aboutsummaryrefslogtreecommitdiff
path: root/target/i386/helper.c
blob: 0ac2da066d5abb20c469bda0599c192fefca2378 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
/*
 *  i386 helpers (without register variable usage)
 *
 *  Copyright (c) 2003 Fabrice Bellard
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 */

#include "qemu/osdep.h"
#include "qapi/qapi-events-run-state.h"
#include "cpu.h"
#include "exec/exec-all.h"
#include "sysemu/runstate.h"
#include "kvm/kvm_i386.h"
#ifndef CONFIG_USER_ONLY
#include "sysemu/hw_accel.h"
#include "monitor/monitor.h"
#endif
#include "qemu/log.h"

void cpu_sync_avx_hflag(CPUX86State *env)
{
    if ((env->cr[4] & CR4_OSXSAVE_MASK)
        && (env->xcr0 & (XSTATE_SSE_MASK | XSTATE_YMM_MASK))
            == (XSTATE_SSE_MASK | XSTATE_YMM_MASK)) {
        env->hflags |= HF_AVX_EN_MASK;
    } else{
        env->hflags &= ~HF_AVX_EN_MASK;
    }
}

void cpu_sync_bndcs_hflags(CPUX86State *env)
{
    uint32_t hflags = env->hflags;
    uint32_t hflags2 = env->hflags2;
    uint32_t bndcsr;

    if ((hflags & HF_CPL_MASK) == 3) {
        bndcsr = env->bndcs_regs.cfgu;
    } else {
        bndcsr = env->msr_bndcfgs;
    }

    if ((env->cr[4] & CR4_OSXSAVE_MASK)
        && (env->xcr0 & XSTATE_BNDCSR_MASK)
        && (bndcsr & BNDCFG_ENABLE)) {
        hflags |= HF_MPX_EN_MASK;
    } else {
        hflags &= ~HF_MPX_EN_MASK;
    }

    if (bndcsr & BNDCFG_BNDPRESERVE) {
        hflags2 |= HF2_MPX_PR_MASK;
    } else {
        hflags2 &= ~HF2_MPX_PR_MASK;
    }

    env->hflags = hflags;
    env->hflags2 = hflags2;
}

static void cpu_x86_version(CPUX86State *env, int *family, int *model)
{
    int cpuver = env->cpuid_version;

    if (family == NULL || model == NULL) {
        return;
    }

    *family = (cpuver >> 8) & 0x0f;
    *model = ((cpuver >> 12) & 0xf0) + ((cpuver >> 4) & 0x0f);
}

/* Broadcast MCA signal for processor version 06H_EH and above */
int cpu_x86_support_mca_broadcast(CPUX86State *env)
{
    int family = 0;
    int model = 0;

    cpu_x86_version(env, &family, &model);
    if ((family == 6 && model >= 14) || family > 6) {
        return 1;
    }

    return 0;
}

/***********************************************************/
/* x86 mmu */
/* XXX: add PGE support */

void x86_cpu_set_a20(X86CPU *cpu, int a20_state)
{
    CPUX86State *env = &cpu->env;

    a20_state = (a20_state != 0);
    if (a20_state != ((env->a20_mask >> 20) & 1)) {
        CPUState *cs = CPU(cpu);

        qemu_log_mask(CPU_LOG_MMU, "A20 update: a20=%d\n", a20_state);
        /* if the cpu is currently executing code, we must unlink it and
           all the potentially executing TB */
        cpu_interrupt(cs, CPU_INTERRUPT_EXITTB);

        /* when a20 is changed, all the MMU mappings are invalid, so
           we must flush everything */
        tlb_flush(cs);
        env->a20_mask = ~(1 << 20) | (a20_state << 20);
    }
}

void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0)
{
    X86CPU *cpu = env_archcpu(env);
    int pe_state;

    qemu_log_mask(CPU_LOG_MMU, "CR0 update: CR0=0x%08x\n", new_cr0);
    if ((new_cr0 & (CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK)) !=
        (env->cr[0] & (CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK))) {
        tlb_flush(CPU(cpu));
    }

