aboutsummaryrefslogtreecommitdiff
path: root/fpu/softfloat-specialize.c.inc
blob: 9bca03c4aedc243510281a6d6fb4bf950dce8996 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
/*
 * QEMU float support
 *
 * The code in this source file is derived from release 2a of the SoftFloat
 * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
 * some later contributions) are provided under that license, as detailed below.
 * It has subsequently been modified by contributors to the QEMU Project,
 * so some portions are provided under:
 *  the SoftFloat-2a license
 *  the BSD license
 *  GPL-v2-or-later
 *
 * Any future contributions to this file after December 1st 2014 will be
 * taken to be licensed under the Softfloat-2a license unless specifically
 * indicated otherwise.
 */

/*
===============================================================================
This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
Arithmetic Package, Release 2a.

Written by John R. Hauser.  This work was made possible in part by the
International Computer Science Institute, located at Suite 600, 1947 Center
Street, Berkeley, California 94704.  Funding was partially provided by the
National Science Foundation under grant MIP-9311980.  The original version
of this code was written as part of a project to build a fixed-point vector
processor in collaboration with the University of California at Berkeley,
overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
arithmetic/SoftFloat.html'.

THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.

Derivative works are acceptable, even for commercial purposes, so long as
(1) they include prominent notice that the work is derivative, and (2) they
include prominent notice akin to these four paragraphs for those parts of
this code that are retained.

===============================================================================
*/

/* BSD licensing:
 * Copyright (c) 2006, Fabrice Bellard
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice,
 * this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * 3. Neither the name of the copyright holder nor the names of its contributors
 * may be used to endorse or promote products derived from this software without
 * specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
 * THE POSSIBILITY OF SUCH DAMAGE.
 */

/* Portions of this work are licensed under the terms of the GNU GPL,
 * version 2 or later. See the COPYING file in the top-level directory.
 */

/*
 * Define whether architecture deviates from IEEE in not supporting
 * signaling NaNs (so all NaNs are treated as quiet).
 */
static inline bool no_signaling_nans(float_status *status)
{
#if defined(TARGET_XTENSA)
    return status->no_signaling_nans;
#else
    return false;
#endif
}

/* Define how the architecture discriminates signaling NaNs.
 * This done with the most significant bit of the fraction.
 * In IEEE 754-1985 this was implementation defined, but in IEEE 754-2008
 * the msb must be zero.  MIPS is (so far) unique in supporting both the
 * 2008 revision and backward compatibility with their original choice.
 * Thus for MIPS we must make the choice at runtime.
 */
static inline bool snan_bit_is_one(float_status *status)
{
#if defined(TARGET_MIPS)
    return status->snan_bit_is_one;
#elif defined(TARGET_HPPA) || defined(TARGET_SH4)
    return 1;
#else
    return 0;
#endif
}

/*----------------------------------------------------------------------------
| For the deconstructed floating-point with fraction FRAC, return true
| if the fraction represents a signalling NaN; otherwise false.
*----------------------------------------------------------------------------*/

static bool parts_is_snan_frac(uint64_t frac, float_status *status)
{
    if (no_signaling_nans(status)) {
        return false;
    } else {
        bool msb = extract64(frac, DECOMPOSED_BINARY_POINT - 1, 1);
        return msb == snan_bit_is_one(status);
    }
}

/*----------------------------------------------------------------------------
| The pattern for a default generated deconstructed floating-point NaN.
*----------------------------------------------------------------------------*/

static void parts64_default_nan(FloatParts64 *p, float_status *status)
{
    bool sign = 0;
    uint64_t frac;

#if defined(TARGET_SPARC) || defined(TARGET_M68K)
    /* !snan_bit_is_one, set all bits */
    frac = (1ULL << DECOMPOSED_BINARY_POINT) - 1;
#elif defined(TARGET_I386) || defined(TARGET_X86_64) \
    || defined(TARGET_MICROBLAZE)
    /* !snan_bit_is_one, set sign and msb */
    frac = 1ULL << (DECOMPOSED_BINARY_POINT - 1);
    sign = 1;
#elif defined(TARGET_HPPA)
    /* snan_bit_is_one, set msb-1.  */
    frac = 1ULL << (DECOMPOSED_BINARY_POINT - 2);
#elif defined(TARGET_HEXAGON)
    sign = 1;
    frac = ~0ULL;
#else
    /*
     * This case is true for Alpha, ARM, MIPS, OpenRISC, PPC, RISC-V,
     * S390, SH4, TriCore, and Xtensa.  Our other supported targets
     * do not have floating-point.
     */
    if (snan_bit_is_one(status)) {
        /* set all bits other than msb */
        frac = (1ULL << (DECOMPOSED_BINARY_POINT - 1)) - 1;
    } else {
        /* set msb */
        frac = 1ULL << (DECOMPOSED_BINARY_POINT - 1);
    }
#endif

