aboutsummaryrefslogtreecommitdiff
path: root/target/alpha/helper.c
blob: dcaa2d03adb39525176e0cf6dda8d894c75711af (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
/*
 *  Alpha emulation cpu helpers for qemu.
 *
 *  Copyright (c) 2007 Jocelyn Mayer
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 */

#include "qemu/osdep.h"
#include "qemu/log.h"
#include "cpu.h"
#include "exec/exec-all.h"
#include "fpu/softfloat-types.h"
#include "exec/helper-proto.h"
#include "qemu/qemu-print.h"


#define CONVERT_BIT(X, SRC, DST) \
    (SRC > DST ? (X) / (SRC / DST) & (DST) : ((X) & SRC) * (DST / SRC))

uint64_t cpu_alpha_load_fpcr(CPUAlphaState *env)
{
    return (uint64_t)env->fpcr << 32;
}

void cpu_alpha_store_fpcr(CPUAlphaState *env, uint64_t val)
{
    static const uint8_t rm_map[] = {
        [FPCR_DYN_NORMAL >> FPCR_DYN_SHIFT] = float_round_nearest_even,
        [FPCR_DYN_CHOPPED >> FPCR_DYN_SHIFT] = float_round_to_zero,
        [FPCR_DYN_MINUS >> FPCR_DYN_SHIFT] = float_round_down,
        [FPCR_DYN_PLUS >> FPCR_DYN_SHIFT] = float_round_up,
    };

    uint32_t fpcr = val >> 32;
    uint32_t t = 0;

    /* Record the raw value before adjusting for linux-user.  */
    env->fpcr = fpcr;

#ifdef CONFIG_USER_ONLY
    /*
     * Override some of these bits with the contents of ENV->SWCR.
     * In system mode, some of these would trap to the kernel, at
     * which point the kernel's handler would emulate and apply
     * the software exception mask.
     */
    uint32_t soft_fpcr = alpha_ieee_swcr_to_fpcr(env->swcr) >> 32;
    fpcr |= soft_fpcr & (FPCR_STATUS_MASK | FPCR_DNZ);

    /*
     * The IOV exception is disabled by the kernel with SWCR_TRAP_ENABLE_INV,
     * which got mapped by alpha_ieee_swcr_to_fpcr to FPCR_INVD.
     * Add FPCR_IOV to fpcr_exc_enable so that it is handled identically.
     */
    t |= CONVERT_BIT(soft_fpcr, FPCR_INVD, FPCR_IOV);
#endif

    t |= CONVERT_BIT(fpcr, FPCR_INED, FPCR_INE);
    t |= CONVERT_BIT(fpcr, FPCR_UNFD, FPCR_UNF);
    t |= CONVERT_BIT(fpcr, FPCR_OVFD, FPCR_OVF);
    t |= CONVERT_BIT(fpcr, FPCR_DZED, FPCR_DZE);
    t |= CONVERT_BIT(fpcr, FPCR_INVD, FPCR_INV);

    env->fpcr_exc_enable = ~t & FPCR_STATUS_MASK;

    env->fpcr_dyn_round = rm_map[(fpcr & FPCR_DYN_MASK) >> FPCR_DYN_SHIFT];
    env->fp_status.flush_inputs_to_zero = (fpcr & FPCR_DNZ) != 0;

    t = (fpcr & FPCR_UNFD) && (fpcr & FPCR_UNDZ);
#ifdef CONFIG_USER_ONLY
    t |= (env->swcr & SWCR_MAP_UMZ) != 0;
#endif
    env->fpcr_flush_to_zero = t;
}

uint64_t helper_load_fpcr(CPUAlphaState *env)
{
    return cpu_alpha_load_fpcr(env);
}

void helper_store_fpcr(CPUAlphaState *env, uint64_t val)
{
    cpu_alpha_store_fpcr(env, val);
}

