aboutsummaryrefslogtreecommitdiff
path: root/target/i386/hvf/hvf.c
blob: 8d2248bb3f6f4bc52485fac6b0693c04100f8573 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
/* Copyright 2008 IBM Corporation
 *           2008 Red Hat, Inc.
 * Copyright 2011 Intel Corporation
 * Copyright 2016 Veertu, Inc.
 * Copyright 2017 The Android Open Source Project
 *
 * QEMU Hypervisor.framework support
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of version 2 of the GNU General Public
 * License as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, see <http://www.gnu.org/licenses/>.
 *
 * This file contain code under public domain from the hvdos project:
 * https://github.com/mist64/hvdos
 *
 * Parts Copyright (c) 2011 NetApp, Inc.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

#include "qemu/osdep.h"
#include "qemu/error-report.h"
#include "qemu/memalign.h"

#include "sysemu/hvf.h"
#include "sysemu/hvf_int.h"
#include "sysemu/runstate.h"
#include "sysemu/cpus.h"
#include "hvf-i386.h"
#include "vmcs.h"
#include "vmx.h"
#include "x86.h"
#include "x86_descr.h"
#include "x86_mmu.h"
#include "x86_decode.h"
#include "x86_emu.h"
#include "x86_task.h"
#include "x86hvf.h"

#include <Hypervisor/hv.h>
#include <Hypervisor/hv_vmx.h>
#include <sys/sysctl.h>

#include "hw/i386/apic_internal.h"
#include "qemu/main-loop.h"
#include "qemu/accel.h"
#include "target/i386/cpu.h"

void vmx_update_tpr(CPUState *cpu)
{
    /* TODO: need integrate APIC handling */
    X86CPU *x86_cpu = X86_CPU(cpu);
    int tpr = cpu_get_apic_tpr(x86_cpu->apic_state) << 4;
    int irr = apic_get_highest_priority_irr(x86_cpu->apic_state);

    wreg(cpu->hvf->fd, HV_X86_TPR, tpr);
    if (irr == -1) {
        wvmcs(cpu->hvf->fd, VMCS_TPR_THRESHOLD, 0);
    } else {
        wvmcs(cpu->hvf->fd, VMCS_TPR_THRESHOLD, (irr > tpr) ? tpr >> 4 :
              irr >> 4);
    }
}

static void update_apic_tpr(CPUState *cpu)
{
    X86CPU *x86_cpu = X86_CPU(cpu);
    int tpr = rreg(cpu->hvf->fd, HV_X86_TPR) >> 4;
    cpu_set_apic_tpr(x86_cpu->apic_state, tpr);
}

#define VECTORING_INFO_VECTOR_MASK     0xff

void hvf_handle_io(CPUArchState *env, uint16_t port, void *buffer,
                  int direction, int size, int count)
{
    int i;
    uint8_t *ptr = buffer;

    for (i = 0; i < count; i++) {
        address_space_rw(&address_space_io, port, MEMTXATTRS_UNSPECIFIED,
                         ptr, size,
                         direction);
        ptr += size;
    }
}

static bool ept_emulation_fault(hvf_slot *slot, uint64_t gpa, uint64_t ept_qual)
{
    int read, write;

    /* EPT fault on an instruction fetch doesn't make sense here */
    if (ept_qual & EPT_VIOLATION_INST_FETCH) {
        return false;
    }

    /* EPT fault must be a read fault or a write fault */
    read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0;
    write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0;
    if ((read | write) == 0) {
        return false;
    }

    if (write && slot) {
        if (slot->flags & HVF_SLOT_LOG) {
            memory_region_set_dirty(slot->region, gpa - slot->start, 1);
            hv_vm_protect((hv_gpaddr_t)slot->start, (size_t)slot->size,
                          HV_MEMORY_READ | HV_MEMORY_WRITE);
        }
    }