    *p = (FloatParts64) {
        .cls = float_class_qnan,
        .sign = sign,
        .exp = INT_MAX,
        .frac = frac
    };
}

static void parts128_default_nan(FloatParts128 *p, float_status *status)
{
    /*
     * Extrapolate from the choices made by parts64_default_nan to fill
     * in the quad-floating format.  If the low bit is set, assume we
     * want to set all non-snan bits.
     */
    FloatParts64 p64;
    parts64_default_nan(&p64, status);

    *p = (FloatParts128) {
        .cls = float_class_qnan,
        .sign = p64.sign,
        .exp = INT_MAX,
        .frac_hi = p64.frac,
        .frac_lo = -(p64.frac & 1)
    };
}

/*----------------------------------------------------------------------------
| Returns a quiet NaN from a signalling NaN for the deconstructed
| floating-point parts.
*----------------------------------------------------------------------------*/

static uint64_t parts_silence_nan_frac(uint64_t frac, float_status *status)
{
    g_assert(!no_signaling_nans(status));

    /* The only snan_bit_is_one target without default_nan_mode is HPPA. */
    if (snan_bit_is_one(status)) {
        frac &= ~(1ULL << (DECOMPOSED_BINARY_POINT - 1));
        frac |= 1ULL << (DECOMPOSED_BINARY_POINT - 2);
    } else {
        frac |= 1ULL << (DECOMPOSED_BINARY_POINT - 1);
    }
    return frac;
}

static void parts64_silence_nan(FloatParts64 *p, float_status *status)
{
    p->frac = parts_silence_nan_frac(p->frac, status);
    p->cls = float_class_qnan;
}

static void parts128_silence_nan(FloatParts128 *p, float_status *status)
{
    p->frac_hi = parts_silence_nan_frac(p->frac_hi, status);
    p->cls = float_class_qnan;
}

/*----------------------------------------------------------------------------
| The pattern for a default generated extended double-precision NaN.
*----------------------------------------------------------------------------*/
floatx80 floatx80_default_nan(float_status *status)
{
    floatx80 r;

    /* None of the targets that have snan_bit_is_one use floatx80.  */
    assert(!snan_bit_is_one(status));
#if defined(TARGET_M68K)
    r.low = UINT64_C(0xFFFFFFFFFFFFFFFF);
    r.high = 0x7FFF;
#else
    /* X86 */
    r.low = UINT64_C(0xC000000000000000);
    r.high = 0xFFFF;
#endif
    return r;
}

/*----------------------------------------------------------------------------
| The pattern for a default generated extended double-precision inf.
*----------------------------------------------------------------------------*/

#define floatx80_infinity_high 0x7FFF
#if defined(TARGET_M68K)
#define floatx80_infinity_low  UINT64_C(0x0000000000000000)
#else
#define floatx80_infinity_low  UINT64_C(0x8000000000000000)
#endif

const floatx80 floatx80_infinity
    = make_floatx80_init(floatx80_infinity_high, floatx80_infinity_low);

/*----------------------------------------------------------------------------
| Returns 1 if the half-precision floating-point value `a' is a quiet
| NaN; otherwise returns 0.
*----------------------------------------------------------------------------*/

bool float16_is_quiet_nan(float16 a_, float_status *status)
{
    if (no_signaling_nans(status)) {
        return float16_is_any_nan(a_);
    } else {
        uint16_t a = float16_val(a_);
        if (snan_bit_is_one(status)) {
            return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
        } else {

            return ((a >> 9) & 0x3F) == 0x3F;
        }
    }
}

/*----------------------------------------------------------------------------
| Returns 1 if the bfloat16 value `a' is a quiet
| NaN; otherwise returns 0.
*----------------------------------------------------------------------------*/

bool bfloat16_is_quiet_nan(bfloat16 a_, float_status *status)
{
    if (no_signaling_nans(status)) {
        return bfloat16_is_any_nan(a_);
    } else {
        uint16_t a = a_;
        if (snan_bit_is_one(status)) {
            return (((a >> 6) & 0x1FF) == 0x1FE) && (a & 0x3F);
        } else {
            return ((a >> 6) & 0x1FF) == 0x1FF;
        }
    }
}