static uint64_t *cpu_alpha_addr_gr(CPUAlphaState *env, unsigned reg)
{
#ifndef CONFIG_USER_ONLY
    if (env->flags & ENV_FLAG_PAL_MODE) {
        if (reg >= 8 && reg <= 14) {
            return &env->shadow[reg - 8];
        } else if (reg == 25) {
            return &env->shadow[7];
        }
    }
#endif
    return &env->ir[reg];
}

uint64_t cpu_alpha_load_gr(CPUAlphaState *env, unsigned reg)
{
    return *cpu_alpha_addr_gr(env, reg);
}

void cpu_alpha_store_gr(CPUAlphaState *env, unsigned reg, uint64_t val)
{
    *cpu_alpha_addr_gr(env, reg) = val;
}

#if defined(CONFIG_USER_ONLY)
void alpha_cpu_record_sigsegv(CPUState *cs, vaddr address,
                              MMUAccessType access_type,
                              bool maperr, uintptr_t retaddr)
{
    AlphaCPU *cpu = ALPHA_CPU(cs);
    target_ulong mmcsr, cause;

    /* Assuming !maperr, infer the missing protection. */
    switch (access_type) {
    case MMU_DATA_LOAD:
        mmcsr = MM_K_FOR;
        cause = 0;
        break;
    case MMU_DATA_STORE:
        mmcsr = MM_K_FOW;
        cause = 1;
        break;
    case MMU_INST_FETCH:
        mmcsr = MM_K_FOE;
        cause = -1;
        break;
    default:
        g_assert_not_reached();
    }
    if (maperr) {
        if (address < BIT_ULL(TARGET_VIRT_ADDR_SPACE_BITS - 1)) {
            /* Userspace address, therefore page not mapped. */
            mmcsr = MM_K_TNV;
        } else {
            /* Kernel or invalid address. */
            mmcsr = MM_K_ACV;
        }
    }

    /* Record the arguments that PALcode would give to the kernel. */
    cpu->env.trap_arg0 = address;
    cpu->env.trap_arg1 = mmcsr;
    cpu->env.trap_arg2 = cause;
}
#else
/* Returns the OSF/1 entMM failure indication, or -1 on success.  */
static int get_physical_address(CPUAlphaState *env, target_ulong addr,
                                int prot_need, int mmu_idx,
                                target_ulong *pphys, int *pprot)
{
    CPUState *cs = env_cpu(env);
    target_long saddr = addr;
    target_ulong phys = 0;
    target_ulong L1pte, L2pte, L3pte;
    target_ulong pt, index;
    int prot = 0;
    int ret = MM_K_ACV;

    /* Handle physical accesses.  */
    if (mmu_idx == MMU_PHYS_IDX) {
        phys = addr;
        prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
        ret = -1;
        goto exit;
    }

    /* Ensure that the virtual address is properly sign-extended from
       the last implemented virtual address bit.  */
    if (saddr >> TARGET_VIRT_ADDR_SPACE_BITS != saddr >> 63) {
        goto exit;
    }

    /* Translate the superpage.  */
    /* ??? When we do more than emulate Unix PALcode, we'll need to
       determine which KSEG is actually active.  */
    if (saddr < 0 && ((saddr >> 41) & 3) == 2) {
        /* User-space cannot access KSEG addresses.  */
        if (mmu_idx != MMU_KERNEL_IDX) {
            goto exit;
        }

        /* For the benefit of the Typhoon chipset, move bit 40 to bit 43.
           We would not do this if the 48-bit KSEG is enabled.  */
        phys = saddr & ((1ull << 40) - 1);
        phys |= (saddr & (1ull << 40)) << 3;

        prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
        ret = -1;
        goto exit;
    }

    /* Interpret the page table exactly like PALcode does.  */

    pt = env->ptbr;