    /*
     * The EPT violation must have been caused by accessing a
     * guest-physical address that is a translation of a guest-linear
     * address.
     */
    if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 ||
        (ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) {
        return false;
    }

    if (!slot) {
        return true;
    }
    if (!memory_region_is_ram(slot->region) &&
        !(read && memory_region_is_romd(slot->region))) {
        return true;
    }
    return false;
}

void hvf_arch_vcpu_destroy(CPUState *cpu)
{
    X86CPU *x86_cpu = X86_CPU(cpu);
    CPUX86State *env = &x86_cpu->env;

    g_free(env->hvf_mmio_buf);
}

static void init_tsc_freq(CPUX86State *env)
{
    size_t length;
    uint64_t tsc_freq;

    if (env->tsc_khz != 0) {
        return;
    }

    length = sizeof(uint64_t);
    if (sysctlbyname("machdep.tsc.frequency", &tsc_freq, &length, NULL, 0)) {
        return;
    }
    env->tsc_khz = tsc_freq / 1000;  /* Hz to KHz */
}

static void init_apic_bus_freq(CPUX86State *env)
{
    size_t length;
    uint64_t bus_freq;

    if (env->apic_bus_freq != 0) {
        return;
    }

    length = sizeof(uint64_t);
    if (sysctlbyname("hw.busfrequency", &bus_freq, &length, NULL, 0)) {
        return;
    }
    env->apic_bus_freq = bus_freq;
}

static inline bool tsc_is_known(CPUX86State *env)
{
    return env->tsc_khz != 0;
}

static inline bool apic_bus_freq_is_known(CPUX86State *env)
{
    return env->apic_bus_freq != 0;
}

void hvf_kick_vcpu_thread(CPUState *cpu)
{
    cpus_kick_thread(cpu);
}

int hvf_arch_init(void)
{
    return 0;
}

int hvf_arch_init_vcpu(CPUState *cpu)
{
    X86CPU *x86cpu = X86_CPU(cpu);
    CPUX86State *env = &x86cpu->env;
    uint64_t reqCap;

    init_emu();
    init_decoder();

    hvf_state->hvf_caps = g_new0(struct hvf_vcpu_caps, 1);
    env->hvf_mmio_buf = g_new(char, 4096);

    if (x86cpu->vmware_cpuid_freq) {
        init_tsc_freq(env);
        init_apic_bus_freq(env);

        if (!tsc_is_known(env) || !apic_bus_freq_is_known(env)) {
            error_report("vmware-cpuid-freq: feature couldn't be enabled");
        }
    }

    if (hv_vmx_read_capability(HV_VMX_CAP_PINBASED,
        &hvf_state->hvf_caps->vmx_cap_pinbased)) {
        abort();
    }
    if (hv_vmx_read_capability(HV_VMX_CAP_PROCBASED,
        &hvf_state->hvf_caps->vmx_cap_procbased)) {
        abort();
    }
    if (hv_vmx_read_capability(HV_VMX_CAP_PROCBASED2,
        &hvf_state->hvf_caps->vmx_cap_procbased2)) {
        abort();
    }
    if (hv_vmx_read_capability(HV_VMX_CAP_ENTRY,
        &hvf_state->hvf_caps->vmx_cap_entry)) {
        abort();
    }

    /* set VMCS control fields */
    wvmcs(cpu->hvf->fd, VMCS_PIN_BASED_CTLS,
          cap2ctrl(hvf_state->hvf_caps->vmx_cap_pinbased,
                   VMCS_PIN_BASED_CTLS_EXTINT |
                   VMCS_PIN_BASED_CTLS_NMI |
                   VMCS_PIN_BASED_CTLS_VNMI));
    wvmcs(cpu->hvf->fd, VMCS_PRI_PROC_BASED_CTLS,
          cap2ctrl(hvf_state->hvf_caps->vmx_cap_procbased,
                   VMCS_PRI_PROC_BASED_CTLS_HLT |
                   VMCS_PRI_PROC_BASED_CTLS_MWAIT |
                   VMCS_PRI_PROC_BASED_CTLS_TSC_OFFSET |
                   VMCS_PRI_PROC_BASED_CTLS_TPR_SHADOW) |
          VMCS_PRI_PROC_BASED_CTLS_SEC_CONTROL);

    reqCap = VMCS_PRI_PROC_BASED2_CTLS_APIC_ACCESSES;