/*----------------------------------------------------------------------------
| Returns 1 if the half-precision floating-point value `a' is a signaling
| NaN; otherwise returns 0.
*----------------------------------------------------------------------------*/

bool float16_is_signaling_nan(float16 a_, float_status *status)
{
    if (no_signaling_nans(status)) {
        return 0;
    } else {
        uint16_t a = float16_val(a_);
        if (snan_bit_is_one(status)) {
            return ((a >> 9) & 0x3F) == 0x3F;
        } else {
            return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
        }
    }
}

/*----------------------------------------------------------------------------
| Returns 1 if the bfloat16 value `a' is a signaling
| NaN; otherwise returns 0.
*----------------------------------------------------------------------------*/

bool bfloat16_is_signaling_nan(bfloat16 a_, float_status *status)
{
    if (no_signaling_nans(status)) {
        return 0;
    } else {
        uint16_t a = a_;
        if (snan_bit_is_one(status)) {
            return ((a >> 6) & 0x1FF) == 0x1FF;
        } else {
            return (((a >> 6) & 0x1FF) == 0x1FE) && (a & 0x3F);
        }
    }
}

/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is a quiet
| NaN; otherwise returns 0.
*----------------------------------------------------------------------------*/

bool float32_is_quiet_nan(float32 a_, float_status *status)
{
    if (no_signaling_nans(status)) {
        return float32_is_any_nan(a_);
    } else {
        uint32_t a = float32_val(a_);
        if (snan_bit_is_one(status)) {
            return (((a >> 22) & 0x1FF) == 0x1FE) && (a & 0x003FFFFF);
        } else {
            return ((uint32_t)(a << 1) >= 0xFF800000);
        }
    }
}

/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is a signaling
| NaN; otherwise returns 0.
*----------------------------------------------------------------------------*/

bool float32_is_signaling_nan(float32 a_, float_status *status)
{
    if (no_signaling_nans(status)) {
        return 0;
    } else {
        uint32_t a = float32_val(a_);
        if (snan_bit_is_one(status)) {
            return ((uint32_t)(a << 1) >= 0xFF800000);
        } else {
            return (((a >> 22) & 0x1FF) == 0x1FE) && (a & 0x003FFFFF);
        }
    }
}

/*----------------------------------------------------------------------------
| Select which NaN to propagate for a two-input operation.
| IEEE754 doesn't specify all the details of this, so the
| algorithm is target-specific.
| The routine is passed various bits of information about the
| two NaNs and should return 0 to select NaN a and 1 for NaN b.
| Note that signalling NaNs are always squashed to quiet NaNs
| by the caller, by calling floatXX_silence_nan() before
| returning them.
|
| aIsLargerSignificand is only valid if both a and b are NaNs
| of some kind, and is true if a has the larger significand,
| or if both a and b have the same significand but a is
| positive but b is negative. It is only needed for the x87
| tie-break rule.
*----------------------------------------------------------------------------*/

static int pickNaN(FloatClass a_cls, FloatClass b_cls,
                   bool aIsLargerSignificand, float_status *status)
{
    /*
     * We guarantee not to require the target to tell us how to
     * pick a NaN if we're always returning the default NaN.
     * But if we're not in default-NaN mode then the target must
     * specify via set_float_2nan_prop_rule().
     */
    assert(!status->default_nan_mode);

    switch (status->float_2nan_prop_rule) {
    case float_2nan_prop_s_ab:
        if (is_snan(a_cls)) {
            return 0;
        } else if (is_snan(b_cls)) {
            return 1;
        } else if (is_qnan(a_cls)) {
            return 0;
        } else {
            return 1;
        }
        break;
    case float_2nan_prop_s_ba:
        if (is_snan(b_cls)) {
            return 1;
        } else if (is_snan(a_cls)) {
            return 0;
        } else if (is_qnan(b_cls)) {
            return 1;
        } else {
            return 0;
        }
        break;
    case float_2nan_prop_ab:
        if (is_nan(a_cls)) {
            return 0;
        } else {
            return 1;
        }
        break;
    case float_2nan_prop_ba:
        if (is_nan(b_cls)) {
            return 1;
        } else {
            return 0;
        }
        break;
    case float_2nan_prop_x87:
        /*
         * This implements x87 NaN propagation rules:
         * SNaN + QNaN => return the QNaN
         * two SNaNs => return the one with the larger significand, silenced
         * two QNaNs => return the one with the larger significand
         * SNaN and a non-NaN => return the SNaN, silenced
         * QNaN and a non-NaN => return the QNaN
         *
         * If we get down to comparing significands and they are the same,
         * return the NaN with the positive sign bit (if any).
         */
        if (is_snan(a_cls)) {
            if (is_snan(b_cls)) {
                return aIsLargerSignificand ? 0 : 1;
            }
            return is_qnan(b_cls) ? 1 : 0;
        } else if (is_qnan(a_cls)) {
            if (is_snan(b_cls) || !is_qnan(b_cls)) {
                return 0;
            } else {
                return aIsLargerSignificand ? 0 : 1;
            }
        } else {
            return 1;
        }
    default:
        g_assert_not_reached();
    }
}

