aboutsummaryrefslogtreecommitdiff
path: root/target/arm/gdbstub64.c
blob: c8cef8cbc0e2bf7bf7eee82c5d1ec8023aab2b8d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
/*
 * ARM gdb server stub: AArch64 specific functions.
 *
 * Copyright (c) 2013 SUSE LINUX Products GmbH
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 */
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "cpu.h"
#include "internals.h"
#include "gdbstub/helpers.h"
#include "gdbstub/commands.h"
#include "tcg/mte_helper.h"
#if defined(CONFIG_USER_ONLY) && defined(CONFIG_LINUX)
#include <sys/prctl.h>
#include "mte_user_helper.h"
#endif

int aarch64_cpu_gdb_read_register(CPUState *cs, GByteArray *mem_buf, int n)
{
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;

    if (n < 31) {
        /* Core integer register.  */
        return gdb_get_reg64(mem_buf, env->xregs[n]);
    }
    switch (n) {
    case 31:
        return gdb_get_reg64(mem_buf, env->xregs[31]);
    case 32:
        return gdb_get_reg64(mem_buf, env->pc);
    case 33:
        return gdb_get_reg32(mem_buf, pstate_read(env));
    }
    /* Unknown register.  */
    return 0;
}

int aarch64_cpu_gdb_write_register(CPUState *cs, uint8_t *mem_buf, int n)
{
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
    uint64_t tmp;

    tmp = ldq_p(mem_buf);

    if (n < 31) {
        /* Core integer register.  */
        env->xregs[n] = tmp;
        return 8;
    }
    switch (n) {
    case 31:
        env->xregs[31] = tmp;
        return 8;
    case 32:
        env->pc = tmp;
        return 8;
    case 33:
        /* CPSR */
        pstate_write(env, tmp);
        return 4;
    }
    /* Unknown register.  */
    return 0;
}

int aarch64_gdb_get_fpu_reg(CPUState *cs, GByteArray *buf, int reg)
{
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;

    switch (reg) {
    case 0 ... 31:
    {
        /* 128 bit FP register - quads are in LE order */
        uint64_t *q = aa64_vfp_qreg(env, reg);
        return gdb_get_reg128(buf, q[1], q[0]);
    }
    case 32:
        /* FPSR */
        return gdb_get_reg32(buf, vfp_get_fpsr(env));
    case 33:
        /* FPCR */
        return gdb_get_reg32(buf, vfp_get_fpcr(env));
    default:
        return 0;
    }
}

int aarch64_gdb_set_fpu_reg(CPUState *cs, uint8_t *buf, int reg)
{
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;

    switch (reg) {
    case 0 ... 31:
        /* 128 bit FP register */
        {
            uint64_t *q = aa64_vfp_qreg(env, reg);
            q[0] = ldq_le_p(buf);
            q[1] = ldq_le_p(buf + 8);
            return 16;
        }
    case 32:
        /* FPSR */
        vfp_set_fpsr(env, ldl_p(buf));
        return 4;
    case 33:
        /* FPCR */
        vfp_set_fpcr(env, ldl_p(buf));
        return 4;
    default:
        return 0;
    }
}

int aarch64_gdb_get_sve_reg(CPUState *cs, GByteArray *buf, int reg)
{
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;

    switch (reg) {
    /* The first 32 registers are the zregs */
    case 0 ... 31:
    {
        int vq, len = 0;
        for (vq = 0; vq < cpu->sve_max_vq; vq++) {
            len += gdb_get_reg128(buf,
                                  env->vfp.zregs[reg].d[vq * 2 + 1],
                                  env->vfp.zregs[reg].d[vq * 2]);
        }
        return len;
    }
    case 32:
        return gdb_get_reg32(buf, vfp_get_fpsr(env));
    case 33:
        return gdb_get_reg32(buf, vfp_get_fpcr(env));
    /* then 16 predicates and the ffr */
    case 34 ... 50:
    {
        int preg = reg - 34;
        int vq, len = 0;
        for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) {
            len += gdb_get_reg64(buf, env->vfp.pregs[preg].p[vq / 4]);
        }
        return len;
    }
    case 51:
    {
        /*
         * We report in Vector Granules (VG) which is 64bit in a Z reg
         * while the ZCR works in Vector Quads (VQ) which is 128bit chunks.
         */
        int vq = sve_vqm1_for_el(env, arm_current_el(env)) + 1;
        return gdb_get_reg64(buf, vq * 2);
    }
    default:
        /* gdbstub asked for something out our range */
        qemu_log_mask(LOG_UNIMP, "%s: out of range register %d", __func__, reg);
        break;
    }

    return 0;
}

int aarch64_gdb_set_sve_reg(CPUState *cs, uint8_t *buf, int reg)
{
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;

