aboutsummaryrefslogtreecommitdiff
path: root/exec.c
blob: b02199b271de70350cf135a2ed05cce5ce113f2c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
/*
 *  virtual page mapping and translated block handling
 *
 *  Copyright (c) 2003 Fabrice Bellard
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 */
#include "config.h"
#ifdef _WIN32
#include <windows.h>
#else
#include <sys/types.h>
#include <sys/mman.h>
#endif

#include "qemu-common.h"
#include "cpu.h"
#include "tcg.h"
#include "hw/hw.h"
#include "hw/qdev.h"
#include "osdep.h"
#include "kvm.h"
#include "hw/xen.h"
#include "qemu-timer.h"
#include "memory.h"
#include "exec-memory.h"
#if defined(CONFIG_USER_ONLY)
#include <qemu.h>
#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
#include <sys/param.h>
#if __FreeBSD_version >= 700104
#define HAVE_KINFO_GETVMMAP
#define sigqueue sigqueue_freebsd  /* avoid redefinition */
#include <sys/time.h>
#include <sys/proc.h>
#include <machine/profile.h>
#define _KERNEL
#include <sys/user.h>
#undef _KERNEL
#undef sigqueue
#include <libutil.h>
#endif
#endif
#else /* !CONFIG_USER_ONLY */
#include "xen-mapcache.h"
#include "trace.h"
#endif

#define WANT_EXEC_OBSOLETE
#include "exec-obsolete.h"

//#define DEBUG_TB_INVALIDATE
//#define DEBUG_FLUSH
//#define DEBUG_TLB
//#define DEBUG_UNASSIGNED

/* make various TB consistency checks */
//#define DEBUG_TB_CHECK
//#define DEBUG_TLB_CHECK

//#define DEBUG_IOPORT
//#define DEBUG_SUBPAGE

#if !defined(CONFIG_USER_ONLY)
/* TB consistency checks only implemented for usermode emulation.  */
#undef DEBUG_TB_CHECK
#endif

#define SMC_BITMAP_USE_THRESHOLD 10

static TranslationBlock *tbs;
static int code_gen_max_blocks;
TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
static int nb_tbs;
/* any access to the tbs or the page table must use this lock */
spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;

#if defined(__arm__) || defined(__sparc_v9__)
/* The prologue must be reachable with a direct jump. ARM and Sparc64
 have limited branch ranges (possibly also PPC) so place it in a
 section close to code segment. */
#define code_gen_section                                \
    __attribute__((__section__(".gen_code")))           \
    __attribute__((aligned (32)))
#elif defined(_WIN32)
/* Maximum alignment for Win32 is 16. */
#define code_gen_section                                \
    __attribute__((aligned (16)))
#else
#define code_gen_section                                \
    __attribute__((aligned (32)))
#endif

uint8_t code_gen_prologue[1024] code_gen_section;
static uint8_t *code_gen_buffer;
static unsigned long code_gen_buffer_size;
/* threshold to flush the translated code buffer */
static unsigned long code_gen_buffer_max_size;
static uint8_t *code_gen_ptr;

#if !defined(CONFIG_USER_ONLY)
int phys_ram_fd;
static int in_migration;

RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };

static MemoryRegion *system_memory;
static MemoryRegion *system_io;

#endif

CPUState *first_cpu;
/* current CPU in the current thread. It is only valid inside
   cpu_exec() */
DEFINE_TLS(CPUState *,cpu_single_env);
/* 0 = Do not count executed instructions.
   1 = Precise instruction counting.
   2 = Adaptive rate instruction counting.  */
int use_icount = 0;

typedef struct PageDesc {
    /* list of TBs intersecting this ram page */
    TranslationBlock *first_tb;
    /* in order to optimize self modifying code, we count the number
       of lookups we do to a given page to use a bitmap */
    unsigned int code_write_count;
    uint8_t *code_bitmap;
#if defined(CONFIG_USER_ONLY)
    unsigned long flags;
#endif
} PageDesc;

/* In system mode we want L1_MAP to be based on ram offsets,
   while in user mode we want it to be based on virtual addresses.  */
#if !defined(CONFIG_USER_ONLY)
#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
# define L1_MAP_ADDR_SPACE_BITS  HOST_LONG_BITS
#else
# define L1_MAP_ADDR_SPACE_BITS  TARGET_PHYS_ADDR_SPACE_BITS
#endif
#else
# define L1_MAP_ADDR_SPACE_BITS  TARGET_VIRT_ADDR_SPACE_BITS
#endif

/* Size of the L2 (and L3, etc) page tables.  */
#define L2_BITS 10
#define L2_SIZE (1 << L2_BITS)