/*----------------------------------------------------------------------------
| Select which NaN to propagate for a three-input operation.
| For the moment we assume that no CPU needs the 'larger significand'
| information.
| Return values : 0 : a; 1 : b; 2 : c; 3 : default-NaN
*----------------------------------------------------------------------------*/
static int pickNaNMulAdd(FloatClass a_cls, FloatClass b_cls, FloatClass c_cls,
                         bool infzero, float_status *status)
{
#if defined(TARGET_ARM)
    /* For ARM, the (inf,zero,qnan) case sets InvalidOp and returns
     * the default NaN
     */
    if (infzero && is_qnan(c_cls)) {
        float_raise(float_flag_invalid | float_flag_invalid_imz, status);
        return 3;
    }

    /* This looks different from the ARM ARM pseudocode, because the ARM ARM
     * puts the operands to a fused mac operation (a*b)+c in the order c,a,b.
     */
    if (is_snan(c_cls)) {
        return 2;
    } else if (is_snan(a_cls)) {
        return 0;
    } else if (is_snan(b_cls)) {
        return 1;
    } else if (is_qnan(c_cls)) {
        return 2;
    } else if (is_qnan(a_cls)) {
        return 0;
    } else {
        return 1;
    }
#elif defined(TARGET_MIPS)
    if (snan_bit_is_one(status)) {
        /*
         * For MIPS systems that conform to IEEE754-1985, the (inf,zero,nan)
         * case sets InvalidOp and returns the default NaN
         */
        if (infzero) {
            float_raise(float_flag_invalid | float_flag_invalid_imz, status);
            return 3;
        }
        /* Prefer sNaN over qNaN, in the a, b, c order. */
        if (is_snan(a_cls)) {
            return 0;
        } else if (is_snan(b_cls)) {
            return 1;
        } else if (is_snan(c_cls)) {
            return 2;
        } else if (is_qnan(a_cls)) {
            return 0;
        } else if (is_qnan(b_cls)) {
            return 1;
        } else {
            return 2;
        }
    } else {
        /*
         * For MIPS systems that conform to IEEE754-2008, the (inf,zero,nan)
         * case sets InvalidOp and returns the input value 'c'
         */
        if (infzero) {
            float_raise(float_flag_invalid | float_flag_invalid_imz, status);
            return 2;
        }
        /* Prefer sNaN over qNaN, in the c, a, b order. */
        if (is_snan(c_cls)) {
            return 2;
        } else if (is_snan(a_cls)) {
            return 0;
        } else if (is_snan(b_cls)) {
            return 1;
        } else if (is_qnan(c_cls)) {
            return 2;
        } else if (is_qnan(a_cls)) {
            return 0;
        } else {
            return 1;
        }
    }
#elif defined(TARGET_LOONGARCH64)
    /*
     * For LoongArch systems that conform to IEEE754-2008, the (inf,zero,nan)
     * case sets InvalidOp and returns the input value 'c'
     */
    if (infzero) {
        float_raise(float_flag_invalid | float_flag_invalid_imz, status);
        return 2;
    }
    /* Prefer sNaN over qNaN, in the c, a, b order. */
    if (is_snan(c_cls)) {
        return 2;
    } else if (is_snan(a_cls)) {
        return 0;
    } else if (is_snan(b_cls)) {
        return 1;
    } else if (is_qnan(c_cls)) {
        return 2;
    } else if (is_qnan(a_cls)) {
        return 0;
    } else {
        return 1;
    }
#elif defined(TARGET_PPC)
    /* For PPC, the (inf,zero,qnan) case sets InvalidOp, but we prefer
     * to return an input NaN if we have one (ie c) rather than generating
     * a default NaN
     */
    if (infzero) {
        float_raise(float_flag_invalid | float_flag_invalid_imz, status);
        return 2;
    }

