES_B:
                result = b;
                break;
            case S390_MINMAX_RES_SILENCE_A:
                result = float64_silence_nan(a, s);
                break;
            case S390_MINMAX_RES_SILENCE_B:
                result = float64_silence_nan(b, s);
                break;
            default:
                g_assert_not_reached();
            }
        } else if (!is_abs) {
            result = is_min ? float64_minnum(a, b, &env->fpu_status) :
                              float64_maxnum(a, b, &env->fpu_status);
        } else {
            result = is_min ? float64_minnummag(a, b, &env->fpu_status) :
                              float64_maxnummag(a, b, &env->fpu_status);
        }

        s390_vec_write_float64(&tmp, i, result);
        vxc = check_ieee_exc(env, i, false, &vec_exc);
        if (se || vxc) {
            break;
        }
    }
    handle_ieee_exc(env, vxc, vec_exc, retaddr);
    *v1 = tmp;
}

static void vfminmax128(S390Vector *v1, const S390Vector *v2,
                        const S390Vector *v3, CPUS390XState *env,
                        S390MinMaxType type, bool is_min, bool is_abs, bool se,
                        uintptr_t retaddr)
{
    float128 a = s390_vec_read_float128(v2);
    float128 b = s390_vec_read_float128(v3);
    float_status *s = &env->fpu_status;
    uint8_t vxc, vec_exc = 0;
    float128 result;

    if (type != S390_MINMAX_TYPE_IEEE) {
        S390MinMaxRes res;

        if (is_abs) {
            a = float128_abs(a);
            b = float128_abs(b);
        }

        res = vfminmax_res(float128_dcmask(env, a), float128_dcmask(env, b),
                           type, is_min, s);
        switch (res) {
        case S390_MINMAX_RES_MINMAX:
            result = is_min ? float128_min(a, b, s) : float128_max(a, b, s);
            break;
        case S390_MINMAX_RES_A:
            result = a;
            break;
        case S390_MINMAX_RES_B:
            result = b;
            break;
        case S390_MINMAX_RES_SILENCE_A:
            result = float128_silence_nan(a, s);
            break;
        case S390_MINMAX_RES_SILENCE_B:
            result = float128_silence_nan(b, s);
            break;
        default:
            g_assert_not_reached();
        }
    } else if (!is_abs) {
        result = is_min ? float128_minnum(a, b, &env->fpu_status) :
                          float128_maxnum(a, b, &env->fpu_status);
    } else {
        result = is_min ? float128_minnummag(a, b, &env->fpu_status) :
                          float128_maxnummag(a, b, &env->fpu_status);
    }

    vxc = check_ieee_exc(env, 0, false, &vec_exc);
    handle_ieee_exc(env, vxc, vec_exc, retaddr);
    s390_vec_write_float128(v1, result);
}

#define DEF_GVEC_VFMINMAX_B(NAME, IS_MIN, BITS)                                \
void HELPER(gvec_##NAME##BITS)(void *v1, const void *v2, const void *v3,       \
                               CPUS390XState *env, uint32_t desc)              \
{                                                                              \
    const bool se = extract32(simd_data(desc), 3, 1);                          \
    uint8_t type = extract32(simd_data(desc), 4, 4);                           \
    bool is_abs = false;                                                       \
                                                                               \
    if (type >= 8) {                                                           \
        is_abs = true;                                                         \
        type -= 8;                                                             \
    }                                                                          \
                                                                               \
    vfminmax##BITS(v1, v2, v3, env, type, IS_MIN, is_abs, se, GETPC());        \
}

#define DEF_GVEC_VFMINMAX(NAME, IS_MIN)                                        \
    DEF_GVEC_VFMINMAX_B(NAME, IS_MIN, 32)                                      \
    DEF_GVEC_VFMINMAX_B(NAME, IS_MIN, 64)                                      \
    DEF_GVEC_VFMINMAX_B(NAME, IS_MIN, 128)

DEF_GVEC_VFMINMAX(vfmax, false)
DEF_GVEC_VFMINMAX(vfmin, true)