/* The bits remaining after N lower levels of page tables.  */
#define P_L1_BITS_REM \
    ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
#define V_L1_BITS_REM \
    ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)

/* Size of the L1 page table.  Avoid silly small sizes.  */
#if P_L1_BITS_REM < 4
#define P_L1_BITS  (P_L1_BITS_REM + L2_BITS)
#else
#define P_L1_BITS  P_L1_BITS_REM
#endif

#if V_L1_BITS_REM < 4
#define V_L1_BITS  (V_L1_BITS_REM + L2_BITS)
#else
#define V_L1_BITS  V_L1_BITS_REM
#endif

#define P_L1_SIZE  ((target_phys_addr_t)1 << P_L1_BITS)
#define V_L1_SIZE  ((target_ulong)1 << V_L1_BITS)

#define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS)
#define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)

unsigned long qemu_real_host_page_size;
unsigned long qemu_host_page_size;
unsigned long qemu_host_page_mask;

/* This is a multi-level map on the virtual address space.
   The bottom level has pointers to PageDesc.  */
static void *l1_map[V_L1_SIZE];

#if !defined(CONFIG_USER_ONLY)
typedef struct PhysPageDesc {
    /* offset in host memory of the page + io_index in the low bits */
    ram_addr_t phys_offset;
    ram_addr_t region_offset;
} PhysPageDesc;

/* This is a multi-level map on the physical address space.
   The bottom level has pointers to PhysPageDesc.  */
static void *l1_phys_map[P_L1_SIZE];

static void io_mem_init(void);
static void memory_map_init(void);

/* io memory support */
CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
void *io_mem_opaque[IO_MEM_NB_ENTRIES];
static char io_mem_used[IO_MEM_NB_ENTRIES];
static int io_mem_watch;
#endif

/* log support */
#ifdef WIN32
static const char *logfilename = "qemu.log";
#else
static const char *logfilename = "/tmp/qemu.log";
#endif
FILE *logfile;
int loglevel;
static int log_append = 0;

/* statistics */
#if !defined(CONFIG_USER_ONLY)
static int tlb_flush_count;
#endif
static int tb_flush_count;
static int tb_phys_invalidate_count;

#ifdef _WIN32
static void map_exec(void *addr, long size)
{
    DWORD old_protect;
    VirtualProtect(addr, size,
                   PAGE_EXECUTE_READWRITE, &old_protect);
    
}
#else
static void map_exec(void *addr, long size)
{
    unsigned long start, end, page_size;
    
    page_size = getpagesize();
    start = (unsigned long)addr;
    start &= ~(page_size - 1);
    
    end = (unsigned long)addr + size;
    end += page_size - 1;
    end &= ~(page_size - 1);
    
    mprotect((void *)start, end - start,
             PROT_READ | PROT_WRITE | PROT_EXEC);
}
#endif

static void page_init(void)
{
    /* NOTE: we can always suppose that qemu_host_page_size >=
       TARGET_PAGE_SIZE */
#ifdef _WIN32
    {
        SYSTEM_INFO system_info;

        GetSystemInfo(&system_info);
        qemu_real_host_page_size = system_info.dwPageSize;
    }
#else
    qemu_real_host_page_size = getpagesize();
#endif
    if (qemu_host_page_size == 0)
        qemu_host_page_size = qemu_real_host_page_size;
    if (qemu_host_page_size < TARGET_PAGE_SIZE)
        qemu_host_page_size = TARGET_PAGE_SIZE;
    qemu_host_page_mask = ~(qemu_host_page_size - 1);

#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
    {
#ifdef HAVE_KINFO_GETVMMAP
        struct kinfo_vmentry *freep;
        int i, cnt;

        freep = kinfo_getvmmap(getpid(), &cnt);
        if (freep) {
            mmap_lock();
            for (i = 0; i < cnt; i++) {
                unsigned long startaddr, endaddr;

                startaddr = freep[i].kve_start;
                endaddr = freep[i].kve_end;
                if (h2g_valid(startaddr)) {
                    startaddr = h2g(startaddr) & TARGET_PAGE_MASK;

                    if (h2g_valid(endaddr)) {
                        endaddr = h2g(endaddr);
                        page_set_flags(startaddr, endaddr, PAGE_RESERVED);
                    } else {
#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
                        endaddr = ~0ul;
                        page_set_flags(startaddr, endaddr, PAGE_RESERVED);
#endif
                    }
                }
            }
            free(freep);
            mmap_unlock();
        }
#else
        FILE *f;

        last_brk = (unsigned long)sbrk(0);