    /* The first 32 registers are the zregs */
    switch (reg) {
    /* The first 32 registers are the zregs */
    case 0 ... 31:
    {
        int vq, len = 0;
        uint64_t *p = (uint64_t *) buf;
        for (vq = 0; vq < cpu->sve_max_vq; vq++) {
            env->vfp.zregs[reg].d[vq * 2 + 1] = *p++;
            env->vfp.zregs[reg].d[vq * 2] = *p++;
            len += 16;
        }
        return len;
    }
    case 32:
        vfp_set_fpsr(env, *(uint32_t *)buf);
        return 4;
    case 33:
        vfp_set_fpcr(env, *(uint32_t *)buf);
        return 4;
    case 34 ... 50:
    {
        int preg = reg - 34;
        int vq, len = 0;
        uint64_t *p = (uint64_t *) buf;
        for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) {
            env->vfp.pregs[preg].p[vq / 4] = *p++;
            len += 8;
        }
        return len;
    }
    case 51:
        /* cannot set vg via gdbstub */
        return 0;
    default:
        /* gdbstub asked for something out our range */
        break;
    }

    return 0;
}

int aarch64_gdb_get_pauth_reg(CPUState *cs, GByteArray *buf, int reg)
{
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;

    switch (reg) {
    case 0: /* pauth_dmask */
    case 1: /* pauth_cmask */
    case 2: /* pauth_dmask_high */
    case 3: /* pauth_cmask_high */
        /*
         * Note that older versions of this feature only contained
         * pauth_{d,c}mask, for use with Linux user processes, and
         * thus exclusively in the low half of the address space.
         *
         * To support system mode, and to debug kernels, two new regs
         * were added to cover the high half of the address space.
         * For the purpose of pauth_ptr_mask, we can use any well-formed
         * address within the address space half -- here, 0 and -1.
         */
        {
            bool is_data = !(reg & 1);
            bool is_high = reg & 2;
            ARMMMUIdx mmu_idx = arm_stage1_mmu_idx(env);
            ARMVAParameters param;

            param = aa64_va_parameters(env, -is_high, mmu_idx, is_data, false);
            return gdb_get_reg64(buf, pauth_ptr_mask(param));
        }
    default:
        return 0;
    }
}

int aarch64_gdb_set_pauth_reg(CPUState *cs, uint8_t *buf, int reg)
{
    /* All pseudo registers are read-only. */
    return 0;
}

static void output_vector_union_type(GDBFeatureBuilder *builder, int reg_width,
                                     const char *name)
{
    struct TypeSize {
        const char *gdb_type;
        short size;
        char sz, suffix;
    };

    static const struct TypeSize vec_lanes[] = {
        /* quads */
        { "uint128", 128, 'q', 'u' },
        { "int128", 128, 'q', 's' },
        /* 64 bit */
        { "ieee_double", 64, 'd', 'f' },
        { "uint64", 64, 'd', 'u' },
        { "int64", 64, 'd', 's' },
        /* 32 bit */
        { "ieee_single", 32, 's', 'f' },
        { "uint32", 32, 's', 'u' },
        { "int32", 32, 's', 's' },
        /* 16 bit */
        { "ieee_half", 16, 'h', 'f' },
        { "uint16", 16, 'h', 'u' },
        { "int16", 16, 'h', 's' },
        /* bytes */
        { "uint8", 8, 'b', 'u' },
        { "int8", 8, 'b', 's' },
    };

    static const char suf[] = { 'b', 'h', 's', 'd', 'q' };
    int i, j;

    /* First define types and totals in a whole VL */
    for (i = 0; i < ARRAY_SIZE(vec_lanes); i++) {
        gdb_feature_builder_append_tag(
            builder, "<vector id=\"%s%c%c\" type=\"%s\" count=\"%d\"/>",
            name, vec_lanes[i].sz, vec_lanes[i].suffix,
            vec_lanes[i].gdb_type, reg_width / vec_lanes[i].size);
    }

    /*
     * Now define a union for each size group containing unsigned and
     * signed and potentially float versions of each size from 128 to
     * 8 bits.
     */
    for (i = 0; i < ARRAY_SIZE(suf); i++) {
        int bits = 8 << i;

        gdb_feature_builder_append_tag(builder, "<union id=\"%sn%c\">",
                                       name, suf[i]);
        for (j = 0; j < ARRAY_SIZE(vec_lanes); j++) {
            if (vec_lanes[j].size == bits) {
                gdb_feature_builder_append_tag(
                    builder, "<field name=\"%c\" type=\"%s%c%c\"/>",
                    vec_lanes[j].suffix, name,
                    vec_lanes[j].sz, vec_lanes[j].suffix);
            }
        }
        gdb_feature_builder_append_tag(builder, "</union>");
    }