#ifdef TARGET_X86_64
    if (!(env->cr[0] & CR0_PG_MASK) && (new_cr0 & CR0_PG_MASK) &&
        (env->efer & MSR_EFER_LME)) {
        /* enter in long mode */
        /* XXX: generate an exception */
        if (!(env->cr[4] & CR4_PAE_MASK))
            return;
        env->efer |= MSR_EFER_LMA;
        env->hflags |= HF_LMA_MASK;
    } else if ((env->cr[0] & CR0_PG_MASK) && !(new_cr0 & CR0_PG_MASK) &&
               (env->efer & MSR_EFER_LMA)) {
        /* exit long mode */
        env->efer &= ~MSR_EFER_LMA;
        env->hflags &= ~(HF_LMA_MASK | HF_CS64_MASK);
        env->eip &= 0xffffffff;
    }
#endif
    env->cr[0] = new_cr0 | CR0_ET_MASK;

    /* update PE flag in hidden flags */
    pe_state = (env->cr[0] & CR0_PE_MASK);
    env->hflags = (env->hflags & ~HF_PE_MASK) | (pe_state << HF_PE_SHIFT);
    /* ensure that ADDSEG is always set in real mode */
    env->hflags |= ((pe_state ^ 1) << HF_ADDSEG_SHIFT);
    /* update FPU flags */
    env->hflags = (env->hflags & ~(HF_MP_MASK | HF_EM_MASK | HF_TS_MASK)) |
        ((new_cr0 << (HF_MP_SHIFT - 1)) & (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK));
}

/* XXX: in legacy PAE mode, generate a GPF if reserved bits are set in
   the PDPT */
void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3)
{
    env->cr[3] = new_cr3;
    if (env->cr[0] & CR0_PG_MASK) {
        qemu_log_mask(CPU_LOG_MMU,
                        "CR3 update: CR3=" TARGET_FMT_lx "\n", new_cr3);
        tlb_flush(env_cpu(env));
    }
}

void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4)
{
    uint32_t hflags;

#if defined(DEBUG_MMU)
    printf("CR4 update: %08x -> %08x\n", (uint32_t)env->cr[4], new_cr4);
#endif
    if ((new_cr4 ^ env->cr[4]) &
        (CR4_PGE_MASK | CR4_PAE_MASK | CR4_PSE_MASK |
         CR4_SMEP_MASK | CR4_SMAP_MASK | CR4_LA57_MASK)) {
        tlb_flush(env_cpu(env));
    }

    /* Clear bits we're going to recompute.  */
    hflags = env->hflags & ~(HF_OSFXSR_MASK | HF_SMAP_MASK | HF_UMIP_MASK);

    /* SSE handling */
    if (!(env->features[FEAT_1_EDX] & CPUID_SSE)) {
        new_cr4 &= ~CR4_OSFXSR_MASK;
    }
    if (new_cr4 & CR4_OSFXSR_MASK) {
        hflags |= HF_OSFXSR_MASK;
    }

    if (!(env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_SMAP)) {
        new_cr4 &= ~CR4_SMAP_MASK;
    }
    if (new_cr4 & CR4_SMAP_MASK) {
        hflags |= HF_SMAP_MASK;
    }
    if (!(env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_UMIP)) {
        new_cr4 &= ~CR4_UMIP_MASK;
    }
    if (new_cr4 & CR4_UMIP_MASK) {
        hflags |= HF_UMIP_MASK;
    }

    if (!(env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_PKU)) {
        new_cr4 &= ~CR4_PKE_MASK;
    }
    if (!(env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_PKS)) {
        new_cr4 &= ~CR4_PKS_MASK;
    }

    env->cr[4] = new_cr4;
    env->hflags = hflags;

    cpu_sync_bndcs_hflags(env);
    cpu_sync_avx_hflag(env);
}

#if !defined(CONFIG_USER_ONLY)
hwaddr x86_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
                                         MemTxAttrs *attrs)
{
    X86CPU *cpu = X86_CPU(cs);
    CPUX86State *env = &cpu->env;
    target_ulong pde_addr, pte_addr;
    uint64_t pte;
    int32_t a20_mask;
    uint32_t page_offset;
    int page_size;

    *attrs = cpu_get_mem_attrs(env);

    a20_mask = x86_get_a20_mask(env);
    if (!(env->cr[0] & CR0_PG_MASK)) {
        pte = addr & a20_mask;
        page_size = 4096;
    } else if (env->cr[4] & CR4_PAE_MASK) {
        target_ulong pdpe_addr;
        uint64_t pde, pdpe;