        f = fopen("/compat/linux/proc/self/maps", "r");
        if (f) {
            mmap_lock();

            do {
                unsigned long startaddr, endaddr;
                int n;

                n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);

                if (n == 2 && h2g_valid(startaddr)) {
                    startaddr = h2g(startaddr) & TARGET_PAGE_MASK;

                    if (h2g_valid(endaddr)) {
                        endaddr = h2g(endaddr);
                    } else {
                        endaddr = ~0ul;
                    }
                    page_set_flags(startaddr, endaddr, PAGE_RESERVED);
                }
            } while (!feof(f));

            fclose(f);
            mmap_unlock();
        }
#endif
    }
#endif
}

static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
{
    PageDesc *pd;
    void **lp;
    int i;

#if defined(CONFIG_USER_ONLY)
    /* We can't use g_malloc because it may recurse into a locked mutex. */
# define ALLOC(P, SIZE)                                 \
    do {                                                \
        P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE,    \
                 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);   \
    } while (0)
#else
# define ALLOC(P, SIZE) \
    do { P = g_malloc0(SIZE); } while (0)
#endif

    /* Level 1.  Always allocated.  */
    lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));

    /* Level 2..N-1.  */
    for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
        void **p = *lp;

        if (p == NULL) {
            if (!alloc) {
                return NULL;
            }
            ALLOC(p, sizeof(void *) * L2_SIZE);
            *lp = p;
        }

        lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
    }

    pd = *lp;
    if (pd == NULL) {
        if (!alloc) {
            return NULL;
        }
        ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
        *lp = pd;
    }

#undef ALLOC

    return pd + (index & (L2_SIZE - 1));
}

static inline PageDesc *page_find(tb_page_addr_t index)
{
    return page_find_alloc(index, 0);
}

#if !defined(CONFIG_USER_ONLY)
static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
{
    PhysPageDesc *pd;
    void **lp;
    int i;

    /* Level 1.  Always allocated.  */
    lp = l1_phys_map + ((index >> P_L1_SHIFT) & (P_L1_SIZE - 1));

    /* Level 2..N-1.  */
    for (i = P_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
        void **p = *lp;
        if (p == NULL) {
            if (!alloc) {
                return NULL;
            }
            *lp = p = g_malloc0(sizeof(void *) * L2_SIZE);
        }
        lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
    }

    pd = *lp;
    if (pd == NULL) {
        int i;
        int first_index = index & ~(L2_SIZE - 1);

        if (!alloc) {
            return NULL;
        }

        *lp = pd = g_malloc(sizeof(PhysPageDesc) * L2_SIZE);

        for (i = 0; i < L2_SIZE; i++) {
            pd[i].phys_offset = IO_MEM_UNASSIGNED;
            pd[i].region_offset = (first_index + i) << TARGET_PAGE_BITS;
        }
    }

    return pd + (index & (L2_SIZE - 1));
}

static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
{
    return phys_page_find_alloc(index, 0);
}

static void tlb_protect_code(ram_addr_t ram_addr);
static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
                                    target_ulong vaddr);
#define mmap_lock() do { } while(0)
#define mmap_unlock() do { } while(0)
#endif

#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)

#if defined(CONFIG_USER_ONLY)
/* Currently it is not recommended to allocate big chunks of data in
   user mode. It will change when a dedicated libc will be used */
#define USE_STATIC_CODE_GEN_BUFFER
#endif

#ifdef USE_STATIC_CODE_GEN_BUFFER
static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
               __attribute__((aligned (CODE_GEN_ALIGN)));
#endif

static void code_gen_alloc(unsigned long tb_size)
{
#ifdef USE_STATIC_CODE_GEN_BUFFER
    code_gen_buffer = static_code_gen_buffer;
    code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
    map_exec(code_gen_buffer, code_gen_buffer_size);
#else
    code_gen_buffer_size = tb_size;
    if (code_gen_buffer_size == 0) {
#if defined(CONFIG_USER_ONLY)
        code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
#else
        /* XXX: needs adjustments */
        code_gen_buffer_size = (unsigned long)(ram_size / 4);
#endif
    }
    if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
        code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
    /* The code gen buffer location may have constraints depending on
       the host cpu and OS */
#if defined(__linux__) 
    {
        int flags;
        void *start = NULL;