    /* Is RDTSCP support in CPUID?  If so, enable it in the VMCS. */
    if (hvf_get_supported_cpuid(0x80000001, 0, R_EDX) & CPUID_EXT2_RDTSCP) {
        reqCap |= VMCS_PRI_PROC_BASED2_CTLS_RDTSCP;
    }

    wvmcs(cpu->hvf->fd, VMCS_SEC_PROC_BASED_CTLS,
          cap2ctrl(hvf_state->hvf_caps->vmx_cap_procbased2, reqCap));

    wvmcs(cpu->hvf->fd, VMCS_ENTRY_CTLS, cap2ctrl(hvf_state->hvf_caps->vmx_cap_entry,
          0));
    wvmcs(cpu->hvf->fd, VMCS_EXCEPTION_BITMAP, 0); /* Double fault */

    wvmcs(cpu->hvf->fd, VMCS_TPR_THRESHOLD, 0);

    x86cpu = X86_CPU(cpu);
    x86cpu->env.xsave_buf_len = 4096;
    x86cpu->env.xsave_buf = qemu_memalign(4096, x86cpu->env.xsave_buf_len);

    /*
     * The allocated storage must be large enough for all of the
     * possible XSAVE state components.
     */
    assert(hvf_get_supported_cpuid(0xd, 0, R_ECX) <= x86cpu->env.xsave_buf_len);

    hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_STAR, 1);
    hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_LSTAR, 1);
    hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_CSTAR, 1);
    hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_FMASK, 1);
    hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_FSBASE, 1);
    hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_GSBASE, 1);
    hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_KERNELGSBASE, 1);
    hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_TSC_AUX, 1);
    hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_IA32_TSC, 1);
    hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_IA32_SYSENTER_CS, 1);
    hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_IA32_SYSENTER_EIP, 1);
    hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_IA32_SYSENTER_ESP, 1);

    return 0;
}

static void hvf_store_events(CPUState *cpu, uint32_t ins_len, uint64_t idtvec_info)
{
    X86CPU *x86_cpu = X86_CPU(cpu);
    CPUX86State *env = &x86_cpu->env;

    env->exception_nr = -1;
    env->exception_pending = 0;
    env->exception_injected = 0;
    env->interrupt_injected = -1;
    env->nmi_injected = false;
    env->ins_len = 0;
    env->has_error_code = false;
    if (idtvec_info & VMCS_IDT_VEC_VALID) {
        switch (idtvec_info & VMCS_IDT_VEC_TYPE) {
        case VMCS_IDT_VEC_HWINTR:
        case VMCS_IDT_VEC_SWINTR:
            env->interrupt_injected = idtvec_info & VMCS_IDT_VEC_VECNUM;
            break;
        case VMCS_IDT_VEC_NMI:
            env->nmi_injected = true;
            break;
        case VMCS_IDT_VEC_HWEXCEPTION:
        case VMCS_IDT_VEC_SWEXCEPTION:
            env->exception_nr = idtvec_info & VMCS_IDT_VEC_VECNUM;
            env->exception_injected = 1;
            break;
        case VMCS_IDT_VEC_PRIV_SWEXCEPTION:
        default:
            abort();
        }
        if ((idtvec_info & VMCS_IDT_VEC_TYPE) == VMCS_IDT_VEC_SWEXCEPTION ||
            (idtvec_info & VMCS_IDT_VEC_TYPE) == VMCS_IDT_VEC_SWINTR) {
            env->ins_len = ins_len;
        }
        if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
            env->has_error_code = true;
            env->error_code = rvmcs(cpu->hvf->fd, VMCS_IDT_VECTORING_ERROR);
        }
    }
    if ((rvmcs(cpu->hvf->fd, VMCS_GUEST_INTERRUPTIBILITY) &
        VMCS_INTERRUPTIBILITY_NMI_BLOCKING)) {
        env->hflags2 |= HF2_NMI_MASK;
    } else {
        env->hflags2 &= ~HF2_NMI_MASK;
    }
    if (rvmcs(cpu->hvf->fd, VMCS_GUEST_INTERRUPTIBILITY) &
         (VMCS_INTERRUPTIBILITY_STI_BLOCKING |
         VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)) {
        env->hflags |= HF_INHIBIT_IRQ_MASK;
    } else {
        env->hflags &= ~HF_INHIBIT_IRQ_MASK;
    }
}