#ifdef TARGET_X86_64
        if (env->hflags & HF_LMA_MASK) {
            bool la57 = env->cr[4] & CR4_LA57_MASK;
            uint64_t pml5e_addr, pml5e;
            uint64_t pml4e_addr, pml4e;
            int32_t sext;

            /* test virtual address sign extension */
            sext = la57 ? (int64_t)addr >> 56 : (int64_t)addr >> 47;
            if (sext != 0 && sext != -1) {
                return -1;
            }

            if (la57) {
                pml5e_addr = ((env->cr[3] & ~0xfff) +
                        (((addr >> 48) & 0x1ff) << 3)) & a20_mask;
                pml5e = x86_ldq_phys(cs, pml5e_addr);
                if (!(pml5e & PG_PRESENT_MASK)) {
                    return -1;
                }
            } else {
                pml5e = env->cr[3];
            }

            pml4e_addr = ((pml5e & PG_ADDRESS_MASK) +
                    (((addr >> 39) & 0x1ff) << 3)) & a20_mask;
            pml4e = x86_ldq_phys(cs, pml4e_addr);
            if (!(pml4e & PG_PRESENT_MASK)) {
                return -1;
            }
            pdpe_addr = ((pml4e & PG_ADDRESS_MASK) +
                         (((addr >> 30) & 0x1ff) << 3)) & a20_mask;
            pdpe = x86_ldq_phys(cs, pdpe_addr);
            if (!(pdpe & PG_PRESENT_MASK)) {
                return -1;
            }
            if (pdpe & PG_PSE_MASK) {
                page_size = 1024 * 1024 * 1024;
                pte = pdpe;
                goto out;
            }

        } else
#endif
        {
            pdpe_addr = ((env->cr[3] & ~0x1f) + ((addr >> 27) & 0x18)) &
                a20_mask;
            pdpe = x86_ldq_phys(cs, pdpe_addr);
            if (!(pdpe & PG_PRESENT_MASK))
                return -1;
        }

        pde_addr = ((pdpe & PG_ADDRESS_MASK) +
                    (((addr >> 21) & 0x1ff) << 3)) & a20_mask;
        pde = x86_ldq_phys(cs, pde_addr);
        if (!(pde & PG_PRESENT_MASK)) {
            return -1;
        }
        if (pde & PG_PSE_MASK) {
            /* 2 MB page */
            page_size = 2048 * 1024;
            pte = pde;
        } else {
            /* 4 KB page */
            pte_addr = ((pde & PG_ADDRESS_MASK) +
                        (((addr >> 12) & 0x1ff) << 3)) & a20_mask;
            page_size = 4096;
            pte = x86_ldq_phys(cs, pte_addr);
        }
        if (!(pte & PG_PRESENT_MASK)) {
            return -1;
        }
    } else {
        uint32_t pde;

        /* page directory entry */
        pde_addr = ((env->cr[3] & ~0xfff) + ((addr >> 20) & 0xffc)) & a20_mask;
        pde = x86_ldl_phys(cs, pde_addr);
        if (!(pde & PG_PRESENT_MASK))
            return -1;
        if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) {
            pte = pde | ((pde & 0x1fe000LL) << (32 - 13));
            page_size = 4096 * 1024;
        } else {
            /* page directory entry */
            pte_addr = ((pde & ~0xfff) + ((addr >> 10) & 0xffc)) & a20_mask;
            pte = x86_ldl_phys(cs, pte_addr);
            if (!(pte & PG_PRESENT_MASK)) {
                return -1;
            }
            page_size = 4096;
        }
        pte = pte & a20_mask;
    }