        flags = MAP_PRIVATE | MAP_ANONYMOUS;
#if defined(__x86_64__)
        flags |= MAP_32BIT;
        /* Cannot map more than that */
        if (code_gen_buffer_size > (800 * 1024 * 1024))
            code_gen_buffer_size = (800 * 1024 * 1024);
#elif defined(__sparc_v9__)
        // Map the buffer below 2G, so we can use direct calls and branches
        flags |= MAP_FIXED;
        start = (void *) 0x60000000UL;
        if (code_gen_buffer_size > (512 * 1024 * 1024))
            code_gen_buffer_size = (512 * 1024 * 1024);
#elif defined(__arm__)
        /* Keep the buffer no bigger than 16GB to branch between blocks */
        if (code_gen_buffer_size > 16 * 1024 * 1024)
            code_gen_buffer_size = 16 * 1024 * 1024;
#elif defined(__s390x__)
        /* Map the buffer so that we can use direct calls and branches.  */
        /* We have a +- 4GB range on the branches; leave some slop.  */
        if (code_gen_buffer_size > (3ul * 1024 * 1024 * 1024)) {
            code_gen_buffer_size = 3ul * 1024 * 1024 * 1024;
        }
        start = (void *)0x90000000UL;
#endif
        code_gen_buffer = mmap(start, code_gen_buffer_size,
                               PROT_WRITE | PROT_READ | PROT_EXEC,
                               flags, -1, 0);
        if (code_gen_buffer == MAP_FAILED) {
            fprintf(stderr, "Could not allocate dynamic translator buffer\n");
            exit(1);
        }
    }
#elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
    || defined(__DragonFly__) || defined(__OpenBSD__) \
    || defined(__NetBSD__)
    {
        int flags;
        void *addr = NULL;
        flags = MAP_PRIVATE | MAP_ANONYMOUS;
#if defined(__x86_64__)
        /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
         * 0x40000000 is free */
        flags |= MAP_FIXED;
        addr = (void *)0x40000000;
        /* Cannot map more than that */
        if (code_gen_buffer_size > (800 * 1024 * 1024))
            code_gen_buffer_size = (800 * 1024 * 1024);
#elif defined(__sparc_v9__)
        // Map the buffer below 2G, so we can use direct calls and branches
        flags |= MAP_FIXED;
        addr = (void *) 0x60000000UL;
        if (code_gen_buffer_size > (512 * 1024 * 1024)) {
            code_gen_buffer_size = (512 * 1024 * 1024);
        }
#endif
        code_gen_buffer = mmap(addr, code_gen_buffer_size,
                               PROT_WRITE | PROT_READ | PROT_EXEC, 
                               flags, -1, 0);
        if (code_gen_buffer == MAP_FAILED) {
            fprintf(stderr, "Could not allocate dynamic translator buffer\n");
            exit(1);
        }
    }
#else
    code_gen_buffer = g_malloc(code_gen_buffer_size);
    map_exec(code_gen_buffer, code_gen_buffer_size);
#endif
#endif /* !USE_STATIC_CODE_GEN_BUFFER */
    map_exec(code_gen_prologue, sizeof(code_gen_prologue));
    code_gen_buffer_max_size = code_gen_buffer_size -
        (TCG_MAX_OP_SIZE * OPC_BUF_SIZE);
    code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
    tbs = g_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
}

/* Must be called before using the QEMU cpus. 'tb_size' is the size
   (in bytes) allocated to the translation buffer. Zero means default
   size. */
void tcg_exec_init(unsigned long tb_size)
{
    cpu_gen_init();
    code_gen_alloc(tb_size);
    code_gen_ptr = code_gen_buffer;
    page_init();
#if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
    /* There's no guest base to take into account, so go ahead and
       initialize the prologue now.  */
    tcg_prologue_init(&tcg_ctx);
#endif
}

bool tcg_enabled(void)
{
    return code_gen_buffer != NULL;
}

void cpu_exec_init_all(void)
{
#if !defined(CONFIG_USER_ONLY)
    memory_map_init();
    io_mem_init();
#endif
}

#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)

static int cpu_common_post_load(void *opaque, int version_id)
{
    CPUState *env = opaque;

    /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
       version_id is increased. */
    env->interrupt_request &= ~0x01;
    tlb_flush(env, 1);

    return 0;
}

static const VMStateDescription vmstate_cpu_common = {
    .name = "cpu_common",
    .version_id = 1,
    .minimum_version_id = 1,
    .minimum_version_id_old = 1,
    .post_load = cpu_common_post_load,
    .fields      = (VMStateField []) {
        VMSTATE_UINT32(halted, CPUState),
        VMSTATE_UINT32(interrupt_request, CPUState),
        VMSTATE_END_OF_LIST()
    }
};
#endif

CPUState *qemu_get_cpu(int cpu)
{
    CPUState *env = first_cpu;

    while (env) {
        if (env->cpu_index == cpu)
            break;
        env = env->next_cpu;
    }

    return env;
}

void cpu_exec_init(CPUState *env)
{
    CPUState **penv;
    int cpu_index;