    /* If fRA is a NaN return it; otherwise if fRB is a NaN return it;
     * otherwise return fRC. Note that muladd on PPC is (fRA * fRC) + frB
     */
    if (is_nan(a_cls)) {
        return 0;
    } else if (is_nan(c_cls)) {
        return 2;
    } else {
        return 1;
    }
#elif defined(TARGET_RISCV)
    /* For RISC-V, InvalidOp is set when multiplicands are Inf and zero */
    if (infzero) {
        float_raise(float_flag_invalid | float_flag_invalid_imz, status);
    }
    return 3; /* default NaN */
#elif defined(TARGET_S390X)
    if (infzero) {
        float_raise(float_flag_invalid | float_flag_invalid_imz, status);
        return 3;
    }

    if (is_snan(a_cls)) {
        return 0;
    } else if (is_snan(b_cls)) {
        return 1;
    } else if (is_snan(c_cls)) {
        return 2;
    } else if (is_qnan(a_cls)) {
        return 0;
    } else if (is_qnan(b_cls)) {
        return 1;
    } else {
        return 2;
    }
#elif defined(TARGET_SPARC)
    /* For (inf,0,nan) return c. */
    if (infzero) {
        float_raise(float_flag_invalid | float_flag_invalid_imz, status);
        return 2;
    }
    /* Prefer SNaN over QNaN, order C, B, A. */
    if (is_snan(c_cls)) {
        return 2;
    } else if (is_snan(b_cls)) {
        return 1;
    } else if (is_snan(a_cls)) {
        return 0;
    } else if (is_qnan(c_cls)) {
        return 2;
    } else if (is_qnan(b_cls)) {
        return 1;
    } else {
        return 0;
    }
#elif defined(TARGET_XTENSA)
    /*
     * For Xtensa, the (inf,zero,nan) case sets InvalidOp and returns
     * an input NaN if we have one (ie c).
     */
    if (infzero) {
        float_raise(float_flag_invalid | float_flag_invalid_imz, status);
        return 2;
    }
    if (status->use_first_nan) {
        if (is_nan(a_cls)) {
            return 0;
        } else if (is_nan(b_cls)) {
            return 1;
        } else {
            return 2;
        }
    } else {
        if (is_nan(c_cls)) {
            return 2;
        } else if (is_nan(b_cls)) {
            return 1;
        } else {
            return 0;
        }
    }
#else
    /* A default implementation: prefer a to b to c.
     * This is unlikely to actually match any real implementation.
     */
    if (is_nan(a_cls)) {
        return 0;
    } else if (is_nan(b_cls)) {
        return 1;
    } else {
        return 2;
    }
#endif
}

/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is a quiet
| NaN; otherwise returns 0.
*----------------------------------------------------------------------------*/

bool float64_is_quiet_nan(float64 a_, float_status *status)
{
    if (no_signaling_nans(status)) {
        return float64_is_any_nan(a_);
    } else {
        uint64_t a = float64_val(a_);
        if (snan_bit_is_one(status)) {
            return (((a >> 51) & 0xFFF) == 0xFFE)
                && (a & 0x0007FFFFFFFFFFFFULL);
        } else {
            return ((a << 1) >= 0xFFF0000000000000ULL);
        }
    }
}

/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is a signaling
| NaN; otherwise returns 0.
*----------------------------------------------------------------------------*/

bool float64_is_signaling_nan(float64 a_, float_status *status)
{
    if (no_signaling_nans(status)) {
        return 0;
    } else {
        uint64_t a = float64_val(a_);
        if (snan_bit_is_one(status)) {
            return ((a << 1) >= 0xFFF0000000000000ULL);
        } else {
            return (((a >> 51) & 0xFFF) == 0xFFE)
                && (a & UINT64_C(0x0007FFFFFFFFFFFF));
        }
    }
}

/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point value `a' is a
| quiet NaN; otherwise returns 0. This slightly differs from the same
| function for other types as floatx80 has an explicit bit.
*----------------------------------------------------------------------------*/

int floatx80_is_quiet_nan(floatx80 a, float_status *status)
{
    if (no_signaling_nans(status)) {
        return floatx80_is_any_nan(a);
    } else {
        if (snan_bit_is_one(status)) {
            uint64_t aLow;

            aLow = a.low & ~0x4000000000000000ULL;
            return ((a.high & 0x7FFF) == 0x7FFF)
                && (aLow << 1)
                && (a.low == aLow);
        } else {
            return ((a.high & 0x7FFF) == 0x7FFF)
                && (UINT64_C(0x8000000000000000) <= ((uint64_t)(a.low << 1)));
        }
    }
}