#ifdef TARGET_X86_64
out:
#endif
    pte &= PG_ADDRESS_MASK & ~(page_size - 1);
    page_offset = (addr & TARGET_PAGE_MASK) & (page_size - 1);
    return pte | page_offset;
}

typedef struct MCEInjectionParams {
    Monitor *mon;
    int bank;
    uint64_t status;
    uint64_t mcg_status;
    uint64_t addr;
    uint64_t misc;
    int flags;
} MCEInjectionParams;

static void emit_guest_memory_failure(MemoryFailureAction action, bool ar,
                                      bool recursive)
{
    MemoryFailureFlags mff = {.action_required = ar, .recursive = recursive};

    qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_GUEST, action,
                                   &mff);
}

static void do_inject_x86_mce(CPUState *cs, run_on_cpu_data data)
{
    MCEInjectionParams *params = data.host_ptr;
    X86CPU *cpu = X86_CPU(cs);
    CPUX86State *cenv = &cpu->env;
    uint64_t *banks = cenv->mce_banks + 4 * params->bank;
    g_autofree char *msg = NULL;
    bool need_reset = false;
    bool recursive;
    bool ar = !!(params->status & MCI_STATUS_AR);

    cpu_synchronize_state(cs);
    recursive = !!(cenv->mcg_status & MCG_STATUS_MCIP);

    /*
     * If there is an MCE exception being processed, ignore this SRAO MCE
     * unless unconditional injection was requested.
     */
    if (!(params->flags & MCE_INJECT_UNCOND_AO) && !ar && recursive) {
        emit_guest_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, ar, recursive);
        return;
    }

    if (params->status & MCI_STATUS_UC) {
        /*
         * if MSR_MCG_CTL is not all 1s, the uncorrected error
         * reporting is disabled
         */
        if ((cenv->mcg_cap & MCG_CTL_P) && cenv->mcg_ctl != ~(uint64_t)0) {
            monitor_printf(params->mon,
                           "CPU %d: Uncorrected error reporting disabled\n",
                           cs->cpu_index);
            return;
        }

        /*
         * if MSR_MCi_CTL is not all 1s, the uncorrected error
         * reporting is disabled for the bank
         */
        if (banks[0] != ~(uint64_t)0) {
            monitor_printf(params->mon,
                           "CPU %d: Uncorrected error reporting disabled for"
                           " bank %d\n",
                           cs->cpu_index, params->bank);
            return;
        }

        if (!(cenv->cr[4] & CR4_MCE_MASK)) {
            need_reset = true;
            msg = g_strdup_printf("CPU %d: MCE capability is not enabled, "
                                  "raising triple fault", cs->cpu_index);
        } else if (recursive) {
            need_reset = true;
            msg = g_strdup_printf("CPU %d: Previous MCE still in progress, "
                                  "raising triple fault", cs->cpu_index);
        }

        if (need_reset) {
            emit_guest_memory_failure(MEMORY_FAILURE_ACTION_RESET, ar,
                                      recursive);
            monitor_puts(params->mon, msg);
            qemu_log_mask(CPU_LOG_RESET, "%s\n", msg);
            qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
            return;
        }

        if (banks[1] & MCI_STATUS_VAL) {
            params->status |= MCI_STATUS_OVER;
        }
        banks[2] = params->addr;
        banks[3] = params->misc;
        cenv->mcg_status = params->mcg_status;
        banks[1] = params->status;
        cpu_interrupt(cs, CPU_INTERRUPT_MCE);
    } else if (!(banks[1] & MCI_STATUS_VAL)
               || !(banks[1] & MCI_STATUS_UC)) {
        if (banks[1] & MCI_STATUS_VAL) {
            params->status |= MCI_STATUS_OVER;
        }
        banks[2] = params->addr;
        banks[3] = params->misc;
        banks[1] = params->status;
    } else {
        banks[1] |= MCI_STATUS_OVER;
    }

    emit_guest_memory_failure(MEMORY_FAILURE_ACTION_INJECT, ar, recursive);
}

void cpu_x86_inject_mce(Monitor *mon, X86CPU *cpu, int bank,
                        uint64_t status, uint64_t mcg_status, uint64_t addr,
                        uint64_t misc, int flags)
{
    CPUState *cs = CPU(cpu);
    CPUX86State *cenv = &cpu->env;
    MCEInjectionParams params = {
        .mon = mon,
        .bank = bank,
        .status = status,
        .mcg_status = mcg_status,
        .addr = addr,
        .misc = misc,
        .flags = flags,
    };
    unsigned bank_num = cenv->mcg_cap & 0xff;