#if defined(CONFIG_USER_ONLY)
    cpu_list_lock();
#endif
    env->next_cpu = NULL;
    penv = &first_cpu;
    cpu_index = 0;
    while (*penv != NULL) {
        penv = &(*penv)->next_cpu;
        cpu_index++;
    }
    env->cpu_index = cpu_index;
    env->numa_node = 0;
    QTAILQ_INIT(&env->breakpoints);
    QTAILQ_INIT(&env->watchpoints);
#ifndef CONFIG_USER_ONLY
    env->thread_id = qemu_get_thread_id();
#endif
    *penv = env;
#if defined(CONFIG_USER_ONLY)
    cpu_list_unlock();
#endif
#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
    vmstate_register(NULL, cpu_index, &vmstate_cpu_common, env);
    register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
                    cpu_save, cpu_load, env);
#endif
}

/* Allocate a new translation block. Flush the translation buffer if
   too many translation blocks or too much generated code. */
static TranslationBlock *tb_alloc(target_ulong pc)
{
    TranslationBlock *tb;

    if (nb_tbs >= code_gen_max_blocks ||
        (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
        return NULL;
    tb = &tbs[nb_tbs++];
    tb->pc = pc;
    tb->cflags = 0;
    return tb;
}

void tb_free(TranslationBlock *tb)
{
    /* In practice this is mostly used for single use temporary TB
       Ignore the hard cases and just back up if this TB happens to
       be the last one generated.  */
    if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
        code_gen_ptr = tb->tc_ptr;
        nb_tbs--;
    }
}

static inline void invalidate_page_bitmap(PageDesc *p)
{
    if (p->code_bitmap) {
        g_free(p->code_bitmap);
        p->code_bitmap = NULL;
    }
    p->code_write_count = 0;
}

/* Set to NULL all the 'first_tb' fields in all PageDescs. */

static void page_flush_tb_1 (int level, void **lp)
{
    int i;

    if (*lp == NULL) {
        return;
    }
    if (level == 0) {
        PageDesc *pd = *lp;
        for (i = 0; i < L2_SIZE; ++i) {
            pd[i].first_tb = NULL;
            invalidate_page_bitmap(pd + i);
        }
    } else {
        void **pp = *lp;
        for (i = 0; i < L2_SIZE; ++i) {
            page_flush_tb_1 (level - 1, pp + i);
        }
    }
}

static void page_flush_tb(void)
{
    int i;
    for (i = 0; i < V_L1_SIZE; i++) {
        page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
    }
}

/* flush all the translation blocks */
/* XXX: tb_flush is currently not thread safe */
void tb_flush(CPUState *env1)
{
    CPUState *env;
#if defined(DEBUG_FLUSH)
    printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
           (unsigned long)(code_gen_ptr - code_gen_buffer),
           nb_tbs, nb_tbs > 0 ?
           ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
#endif
    if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
        cpu_abort(env1, "Internal error: code buffer overflow\n");

    nb_tbs = 0;

    for(env = first_cpu; env != NULL; env = env->next_cpu) {
        memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
    }

    memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
    page_flush_tb();

    code_gen_ptr = code_gen_buffer;
    /* XXX: flush processor icache at this point if cache flush is
       expensive */
    tb_flush_count++;
}

#ifdef DEBUG_TB_CHECK

static void tb_invalidate_check(target_ulong address)
{
    TranslationBlock *tb;
    int i;
    address &= TARGET_PAGE_MASK;
    for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
        for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
            if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
                  address >= tb->pc + tb->size)) {
                printf("ERROR invalidate: address=" TARGET_FMT_lx
                       " PC=%08lx size=%04x\n",
                       address, (long)tb->pc, tb->size);
            }
        }
    }
}

/* verify that all the pages have correct rights for code */
static void tb_page_check(void)
{
    TranslationBlock *tb;
    int i, flags1, flags2;

    for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
        for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
            flags1 = page_get_flags(tb->pc);
            flags2 = page_get_flags(tb->pc + tb->size - 1);
            if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
                printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
                       (long)tb->pc, tb->size, flags1, flags2);
            }
        }
    }
}