    /* TODO: rather than using ldq_phys() to read the page table we should
     * use address_space_ldq() so that we can handle the case when
     * the page table read gives a bus fault, rather than ignoring it.
     * For the existing code the zero data that ldq_phys will return for
     * an access to invalid memory will result in our treating the page
     * table as invalid, which may even be the right behaviour.
     */

    /* L1 page table read.  */
    index = (addr >> (TARGET_PAGE_BITS + 20)) & 0x3ff;
    L1pte = ldq_phys(cs->as, pt + index*8);

    if (unlikely((L1pte & PTE_VALID) == 0)) {
        ret = MM_K_TNV;
        goto exit;
    }
    if (unlikely((L1pte & PTE_KRE) == 0)) {
        goto exit;
    }
    pt = L1pte >> 32 << TARGET_PAGE_BITS;

    /* L2 page table read.  */
    index = (addr >> (TARGET_PAGE_BITS + 10)) & 0x3ff;
    L2pte = ldq_phys(cs->as, pt + index*8);

    if (unlikely((L2pte & PTE_VALID) == 0)) {
        ret = MM_K_TNV;
        goto exit;
    }
    if (unlikely((L2pte & PTE_KRE) == 0)) {
        goto exit;
    }
    pt = L2pte >> 32 << TARGET_PAGE_BITS;

    /* L3 page table read.  */
    index = (addr >> TARGET_PAGE_BITS) & 0x3ff;
    L3pte = ldq_phys(cs->as, pt + index*8);

    phys = L3pte >> 32 << TARGET_PAGE_BITS;
    if (unlikely((L3pte & PTE_VALID) == 0)) {
        ret = MM_K_TNV;
        goto exit;
    }

#if PAGE_READ != 1 || PAGE_WRITE != 2 || PAGE_EXEC != 4
# error page bits out of date
#endif

    /* Check access violations.  */
    if (L3pte & (PTE_KRE << mmu_idx)) {
        prot |= PAGE_READ | PAGE_EXEC;
    }
    if (L3pte & (PTE_KWE << mmu_idx)) {
        prot |= PAGE_WRITE;
    }
    if (unlikely((prot & prot_need) == 0 && prot_need)) {
        goto exit;
    }

    /* Check fault-on-operation violations.  */
    prot &= ~(L3pte >> 1);
    ret = -1;
    if (unlikely((prot & prot_need) == 0)) {
        ret = (prot_need & PAGE_EXEC ? MM_K_FOE :
               prot_need & PAGE_WRITE ? MM_K_FOW :
               prot_need & PAGE_READ ? MM_K_FOR : -1);
    }

 exit:
    *pphys = phys;
    *pprot = prot;
    return ret;
}

hwaddr alpha_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
{
    AlphaCPU *cpu = ALPHA_CPU(cs);
    target_ulong phys;
    int prot, fail;

    fail = get_physical_address(&cpu->env, addr, 0, 0, &phys, &prot);
    return (fail >= 0 ? -1 : phys);
}

bool alpha_cpu_tlb_fill(CPUState *cs, vaddr addr, int size,
                        MMUAccessType access_type, int mmu_idx,
                        bool probe, uintptr_t retaddr)
{
    AlphaCPU *cpu = ALPHA_CPU(cs);
    CPUAlphaState *env = &cpu->env;
    target_ulong phys;
    int prot, fail;

    fail = get_physical_address(env, addr, 1 << access_type,
                                mmu_idx, &phys, &prot);
    if (unlikely(fail >= 0)) {
        if (probe) {
            return false;
        }
        cs->exception_index = EXCP_MMFAULT;
        env->trap_arg0 = addr;
        env->trap_arg1 = fail;
        env->trap_arg2 = (access_type == MMU_DATA_LOAD ? 0ull :
                          access_type == MMU_DATA_STORE ? 1ull :
                          /* access_type == MMU_INST_FETCH */ -1ull);
        cpu_loop_exit_restore(cs, retaddr);
    }