    if (!cenv->mcg_cap) {
        monitor_printf(mon, "MCE injection not supported\n");
        return;
    }
    if (bank >= bank_num) {
        monitor_printf(mon, "Invalid MCE bank number\n");
        return;
    }
    if (!(status & MCI_STATUS_VAL)) {
        monitor_printf(mon, "Invalid MCE status code\n");
        return;
    }
    if ((flags & MCE_INJECT_BROADCAST)
        && !cpu_x86_support_mca_broadcast(cenv)) {
        monitor_printf(mon, "Guest CPU does not support MCA broadcast\n");
        return;
    }

    run_on_cpu(cs, do_inject_x86_mce, RUN_ON_CPU_HOST_PTR(&params));
    if (flags & MCE_INJECT_BROADCAST) {
        CPUState *other_cs;

        params.bank = 1;
        params.status = MCI_STATUS_VAL | MCI_STATUS_UC;
        params.mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV;
        params.addr = 0;
        params.misc = 0;
        CPU_FOREACH(other_cs) {
            if (other_cs == cs) {
                continue;
            }
            run_on_cpu(other_cs, do_inject_x86_mce, RUN_ON_CPU_HOST_PTR(&params));
        }
    }
}

static inline target_ulong get_memio_eip(CPUX86State *env)
{
#ifdef CONFIG_TCG
    uint64_t data[TARGET_INSN_START_WORDS];
    CPUState *cs = env_cpu(env);

    if (!cpu_unwind_state_data(cs, cs->mem_io_pc, data)) {
        return env->eip;
    }

    /* Per x86_restore_state_to_opc. */
    if (TARGET_TB_PCREL) {
        return (env->eip & TARGET_PAGE_MASK) | data[0];
    } else {
        return data[0] - env->segs[R_CS].base;
    }
#else
    qemu_build_not_reached();
#endif
}

void cpu_report_tpr_access(CPUX86State *env, TPRAccess access)
{
    X86CPU *cpu = env_archcpu(env);
    CPUState *cs = env_cpu(env);

    if (kvm_enabled() || whpx_enabled() || nvmm_enabled()) {
        env->tpr_access_type = access;

        cpu_interrupt(cs, CPU_INTERRUPT_TPR);
    } else if (tcg_enabled()) {
        target_ulong eip = get_memio_eip(env);

        apic_handle_tpr_access_report(cpu->apic_state, eip, access);
    }
}
#endif /* !CONFIG_USER_ONLY */

int cpu_x86_get_descr_debug(CPUX86State *env, unsigned int selector,
                            target_ulong *base, unsigned int *limit,
                            unsigned int *flags)
{
    CPUState *cs = env_cpu(env);
    SegmentCache *dt;
    target_ulong ptr;
    uint32_t e1, e2;
    int index;

    if (selector & 0x4)
        dt = &env->ldt;
    else
        dt = &env->gdt;
    index = selector & ~7;
    ptr = dt->base + index;
    if ((index + 7) > dt->limit
        || cpu_memory_rw_debug(cs, ptr, (uint8_t *)&e1, sizeof(e1), 0) != 0
        || cpu_memory_rw_debug(cs, ptr+4, (uint8_t *)&e2, sizeof(e2), 0) != 0)
        return 0;

    *base = ((e1 >> 16) | ((e2 & 0xff) << 16) | (e2 & 0xff000000));
    *limit = (e1 & 0xffff) | (e2 & 0x000f0000);
    if (e2 & DESC_G_MASK)
        *limit = (*limit << 12) | 0xfff;
    *flags = e2;

    return 1;
}

#if !defined(CONFIG_USER_ONLY)
void do_cpu_init(X86CPU *cpu)
{
    CPUState *cs = CPU(cpu);
    CPUX86State *env = &cpu->env;
    CPUX86State *save = g_new(CPUX86State, 1);
    int sipi = cs->interrupt_request & CPU_INTERRUPT_SIPI;

    *save = *env;

    cpu_reset(cs);
    cs->interrupt_request = sipi;
    memcpy(&env->start_init_save, &save->start_init_save,
           offsetof(CPUX86State, end_init_save) -
           offsetof(CPUX86State, start_init_save));
    g_free(save);

    if (kvm_enabled()) {
        kvm_arch_do_init_vcpu(cpu);
    }
    apic_init_reset(cpu->apic_state);
}

void do_cpu_sipi(X86CPU *cpu)
{
    apic_sipi(cpu->apic_state);
}
#else
void do_cpu_init(X86CPU *cpu)
{
}
void do_cpu_sipi(X86CPU *cpu)
{
}
#endif