#endif

/* invalidate one TB */
static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
                             int next_offset)
{
    TranslationBlock *tb1;
    for(;;) {
        tb1 = *ptb;
        if (tb1 == tb) {
            *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
            break;
        }
        ptb = (TranslationBlock **)((char *)tb1 + next_offset);
    }
}

static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
{
    TranslationBlock *tb1;
    unsigned int n1;

    for(;;) {
        tb1 = *ptb;
        n1 = (long)tb1 & 3;
        tb1 = (TranslationBlock *)((long)tb1 & ~3);
        if (tb1 == tb) {
            *ptb = tb1->page_next[n1];
            break;
        }
        ptb = &tb1->page_next[n1];
    }
}

static inline void tb_jmp_remove(TranslationBlock *tb, int n)
{
    TranslationBlock *tb1, **ptb;
    unsigned int n1;

    ptb = &tb->jmp_next[n];
    tb1 = *ptb;
    if (tb1) {
        /* find tb(n) in circular list */
        for(;;) {
            tb1 = *ptb;
            n1 = (long)tb1 & 3;
            tb1 = (TranslationBlock *)((long)tb1 & ~3);
            if (n1 == n && tb1 == tb)
                break;
            if (n1 == 2) {
                ptb = &tb1->jmp_first;
            } else {
                ptb = &tb1->jmp_next[n1];
            }
        }
        /* now we can suppress tb(n) from the list */
        *ptb = tb->jmp_next[n];

        tb->jmp_next[n] = NULL;
    }
}

/* reset the jump entry 'n' of a TB so that it is not chained to
   another TB */
static inline void tb_reset_jump(TranslationBlock *tb, int n)
{
    tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
}

void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
{
    CPUState *env;
    PageDesc *p;
    unsigned int h, n1;
    tb_page_addr_t phys_pc;
    TranslationBlock *tb1, *tb2;

    /* remove the TB from the hash list */
    phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
    h = tb_phys_hash_func(phys_pc);
    tb_remove(&tb_phys_hash[h], tb,
              offsetof(TranslationBlock, phys_hash_next));

    /* remove the TB from the page list */
    if (tb->page_addr[0] != page_addr) {
        p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
        tb_page_remove(&p->first_tb, tb);
        invalidate_page_bitmap(p);
    }
    if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
        p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
        tb_page_remove(&p->first_tb, tb);
        invalidate_page_bitmap(p);
    }

    tb_invalidated_flag = 1;

    /* remove the TB from the hash list */
    h = tb_jmp_cache_hash_func(tb->pc);
    for(env = first_cpu; env != NULL; env = env->next_cpu) {
        if (env->tb_jmp_cache[h] == tb)
            env->tb_jmp_cache[h] = NULL;
    }

    /* suppress this TB from the two jump lists */
    tb_jmp_remove(tb, 0);
    tb_jmp_remove(tb, 1);

    /* suppress any remaining jumps to this TB */
    tb1 = tb->jmp_first;
    for(;;) {
        n1 = (long)tb1 & 3;
        if (n1 == 2)
            break;
        tb1 = (TranslationBlock *)((long)tb1 & ~3);
        tb2 = tb1->jmp_next[n1];
        tb_reset_jump(tb1, n1);
        tb1->jmp_next[n1] = NULL;
        tb1 = tb2;
    }
    tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */

    tb_phys_invalidate_count++;
}

static inline void set_bits(uint8_t *tab, int start, int len)
{
    int end, mask, end1;

    end = start + len;
    tab += start >> 3;
    mask = 0xff << (start & 7);
    if ((start & ~7) == (end & ~7)) {
        if (start < end) {
            mask &= ~(0xff << (end & 7));
            *tab |= mask;
        }
    } else {
        *tab++ |= mask;
        start = (start + 8) & ~7;
        end1 = end & ~7;
        while (start < end1) {
            *tab++ = 0xff;
            start += 8;
        }
        if (start < end) {
            mask = ~(0xff << (end & 7));
            *tab |= mask;
        }
    }
}

static void build_page_bitmap(PageDesc *p)
{
    int n, tb_start, tb_end;
    TranslationBlock *tb;

    p->code_bitmap = g_malloc0(TARGET_PAGE_SIZE / 8);

    tb = p->first_tb;
    while (tb != NULL) {
        n = (long)tb & 3;
        tb = (TranslationBlock *)((long)tb & ~3);
        /* NOTE: this is subtle as a TB may span two physical pages */
        if (n == 0) {
            /* NOTE: tb_end may be after the end of the page, but
               it is not a problem */
            tb_start = tb->pc & ~TARGET_PAGE_MASK;
            tb_end = tb_start + tb->size;
            if (tb_end > TARGET_PAGE_SIZE)
                tb_end = TARGET_PAGE_SIZE;
        } else {
            tb_start = 0;
            tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
        }
        set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
        tb = tb->page_next[n];
    }
}

