1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
|
/*
* Helpers for HPPA instructions.
*
* Copyright (c) 2016 Richard Henderson <rth@twiddle.net>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "cpu.h"
#include "exec/exec-all.h"
#include "exec/helper-proto.h"
#include "exec/cpu_ldst.h"
#include "qemu/timer.h"
#include "trace.h"
G_NORETURN void HELPER(excp)(CPUHPPAState *env, int excp)
{
CPUState *cs = env_cpu(env);
cs->exception_index = excp;
cpu_loop_exit(cs);
}
G_NORETURN void hppa_dynamic_excp(CPUHPPAState *env, int excp, uintptr_t ra)
{
CPUState *cs = env_cpu(env);
cs->exception_index = excp;
cpu_loop_exit_restore(cs, ra);
}
void HELPER(tsv)(CPUHPPAState *env, target_ureg cond)
{
if (unlikely((target_sreg)cond < 0)) {
hppa_dynamic_excp(env, EXCP_OVERFLOW, GETPC());
}
}
void HELPER(tcond)(CPUHPPAState *env, target_ureg cond)
{
if (unlikely(cond)) {
hppa_dynamic_excp(env, EXCP_COND, GETPC());
}
}
static void atomic_store_3(CPUHPPAState *env, target_ulong addr,
uint32_t val, uintptr_t ra)
{
int mmu_idx = cpu_mmu_index(env, 0);
uint32_t old, new, cmp, mask, *haddr;
void *vaddr;
vaddr = probe_access(env, addr, 3, MMU_DATA_STORE, mmu_idx, ra);
if (vaddr == NULL) {
cpu_loop_exit_atomic(env_cpu(env), ra);
}
haddr = (uint32_t *)((uintptr_t)vaddr & -4);
mask = addr & 1 ? 0x00ffffffu : 0xffffff00u;
old = *haddr;
while (1) {
new = be32_to_cpu((cpu_to_be32(old) & ~mask) | (val & mask));
cmp = qatomic_cmpxchg(haddr, old, new);
if (cmp == old) {
return;
}
old = cmp;
}
}
static void do_stby_b(CPUHPPAState *env, target_ulong addr, target_ureg val,
bool parallel, uintptr_t ra)
{
switch (addr & 3) {
case 3:
cpu_stb_data_ra(env, addr, val, ra);
break;
case 2:
cpu_stw_data_ra(env, addr, val, ra);
break;
case 1:
/* The 3 byte store must appear atomic. */
if (parallel) {
atomic_store_3(env, addr, val, ra);
} else {
cpu_stb_data_ra(env, addr, val >> 16, ra);
cpu_stw_data_ra(env, addr + 1, val, ra);
}
break;
default:
cpu_stl_data_ra(env, addr, val, ra);
break;
}
}
void HELPER(stby_b)(CPUHPPAState *env, target_ulong addr, target_ureg val)
{
do_stby_b(env, addr, val, false, GETPC());
}
void HELPER(stby_b_parallel)(CPUHPPAState *env, target_ulong addr,
target_ureg val)
{
do_stby_b(env, addr, val, true, GETPC());
}
static void do_stby_e(CPUHPPAState *env, target_ulong addr, target_ureg val,
bool parallel, uintptr_t ra)
{
switch (addr & 3) {
case 3:
/* The 3 byte store must appear atomic. */
if (parallel) {
atomic_store_3(env, addr - 3, val, ra);
} else {
cpu_stw_data_ra(env, addr - 3, val >> 16, ra);
cpu_stb_data_ra(env, addr - 1, val >> 8, ra);
}
break;
case 2:
cpu_stw_data_ra(env, addr - 2, val >> 16, ra);
break;
case 1:
cpu_stb_data_ra(env, addr - 1, val >> 24, ra);
break;
default:
/* Nothing is stored, but protection is checked and the
cacheline is marked dirty. */
probe_write(env, addr, 0, cpu_mmu_index(env, 0), ra);
break;
}
}
void HELPER(stby_e)(CPUHPPAState *env, target_ulong addr, target_ureg val)
{
do_stby_e(env, addr, val, false, GETPC());
}
void HELPER(stby_e_parallel)(CPUHPPAState *env, target_ulong addr,
target_ureg val)
{
do_stby_e(env, addr, val, true, GETPC());
}
void HELPER(ldc_check)(target_ulong addr)
{
if (unlikely(addr & 0xf)) {
qemu_log_mask(LOG_GUEST_ERROR,
"Undefined ldc to unaligned address mod 16: "
TARGET_FMT_lx "\n", addr);
}
}
target_ureg HELPER(probe)(CPUHPPAState *env, target_ulong addr,
uint32_t level, uint32_t want)
{
#ifdef CONFIG_USER_ONLY
return page_check_range(addr, 1, want);
#else
int prot, excp;
hwaddr phys;
trace_hppa_tlb_probe(addr, level, want);
/* Fail if the requested privilege level is higher than current. */
if (level < (env->iaoq_f & 3)) {
return 0;
}
excp = hppa_get_physical_address(env, addr, level, 0, &phys,
&prot, NULL);
if (excp >= 0) {
if (env->psw & PSW_Q) {
/* ??? Needs tweaking for hppa64. */
env->cr[CR_IOR] = addr;
env->cr[CR_ISR] = addr >> 32;
}
if (excp == EXCP_DTLB_MISS) {
excp = EXCP_NA_DTLB_MISS;
}
hppa_dynamic_excp(env, excp, GETPC());
}
return (want & prot) != 0;
#endif
}
target_ureg HELPER(read_interval_timer)(void)
{
#ifdef CONFIG_USER_ONLY
/* In user-mode, QEMU_CLOCK_VIRTUAL doesn't exist.
Just pass through the host cpu clock ticks. */
return cpu_get_host_ticks();
#else
/* In system mode we have access to a decent high-resolution clock.
In order to make OS-level time accounting work with the cr16,
present it with a well-timed clock fixed at 250MHz. */
return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) >> 2;
#endif
}
|