#ifndef CONFIG_USER_ONLY

void cpu_load_efer(CPUX86State *env, uint64_t val)
{
    env->efer = val;
    env->hflags &= ~(HF_LMA_MASK | HF_SVME_MASK);
    if (env->efer & MSR_EFER_LMA) {
        env->hflags |= HF_LMA_MASK;
    }
    if (env->efer & MSR_EFER_SVME) {
        env->hflags |= HF_SVME_MASK;
    }
}

uint8_t x86_ldub_phys(CPUState *cs, hwaddr addr)
{
    X86CPU *cpu = X86_CPU(cs);
    CPUX86State *env = &cpu->env;
    MemTxAttrs attrs = cpu_get_mem_attrs(env);
    AddressSpace *as = cpu_addressspace(cs, attrs);

    return address_space_ldub(as, addr, attrs, NULL);
}

uint32_t x86_lduw_phys(CPUState *cs, hwaddr addr)
{
    X86CPU *cpu = X86_CPU(cs);
    CPUX86State *env = &cpu->env;
    MemTxAttrs attrs = cpu_get_mem_attrs(env);
    AddressSpace *as = cpu_addressspace(cs, attrs);

    return address_space_lduw(as, addr, attrs, NULL);
}

uint32_t x86_ldl_phys(CPUState *cs, hwaddr addr)
{
    X86CPU *cpu = X86_CPU(cs);
    CPUX86State *env = &cpu->env;
    MemTxAttrs attrs = cpu_get_mem_attrs(env);
    AddressSpace *as = cpu_addressspace(cs, attrs);

    return address_space_ldl(as, addr, attrs, NULL);
}

uint64_t x86_ldq_phys(CPUState *cs, hwaddr addr)
{
    X86CPU *cpu = X86_CPU(cs);
    CPUX86State *env = &cpu->env;
    MemTxAttrs attrs = cpu_get_mem_attrs(env);
    AddressSpace *as = cpu_addressspace(cs, attrs);

    return address_space_ldq(as, addr, attrs, NULL);
}

void x86_stb_phys(CPUState *cs, hwaddr addr, uint8_t val)
{
    X86CPU *cpu = X86_CPU(cs);
    CPUX86State *env = &cpu->env;
    MemTxAttrs attrs = cpu_get_mem_attrs(env);
    AddressSpace *as = cpu_addressspace(cs, attrs);

    address_space_stb(as, addr, val, attrs, NULL);
}

void x86_stl_phys_notdirty(CPUState *cs, hwaddr addr, uint32_t val)
{
    X86CPU *cpu = X86_CPU(cs);
    CPUX86State *env = &cpu->env;
    MemTxAttrs attrs = cpu_get_mem_attrs(env);
    AddressSpace *as = cpu_addressspace(cs, attrs);

    address_space_stl_notdirty(as, addr, val, attrs, NULL);
}

void x86_stw_phys(CPUState *cs, hwaddr addr, uint32_t val)
{
    X86CPU *cpu = X86_CPU(cs);
    CPUX86State *env = &cpu->env;
    MemTxAttrs attrs = cpu_get_mem_attrs(env);
    AddressSpace *as = cpu_addressspace(cs, attrs);

    address_space_stw(as, addr, val, attrs, NULL);
}

void x86_stl_phys(CPUState *cs, hwaddr addr, uint32_t val)
{
    X86CPU *cpu = X86_CPU(cs);
    CPUX86State *env = &cpu->env;
    MemTxAttrs attrs = cpu_get_mem_attrs(env);
    AddressSpace *as = cpu_addressspace(cs, attrs);

    address_space_stl(as, addr, val, attrs, NULL);
}

void x86_stq_phys(CPUState *cs, hwaddr addr, uint64_t val)
{
    X86CPU *cpu = X86_CPU(cs);
    CPUX86State *env = &cpu->env;
    MemTxAttrs attrs = cpu_get_mem_attrs(env);
    AddressSpace *as = cpu_addressspace(cs, attrs);

    address_space_stq(as, addr, val, attrs, NULL);
}
#endif