TranslationBlock *tb_gen_code(CPUState *env,
                              target_ulong pc, target_ulong cs_base,
                              int flags, int cflags)
{
    TranslationBlock *tb;
    uint8_t *tc_ptr;
    tb_page_addr_t phys_pc, phys_page2;
    target_ulong virt_page2;
    int code_gen_size;

    phys_pc = get_page_addr_code(env, pc);
    tb = tb_alloc(pc);
    if (!tb) {
        /* flush must be done */
        tb_flush(env);
        /* cannot fail at this point */
        tb = tb_alloc(pc);
        /* Don't forget to invalidate previous TB info.  */
        tb_invalidated_flag = 1;
    }
    tc_ptr = code_gen_ptr;
    tb->tc_ptr = tc_ptr;
    tb->cs_base = cs_base;
    tb->flags = flags;
    tb->cflags = cflags;
    cpu_gen_code(env, tb, &code_gen_size);
    code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));

    /* check next page if needed */
    virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
    phys_page2 = -1;
    if ((pc & TARGET_PAGE_MASK) != virt_page2) {
        phys_page2 = get_page_addr_code(env, virt_page2);
    }
    tb_link_page(tb, phys_pc, phys_page2);
    return tb;
}

/* invalidate all TBs which intersect with the target physical page
   starting in range [start;end[. NOTE: start and end must refer to
   the same physical page. 'is_cpu_write_access' should be true if called
   from a real cpu write access: the virtual CPU will exit the current
   TB if code is modified inside this TB. */
void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
                                   int is_cpu_write_access)
{
    TranslationBlock *tb, *tb_next, *saved_tb;
    CPUState *env = cpu_single_env;
    tb_page_addr_t tb_start, tb_end;
    PageDesc *p;
    int n;
#ifdef TARGET_HAS_PRECISE_SMC
    int current_tb_not_found = is_cpu_write_access;
    TranslationBlock *current_tb = NULL;
    int current_tb_modified = 0;
    target_ulong current_pc = 0;
    target_ulong current_cs_base = 0;
    int current_flags = 0;
#endif /* TARGET_HAS_PRECISE_SMC */

    p = page_find(start >> TARGET_PAGE_BITS);
    if (!p)
        return;
    if (!p->code_bitmap &&
        ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
        is_cpu_write_access) {
        /* build code bitmap */
        build_page_bitmap(p);
    }

    /* we remove all the TBs in the range [start, end[ */
    /* XXX: see if in some cases it could be faster to invalidate all the code */
    tb = p->first_tb;
    while (tb != NULL) {
        n = (long)tb & 3;
        tb = (TranslationBlock *)((long)tb & ~3);
        tb_next = tb->page_next[n];
        /* NOTE: this is subtle as a TB may span two physical pages */
        if (n == 0) {
            /* NOTE: tb_end may be after the end of the page, but
               it is not a problem */
            tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
            tb_end = tb_start + tb->size;
        } else {
            tb_start = tb->page_addr[1];
            tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
        }
        if (!(tb_end <= start || tb_start >= end)) {
#ifdef TARGET_HAS_PRECISE_SMC
            if (current_tb_not_found) {
                current_tb_not_found = 0;
                current_tb = NULL;
                if (env->mem_io_pc) {
                    /* now we have a real cpu fault */
                    current_tb = tb_find_pc(env->mem_io_pc);
                }
            }
            if (current_tb == tb &&
                (current_tb->cflags & CF_COUNT_MASK) != 1) {
                /* If we are modifying the current TB, we must stop
                its execution. We could be more precise by checking
                that the modification is after the current PC, but it
                would require a specialized function to partially
                restore the CPU state */

                current_tb_modified = 1;
                cpu_restore_state(current_tb, env, env->mem_io_pc);
                cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
                                     &current_flags);
            }
#endif /* TARGET_HAS_PRECISE_SMC */
            /* we need to do that to handle the case where a signal
               occurs while doing tb_phys_invalidate() */
            saved_tb = NULL;
            if (env) {
                saved_tb = env->current_tb;
                env->current_tb = NULL;
            }
            tb_phys_invalidate(tb, -1);
            if (env) {
                env->current_tb = saved_tb;
                if (env->interrupt_request && env->current_tb)
                    cpu_interrupt(env, env->interrupt_request);
            }
        }
        tb = tb_next;
    }
#if !defined(CONFIG_USER_ONLY)
    /* if no code remaining, no need to continue to use slow writes */
    if (!p->first_tb) {
        invalidate_page_bitmap(p);
        if (is_cpu_write_access) {
            tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
        }
    }
#endif
#ifdef TARGET_HAS_PRECISE_SMC
    if (current_tb_modified) {
        /* we generate a block containing just the instruction
           modifying the memory. It will ensure that it cannot modify
           itself */
        env->current_tb = NULL;
        tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
        cpu_resume_from_signal(env, NULL);
    }
#endif
}