    /* And now the final union of unions */
    gdb_feature_builder_append_tag(builder, "<union id=\"%s\">", name);
    for (i = ARRAY_SIZE(suf) - 1; i >= 0; i--) {
        gdb_feature_builder_append_tag(builder,
                                       "<field name=\"%c\" type=\"%sn%c\"/>",
                                       suf[i], name, suf[i]);
    }
    gdb_feature_builder_append_tag(builder, "</union>");
}

GDBFeature *arm_gen_dynamic_svereg_feature(CPUState *cs, int base_reg)
{
    ARMCPU *cpu = ARM_CPU(cs);
    int reg_width = cpu->sve_max_vq * 128;
    int pred_width = cpu->sve_max_vq * 16;
    GDBFeatureBuilder builder;
    char *name;
    int reg = 0;
    int i;

    gdb_feature_builder_init(&builder, &cpu->dyn_svereg_feature.desc,
                             "org.gnu.gdb.aarch64.sve", "sve-registers.xml",
                             base_reg);

    /* Create the vector union type. */
    output_vector_union_type(&builder, reg_width, "svev");

    /* Create the predicate vector type. */
    gdb_feature_builder_append_tag(
        &builder, "<vector id=\"svep\" type=\"uint8\" count=\"%d\"/>",
        pred_width / 8);

    /* Define the vector registers. */
    for (i = 0; i < 32; i++) {
        name = g_strdup_printf("z%d", i);
        gdb_feature_builder_append_reg(&builder, name, reg_width, reg++,
                                       "svev", NULL);
    }

    /* fpscr & status registers */
    gdb_feature_builder_append_reg(&builder, "fpsr", 32, reg++,
                                   "int", "float");
    gdb_feature_builder_append_reg(&builder, "fpcr", 32, reg++,
                                   "int", "float");

    /* Define the predicate registers. */
    for (i = 0; i < 16; i++) {
        name = g_strdup_printf("p%d", i);
        gdb_feature_builder_append_reg(&builder, name, pred_width, reg++,
                                       "svep", NULL);
    }
    gdb_feature_builder_append_reg(&builder, "ffr", pred_width, reg++,
                                   "svep", "vector");

    /* Define the vector length pseudo-register. */
    gdb_feature_builder_append_reg(&builder, "vg", 64, reg++, "int", NULL);

    gdb_feature_builder_end(&builder);

    return &cpu->dyn_svereg_feature.desc;
}

#ifdef CONFIG_USER_ONLY
int aarch64_gdb_get_tag_ctl_reg(CPUState *cs, GByteArray *buf, int reg)
{
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
    uint64_t tcf0;

    assert(reg == 0);

    tcf0 = extract64(env->cp15.sctlr_el[1], 38, 2);

    return gdb_get_reg64(buf, tcf0);
}

int aarch64_gdb_set_tag_ctl_reg(CPUState *cs, uint8_t *buf, int reg)
{
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;

    uint8_t tcf;

    assert(reg == 0);

    tcf = *buf << PR_MTE_TCF_SHIFT;

    if (!tcf) {
        return 0;
    }

    /*
     * 'tag_ctl' register is actually a "pseudo-register" provided by GDB to
     * expose options regarding the type of MTE fault that can be controlled at
     * runtime.
     */
    arm_set_mte_tcf0(env, tcf);

    return 1;
}

static void handle_q_memtag(GArray *params, void *user_ctx)
{
    ARMCPU *cpu = ARM_CPU(user_ctx);
    CPUARMState *env = &cpu->env;

    uint64_t addr = gdb_get_cmd_param(params, 0)->val_ull;
    uint64_t len = gdb_get_cmd_param(params, 1)->val_ul;
    int type = gdb_get_cmd_param(params, 2)->val_ul;

    uint8_t *tags;
    uint8_t addr_tag;

    g_autoptr(GString) str_buf = g_string_new(NULL);

    /*
     * GDB does not query multiple tags for a memory range on remote targets, so
     * that's not supported either by gdbstub.
     */
    if (len != 1) {
        gdb_put_packet("E02");
    }

    /* GDB never queries a tag different from an allocation tag (type 1). */
    if (type != 1) {
        gdb_put_packet("E03");
    }

    /* Note that tags are packed here (2 tags packed in one byte). */
    tags = allocation_tag_mem_probe(env, 0, addr, MMU_DATA_LOAD, 8 /* 64-bit */,
                                    MMU_DATA_LOAD, true, 0);
    if (!tags) {
        /* Address is not in a tagged region. */
        gdb_put_packet("E04");
        return;
    }