static void hvf_cpu_x86_cpuid(CPUX86State *env, uint32_t index, uint32_t count,
                              uint32_t *eax, uint32_t *ebx,
                              uint32_t *ecx, uint32_t *edx)
{
    /*
     * A wrapper extends cpu_x86_cpuid with 0x40000000 and 0x40000010 leafs,
     * leafs 0x40000001-0x4000000F are filled with zeros
     * Provides vmware-cpuid-freq support to hvf
     *
     * Note: leaf 0x40000000 not exposes HVF,
     * leaving hypervisor signature empty
     */

    if (index < 0x40000000 || index > 0x40000010 ||
        !tsc_is_known(env) || !apic_bus_freq_is_known(env)) {

        cpu_x86_cpuid(env, index, count, eax, ebx, ecx, edx);
        return;
    }

    switch (index) {
    case 0x40000000:
        *eax = 0x40000010;    /* Max available cpuid leaf */
        *ebx = 0;             /* Leave signature empty */
        *ecx = 0;
        *edx = 0;
        break;
    case 0x40000010:
        *eax = env->tsc_khz;
        *ebx = env->apic_bus_freq / 1000; /* Hz to KHz */
        *ecx = 0;
        *edx = 0;
        break;
    default:
        *eax = 0;
        *ebx = 0;
        *ecx = 0;
        *edx = 0;
        break;
    }
}

int hvf_vcpu_exec(CPUState *cpu)
{
    X86CPU *x86_cpu = X86_CPU(cpu);
    CPUX86State *env = &x86_cpu->env;
    int ret = 0;
    uint64_t rip = 0;

    if (hvf_process_events(cpu)) {
        return EXCP_HLT;
    }

    do {
        if (cpu->vcpu_dirty) {
            hvf_put_registers(cpu);
            cpu->vcpu_dirty = false;
        }

        if (hvf_inject_interrupts(cpu)) {
            return EXCP_INTERRUPT;
        }
        vmx_update_tpr(cpu);

        qemu_mutex_unlock_iothread();
        if (!cpu_is_bsp(X86_CPU(cpu)) && cpu->halted) {
            qemu_mutex_lock_iothread();
            return EXCP_HLT;
        }

        hv_return_t r  = hv_vcpu_run(cpu->hvf->fd);
        assert_hvf_ok(r);

        /* handle VMEXIT */
        uint64_t exit_reason = rvmcs(cpu->hvf->fd, VMCS_EXIT_REASON);
        uint64_t exit_qual = rvmcs(cpu->hvf->fd, VMCS_EXIT_QUALIFICATION);
        uint32_t ins_len = (uint32_t)rvmcs(cpu->hvf->fd,
                                           VMCS_EXIT_INSTRUCTION_LENGTH);

        uint64_t idtvec_info = rvmcs(cpu->hvf->fd, VMCS_IDT_VECTORING_INFO);

        hvf_store_events(cpu, ins_len, idtvec_info);
        rip = rreg(cpu->hvf->fd, HV_X86_RIP);
        env->eflags = rreg(cpu->hvf->fd, HV_X86_RFLAGS);

        qemu_mutex_lock_iothread();

        update_apic_tpr(cpu);
        current_cpu = cpu;