/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point value `a' is a
| signaling NaN; otherwise returns 0. This slightly differs from the same
| function for other types as floatx80 has an explicit bit.
*----------------------------------------------------------------------------*/

int floatx80_is_signaling_nan(floatx80 a, float_status *status)
{
    if (no_signaling_nans(status)) {
        return 0;
    } else {
        if (snan_bit_is_one(status)) {
            return ((a.high & 0x7FFF) == 0x7FFF)
                && ((a.low << 1) >= 0x8000000000000000ULL);
        } else {
            uint64_t aLow;

            aLow = a.low & ~UINT64_C(0x4000000000000000);
            return ((a.high & 0x7FFF) == 0x7FFF)
                && (uint64_t)(aLow << 1)
                && (a.low == aLow);
        }
    }
}

/*----------------------------------------------------------------------------
| Returns a quiet NaN from a signalling NaN for the extended double-precision
| floating point value `a'.
*----------------------------------------------------------------------------*/

floatx80 floatx80_silence_nan(floatx80 a, float_status *status)
{
    /* None of the targets that have snan_bit_is_one use floatx80.  */
    assert(!snan_bit_is_one(status));
    a.low |= UINT64_C(0xC000000000000000);
    return a;
}

/*----------------------------------------------------------------------------
| Takes two extended double-precision floating-point values `a' and `b', one
| of which is a NaN, and returns the appropriate NaN result.  If either `a' or
| `b' is a signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/

floatx80 propagateFloatx80NaN(floatx80 a, floatx80 b, float_status *status)
{
    bool aIsLargerSignificand;
    FloatClass a_cls, b_cls;

    /* This is not complete, but is good enough for pickNaN.  */
    a_cls = (!floatx80_is_any_nan(a)
             ? float_class_normal
             : floatx80_is_signaling_nan(a, status)
             ? float_class_snan
             : float_class_qnan);
    b_cls = (!floatx80_is_any_nan(b)
             ? float_class_normal
             : floatx80_is_signaling_nan(b, status)
             ? float_class_snan
             : float_class_qnan);

    if (is_snan(a_cls) || is_snan(b_cls)) {
        float_raise(float_flag_invalid, status);
    }

    if (status->default_nan_mode) {
        return floatx80_default_nan(status);
    }

    if (a.low < b.low) {
        aIsLargerSignificand = 0;
    } else if (b.low < a.low) {
        aIsLargerSignificand = 1;
    } else {
        aIsLargerSignificand = (a.high < b.high) ? 1 : 0;
    }

    if (pickNaN(a_cls, b_cls, aIsLargerSignificand, status)) {
        if (is_snan(b_cls)) {
            return floatx80_silence_nan(b, status);
        }
        return b;
    } else {
        if (is_snan(a_cls)) {
            return floatx80_silence_nan(a, status);
        }
        return a;
    }
}

/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is a quiet
| NaN; otherwise returns 0.
*----------------------------------------------------------------------------*/

bool float128_is_quiet_nan(float128 a, float_status *status)
{
    if (no_signaling_nans(status)) {
        return float128_is_any_nan(a);
    } else {
        if (snan_bit_is_one(status)) {
            return (((a.high >> 47) & 0xFFFF) == 0xFFFE)
                && (a.low || (a.high & 0x00007FFFFFFFFFFFULL));
        } else {
            return ((a.high << 1) >= 0xFFFF000000000000ULL)
                && (a.low || (a.high & 0x0000FFFFFFFFFFFFULL));
        }
    }
}

/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is a
| signaling NaN; otherwise returns 0.
*----------------------------------------------------------------------------*/

bool float128_is_signaling_nan(float128 a, float_status *status)
{
    if (no_signaling_nans(status)) {
        return 0;
    } else {
        if (snan_bit_is_one(status)) {
            return ((a.high << 1) >= 0xFFFF000000000000ULL)
                && (a.low || (a.high & 0x0000FFFFFFFFFFFFULL));
        } else {
            return (((a.high >> 47) & 0xFFFF) == 0xFFFE)
                && (a.low || (a.high & UINT64_C(0x00007FFFFFFFFFFF)));
        }
    }
}