    tlb_set_page(cs, addr & TARGET_PAGE_MASK, phys & TARGET_PAGE_MASK,
                 prot, mmu_idx, TARGET_PAGE_SIZE);
    return true;
}

void alpha_cpu_do_interrupt(CPUState *cs)
{
    AlphaCPU *cpu = ALPHA_CPU(cs);
    CPUAlphaState *env = &cpu->env;
    int i = cs->exception_index;

    if (qemu_loglevel_mask(CPU_LOG_INT)) {
        static int count;
        const char *name = "<unknown>";

        switch (i) {
        case EXCP_RESET:
            name = "reset";
            break;
        case EXCP_MCHK:
            name = "mchk";
            break;
        case EXCP_SMP_INTERRUPT:
            name = "smp_interrupt";
            break;
        case EXCP_CLK_INTERRUPT:
            name = "clk_interrupt";
            break;
        case EXCP_DEV_INTERRUPT:
            name = "dev_interrupt";
            break;
        case EXCP_MMFAULT:
            name = "mmfault";
            break;
        case EXCP_UNALIGN:
            name = "unalign";
            break;
        case EXCP_OPCDEC:
            name = "opcdec";
            break;
        case EXCP_ARITH:
            name = "arith";
            break;
        case EXCP_FEN:
            name = "fen";
            break;
        case EXCP_CALL_PAL:
            name = "call_pal";
            break;
        }
        qemu_log("INT %6d: %s(%#x) cpu=%d pc=%016"
                 PRIx64 " sp=%016" PRIx64 "\n",
                 ++count, name, env->error_code, cs->cpu_index,
                 env->pc, env->ir[IR_SP]);
    }

    cs->exception_index = -1;

    switch (i) {
    case EXCP_RESET:
        i = 0x0000;
        break;
    case EXCP_MCHK:
        i = 0x0080;
        break;
    case EXCP_SMP_INTERRUPT:
        i = 0x0100;
        break;
    case EXCP_CLK_INTERRUPT:
        i = 0x0180;
        break;
    case EXCP_DEV_INTERRUPT:
        i = 0x0200;
        break;
    case EXCP_MMFAULT:
        i = 0x0280;
        break;
    case EXCP_UNALIGN:
        i = 0x0300;
        break;
    case EXCP_OPCDEC:
        i = 0x0380;
        break;
    case EXCP_ARITH:
        i = 0x0400;
        break;
    case EXCP_FEN:
        i = 0x0480;
        break;
    case EXCP_CALL_PAL:
        i = env->error_code;
        /* There are 64 entry points for both privileged and unprivileged,
           with bit 0x80 indicating unprivileged.  Each entry point gets
           64 bytes to do its job.  */
        if (i & 0x80) {
            i = 0x2000 + (i - 0x80) * 64;
        } else {
            i = 0x1000 + i * 64;
        }
        break;
    default:
        cpu_abort(cs, "Unhandled CPU exception");
    }

    /* Remember where the exception happened.  Emulate real hardware in
       that the low bit of the PC indicates PALmode.  */
    env->exc_addr = env->pc | (env->flags & ENV_FLAG_PAL_MODE);

    /* Continue execution at the PALcode entry point.  */
    env->pc = env->palbr + i;

    /* Switch to PALmode.  */
    env->flags |= ENV_FLAG_PAL_MODE;
}

bool alpha_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
{
    AlphaCPU *cpu = ALPHA_CPU(cs);
    CPUAlphaState *env = &cpu->env;
    int idx = -1;

    /* We never take interrupts while in PALmode.  */
    if (env->flags & ENV_FLAG_PAL_MODE) {
        return false;
    }