        ret = 0;
        switch (exit_reason) {
        case EXIT_REASON_HLT: {
            macvm_set_rip(cpu, rip + ins_len);
            if (!((cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
                (env->eflags & IF_MASK))
                && !(cpu->interrupt_request & CPU_INTERRUPT_NMI) &&
                !(idtvec_info & VMCS_IDT_VEC_VALID)) {
                cpu->halted = 1;
                ret = EXCP_HLT;
                break;
            }
            ret = EXCP_INTERRUPT;
            break;
        }
        case EXIT_REASON_MWAIT: {
            ret = EXCP_INTERRUPT;
            break;
        }
        /* Need to check if MMIO or unmapped fault */
        case EXIT_REASON_EPT_FAULT:
        {
            hvf_slot *slot;
            uint64_t gpa = rvmcs(cpu->hvf->fd, VMCS_GUEST_PHYSICAL_ADDRESS);

            if (((idtvec_info & VMCS_IDT_VEC_VALID) == 0) &&
                ((exit_qual & EXIT_QUAL_NMIUDTI) != 0)) {
                vmx_set_nmi_blocking(cpu);
            }

            slot = hvf_find_overlap_slot(gpa, 1);
            /* mmio */
            if (ept_emulation_fault(slot, gpa, exit_qual)) {
                struct x86_decode decode;

                load_regs(cpu);
                decode_instruction(env, &decode);
                exec_instruction(env, &decode);
                store_regs(cpu);
                break;
            }
            break;
        }
        case EXIT_REASON_INOUT:
        {
            uint32_t in = (exit_qual & 8) != 0;
            uint32_t size =  (exit_qual & 7) + 1;
            uint32_t string =  (exit_qual & 16) != 0;
            uint32_t port =  exit_qual >> 16;
            /*uint32_t rep = (exit_qual & 0x20) != 0;*/

            if (!string && in) {
                uint64_t val = 0;
                load_regs(cpu);
                hvf_handle_io(env, port, &val, 0, size, 1);
                if (size == 1) {
                    AL(env) = val;
                } else if (size == 2) {
                    AX(env) = val;
                } else if (size == 4) {
                    RAX(env) = (uint32_t)val;
                } else {
                    RAX(env) = (uint64_t)val;
                }
                env->eip += ins_len;
                store_regs(cpu);
                break;
            } else if (!string && !in) {
                RAX(env) = rreg(cpu->hvf->fd, HV_X86_RAX);
                hvf_handle_io(env, port, &RAX(env), 1, size, 1);
                macvm_set_rip(cpu, rip + ins_len);
                break;
            }
            struct x86_decode decode;

            load_regs(cpu);
            decode_instruction(env, &decode);
            assert(ins_len == decode.len);
            exec_instruction(env, &decode);
            store_regs(cpu);

            break;
        }
        case EXIT_REASON_CPUID: {
            uint32_t rax = (uint32_t)rreg(cpu->hvf->fd, HV_X86_RAX);
            uint32_t rbx = (uint32_t)rreg(cpu->hvf->fd, HV_X86_RBX);
            uint32_t rcx = (uint32_t)rreg(cpu->hvf->fd, HV_X86_RCX);
            uint32_t rdx = (uint32_t)rreg(cpu->hvf->fd, HV_X86_RDX);

            if (rax == 1) {
                /* CPUID1.ecx.OSXSAVE needs to know CR4 */
                env->cr[4] = rvmcs(cpu->hvf->fd, VMCS_GUEST_CR4);
            }
            hvf_cpu_x86_cpuid(env, rax, rcx, &rax, &rbx, &rcx, &rdx);

            wreg(cpu->hvf->fd, HV_X86_RAX, rax);
            wreg(cpu->hvf->fd, HV_X86_RBX, rbx);
            wreg(cpu->hvf->fd, HV_X86_RCX, rcx);
            wreg(cpu->hvf->fd, HV_X86_RDX, rdx);

            macvm_set_rip(cpu, rip + ins_len);
            break;
        }
        case EXIT_REASON_XSETBV: {
            X86CPU *x86_cpu = X86_CPU(cpu);
            CPUX86State *env = &x86_cpu->env;
            uint32_t eax = (uint32_t)rreg(cpu->hvf->fd, HV_X86_RAX);
            uint32_t ecx = (uint32_t)rreg(cpu->hvf->fd, HV_X86_RCX);
            uint32_t edx = (uint32_t)rreg(cpu->hvf->fd, HV_X86_RDX);