    /* Unpack tag from byte. */
    addr_tag = load_tag1(addr, tags);
    g_string_printf(str_buf, "m%.2x", addr_tag);

    gdb_put_packet(str_buf->str);
}

static void handle_q_isaddresstagged(GArray *params, void *user_ctx)
{
    ARMCPU *cpu = ARM_CPU(user_ctx);
    CPUARMState *env = &cpu->env;

    uint64_t addr = gdb_get_cmd_param(params, 0)->val_ull;

    uint8_t *tags;
    const char *reply;

    tags = allocation_tag_mem_probe(env, 0, addr, MMU_DATA_LOAD, 8 /* 64-bit */,
                                    MMU_DATA_LOAD, true, 0);
    reply = tags ? "01" : "00";

    gdb_put_packet(reply);
}

static void handle_Q_memtag(GArray *params, void *user_ctx)
{
    ARMCPU *cpu = ARM_CPU(user_ctx);
    CPUARMState *env = &cpu->env;

    uint64_t start_addr = gdb_get_cmd_param(params, 0)->val_ull;
    uint64_t len = gdb_get_cmd_param(params, 1)->val_ul;
    int type = gdb_get_cmd_param(params, 2)->val_ul;
    char const *new_tags_str = gdb_get_cmd_param(params, 3)->data;

    uint64_t end_addr;

    int num_new_tags;
    uint8_t *tags;

    g_autoptr(GByteArray) new_tags = g_byte_array_new();

    /*
     * Only the allocation tag (i.e. type 1) can be set at the stub side.
     */
    if (type != 1) {
        gdb_put_packet("E02");
        return;
    }

    end_addr = start_addr + (len - 1); /* 'len' is always >= 1 */
    /* Check if request's memory range does not cross page boundaries. */
    if ((start_addr ^ end_addr) & TARGET_PAGE_MASK) {
        gdb_put_packet("E03");
        return;
    }

    /*
     * Get all tags in the page starting from the tag of the start address.
     * Note that there are two tags packed into a single byte here.
     */
    tags = allocation_tag_mem_probe(env, 0, start_addr, MMU_DATA_STORE,
                                    8 /* 64-bit */, MMU_DATA_STORE, true, 0);
    if (!tags) {
        /* Address is not in a tagged region. */
        gdb_put_packet("E04");
        return;
    }

    /* Convert tags provided by GDB, 2 hex digits per tag. */
    num_new_tags = strlen(new_tags_str) / 2;
    gdb_hextomem(new_tags, new_tags_str, num_new_tags);

    uint64_t address = start_addr;
    int new_tag_index = 0;
    while (address <= end_addr) {
        uint8_t new_tag;
        int packed_index;

        /*
         * Find packed tag index from unpacked tag index. There are two tags
         * in one packed index (one tag per nibble).
         */
        packed_index = new_tag_index / 2;

        new_tag = new_tags->data[new_tag_index % num_new_tags];
        store_tag1(address, tags + packed_index, new_tag);

        address += TAG_GRANULE;
        new_tag_index++;
    }

    gdb_put_packet("OK");
}

enum Command {
    qMemTags,
    qIsAddressTagged,
    QMemTags,
    NUM_CMDS
};

static const GdbCmdParseEntry cmd_handler_table[NUM_CMDS] = {
    [qMemTags] = {
        .handler = handle_q_memtag,
        .cmd_startswith = true,
        .cmd = "MemTags:",
        .schema = "L,l:l0",
        .need_cpu_context = true
    },
    [qIsAddressTagged] = {
        .handler = handle_q_isaddresstagged,
        .cmd_startswith = true,
        .cmd = "IsAddressTagged:",
        .schema = "L0",
        .need_cpu_context = true
    },
    [QMemTags] = {
        .handler = handle_Q_memtag,
        .cmd_startswith = true,
        .cmd = "MemTags:",
        .schema = "L,l:l:s0",
        .need_cpu_context = true
    },
};
#endif /* CONFIG_USER_ONLY */

void aarch64_cpu_register_gdb_commands(ARMCPU *cpu, GString *qsupported,
                                       GPtrArray *qtable, GPtrArray *stable)
{
#ifdef CONFIG_USER_ONLY
    /* MTE */
    if (cpu_isar_feature(aa64_mte, cpu)) {
        g_string_append(qsupported, ";memory-tagging+");

        g_ptr_array_add(qtable, (gpointer) &cmd_handler_table[qMemTags]);
        g_ptr_array_add(qtable, (gpointer) &cmd_handler_table[qIsAddressTagged]);
        g_ptr_array_add(stable, (gpointer) &cmd_handler_table[QMemTags]);
    }
#endif
}