    /* Fall through the switch, collecting the highest priority
       interrupt that isn't masked by the processor status IPL.  */
    /* ??? This hard-codes the OSF/1 interrupt levels.  */
    switch ((env->flags >> ENV_FLAG_PS_SHIFT) & PS_INT_MASK) {
    case 0 ... 3:
        if (interrupt_request & CPU_INTERRUPT_HARD) {
            idx = EXCP_DEV_INTERRUPT;
        }
        /* FALLTHRU */
    case 4:
        if (interrupt_request & CPU_INTERRUPT_TIMER) {
            idx = EXCP_CLK_INTERRUPT;
        }
        /* FALLTHRU */
    case 5:
        if (interrupt_request & CPU_INTERRUPT_SMP) {
            idx = EXCP_SMP_INTERRUPT;
        }
        /* FALLTHRU */
    case 6:
        if (interrupt_request & CPU_INTERRUPT_MCHK) {
            idx = EXCP_MCHK;
        }
    }
    if (idx >= 0) {
        cs->exception_index = idx;
        env->error_code = 0;
        alpha_cpu_do_interrupt(cs);
        return true;
    }
    return false;
}

#endif /* !CONFIG_USER_ONLY */

void alpha_cpu_dump_state(CPUState *cs, FILE *f, int flags)
{
    static const char linux_reg_names[31][4] = {
        "v0",  "t0",  "t1", "t2",  "t3", "t4", "t5", "t6",
        "t7",  "s0",  "s1", "s2",  "s3", "s4", "s5", "fp",
        "a0",  "a1",  "a2", "a3",  "a4", "a5", "t8", "t9",
        "t10", "t11", "ra", "t12", "at", "gp", "sp"
    };
    AlphaCPU *cpu = ALPHA_CPU(cs);
    CPUAlphaState *env = &cpu->env;
    int i;

    qemu_fprintf(f, "PC      " TARGET_FMT_lx " PS      %02x\n",
                 env->pc, extract32(env->flags, ENV_FLAG_PS_SHIFT, 8));
    for (i = 0; i < 31; i++) {
        qemu_fprintf(f, "%-8s" TARGET_FMT_lx "%c",
                     linux_reg_names[i], cpu_alpha_load_gr(env, i),
                     (i % 3) == 2 ? '\n' : ' ');
    }

    qemu_fprintf(f, "lock_a  " TARGET_FMT_lx " lock_v  " TARGET_FMT_lx "\n",
                 env->lock_addr, env->lock_value);

    if (flags & CPU_DUMP_FPU) {
        for (i = 0; i < 31; i++) {
            qemu_fprintf(f, "f%-7d%016" PRIx64 "%c", i, env->fir[i],
                         (i % 3) == 2 ? '\n' : ' ');
        }
        qemu_fprintf(f, "fpcr    %016" PRIx64 "\n", cpu_alpha_load_fpcr(env));
    }
    qemu_fprintf(f, "\n");
}

/* This should only be called from translate, via gen_excp.
   We expect that ENV->PC has already been updated.  */
void QEMU_NORETURN helper_excp(CPUAlphaState *env, int excp, int error)
{
    CPUState *cs = env_cpu(env);

    cs->exception_index = excp;
    env->error_code = error;
    cpu_loop_exit(cs);
}

/* This may be called from any of the helpers to set up EXCEPTION_INDEX.  */
void QEMU_NORETURN dynamic_excp(CPUAlphaState *env, uintptr_t retaddr,
                                int excp, int error)
{
    CPUState *cs = env_cpu(env);

    cs->exception_index = excp;
    env->error_code = error;
    if (retaddr) {
        cpu_restore_state(cs, retaddr, true);
        /* Floating-point exceptions (our only users) point to the next PC.  */
        env->pc += 4;
    }
    cpu_loop_exit(cs);
}

void QEMU_NORETURN arith_excp(CPUAlphaState *env, uintptr_t retaddr,
                              int exc, uint64_t mask)
{
    env->trap_arg0 = exc;
    env->trap_arg1 = mask;
    dynamic_excp(env, retaddr, EXCP_ARITH, 0);
}