            if (ecx) {
                macvm_set_rip(cpu, rip + ins_len);
                break;
            }
            env->xcr0 = ((uint64_t)edx << 32) | eax;
            wreg(cpu->hvf->fd, HV_X86_XCR0, env->xcr0 | 1);
            macvm_set_rip(cpu, rip + ins_len);
            break;
        }
        case EXIT_REASON_INTR_WINDOW:
            vmx_clear_int_window_exiting(cpu);
            ret = EXCP_INTERRUPT;
            break;
        case EXIT_REASON_NMI_WINDOW:
            vmx_clear_nmi_window_exiting(cpu);
            ret = EXCP_INTERRUPT;
            break;
        case EXIT_REASON_EXT_INTR:
            /* force exit and allow io handling */
            ret = EXCP_INTERRUPT;
            break;
        case EXIT_REASON_RDMSR:
        case EXIT_REASON_WRMSR:
        {
            load_regs(cpu);
            if (exit_reason == EXIT_REASON_RDMSR) {
                simulate_rdmsr(cpu);
            } else {
                simulate_wrmsr(cpu);
            }
            env->eip += ins_len;
            store_regs(cpu);
            break;
        }
        case EXIT_REASON_CR_ACCESS: {
            int cr;
            int reg;

            load_regs(cpu);
            cr = exit_qual & 15;
            reg = (exit_qual >> 8) & 15;

            switch (cr) {
            case 0x0: {
                macvm_set_cr0(cpu->hvf->fd, RRX(env, reg));
                break;
            }
            case 4: {
                macvm_set_cr4(cpu->hvf->fd, RRX(env, reg));
                break;
            }
            case 8: {
                X86CPU *x86_cpu = X86_CPU(cpu);
                if (exit_qual & 0x10) {
                    RRX(env, reg) = cpu_get_apic_tpr(x86_cpu->apic_state);
                } else {
                    int tpr = RRX(env, reg);
                    cpu_set_apic_tpr(x86_cpu->apic_state, tpr);
                    ret = EXCP_INTERRUPT;
                }
                break;
            }
            default:
                error_report("Unrecognized CR %d", cr);
                abort();
            }
            env->eip += ins_len;
            store_regs(cpu);
            break;
        }
        case EXIT_REASON_APIC_ACCESS: { /* TODO */
            struct x86_decode decode;

            load_regs(cpu);
            decode_instruction(env, &decode);
            exec_instruction(env, &decode);
            store_regs(cpu);
            break;
        }
        case EXIT_REASON_TPR: {
            ret = 1;
            break;
        }
        case EXIT_REASON_TASK_SWITCH: {
            uint64_t vinfo = rvmcs(cpu->hvf->fd, VMCS_IDT_VECTORING_INFO);
            x68_segment_selector sel = {.sel = exit_qual & 0xffff};
            vmx_handle_task_switch(cpu, sel, (exit_qual >> 30) & 0x3,
             vinfo & VMCS_INTR_VALID, vinfo & VECTORING_INFO_VECTOR_MASK, vinfo
             & VMCS_INTR_T_MASK);
            break;
        }
        case EXIT_REASON_TRIPLE_FAULT: {
            qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
            ret = EXCP_INTERRUPT;
            break;
        }
        case EXIT_REASON_RDPMC:
            wreg(cpu->hvf->fd, HV_X86_RAX, 0);
            wreg(cpu->hvf->fd, HV_X86_RDX, 0);
            macvm_set_rip(cpu, rip + ins_len);
            break;
        case VMX_REASON_VMCALL:
            env->exception_nr = EXCP0D_GPF;
            env->exception_injected = 1;
            env->has_error_code = true;
            env->error_code = 0;
            break;
        default:
            error_report("%llx: unhandled exit %llx", rip, exit_reason);
        }
    } while (ret == 0);

    return ret;
}