/* len must be <= 8 and start must be a multiple of len */
static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
{
    PageDesc *p;
    int offset, b;
#if 0
    if (1) {
        qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
                  cpu_single_env->mem_io_vaddr, len,
                  cpu_single_env->eip,
                  cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
    }
#endif
    p = page_find(start >> TARGET_PAGE_BITS);
    if (!p)
        return;
    if (p->code_bitmap) {
        offset = start & ~TARGET_PAGE_MASK;
        b = p->code_bitmap[offset >> 3] >> (offset & 7);
        if (b & ((1 << len) - 1))
            goto do_invalidate;
    } else {
    do_invalidate:
        tb_invalidate_phys_page_range(start, start + len, 1);
    }
}

#if !defined(CONFIG_SOFTMMU)
static void tb_invalidate_phys_page(tb_page_addr_t addr,
                                    unsigned long pc, void *puc)
{
    TranslationBlock *tb;
    PageDesc *p;
    int n;
#ifdef TARGET_HAS_PRECISE_SMC
    TranslationBlock *current_tb = NULL;
    CPUState *env = cpu_single_env;
    int current_tb_modified = 0;
    target_ulong current_pc = 0;
    target_ulong current_cs_base = 0;
    int current_flags = 0;
#endif

    addr &= TARGET_PAGE_MASK;
    p = page_find(addr >> TARGET_PAGE_BITS);
    if (!p)
        return;
    tb = p->first_tb;
#ifdef TARGET_HAS_PRECISE_SMC
    if (tb && pc != 0) {
        current_tb = tb_find_pc(pc);
    }
#endif
    while (tb != NULL) {
        n = (long)tb & 3;
        tb = (TranslationBlock *)((long)tb & ~3);
#ifdef TARGET_HAS_PRECISE_SMC
        if (current_tb == tb &&
            (current_tb->cflags & CF_COUNT_MASK) != 1) {
                /* If we are modifying the current TB, we must stop
                   its execution. We could be more precise by checking
                   that the modification is after the current PC, but it
                   would require a specialized function to partially
                   restore the CPU state */

            current_tb_modified = 1;
            cpu_restore_state(current_tb, env, pc);
            cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
                                 &current_flags);
        }
#endif /* TARGET_HAS_PRECISE_SMC */
        tb_phys_invalidate(tb, addr);
        tb = tb->page_next[n];
    }
    p->first_tb = NULL;
#ifdef TARGET_HAS_PRECISE_SMC
    if (current_tb_modified) {
        /* we generate a block containing just the instruction
           modifying the memory. It will ensure that it cannot modify
           itself */
        env->current_tb = NULL;
        tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
        cpu_resume_from_signal(env, puc);
    }
#endif
}
#endif

/* add the tb in the target page and protect it if necessary */
static inline void tb_alloc_page(TranslationBlock *tb,
                                 unsigned int n, tb_page_addr_t page_addr)
{
    PageDesc *p;
#ifndef CONFIG_USER_ONLY
    bool page_already_protected;
#endif

    tb->page_addr[n] = page_addr;
    p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
    tb->page_next[n] = p->first_tb;
#ifndef CONFIG_USER_ONLY
    page_already_protected = p->first_tb != NULL;
#endif
    p->first_tb = (TranslationBlock *)((long)tb | n);
    invalidate_page_bitmap(p);

#if defined(TARGET_HAS_SMC) || 1

#if defined(CONFIG_USER_ONLY)
    if (p->flags & PAGE_WRITE) {
        target_ulong addr;
        PageDesc *p2;
        int prot;

        /* force the host page as non writable (writes will have a
           page fault + mprotect overhead) */
        page_addr &= qemu_host_page_mask;
        prot = 0;
        for(addr = page_addr; addr < page_addr + qemu_host_page_size;
            addr += TARGET_PAGE_SIZE) {

            p2 = page_find (addr >> TARGET_PAGE_BITS);
            if (!p2)
                continue;
            prot |= p2->flags;
            p2->flags &= ~PAGE_WRITE;
          }
        mprotect(g2h(page_addr), qemu_host_page_size,
                 (prot & PAGE_BITS) & ~PAGE_WRITE);
#ifdef DEBUG_TB_INVALIDATE
        printf("protecting code page: 0x" TARGET_FMT_lx "\n",
               page_addr);
#endif
    }
#else
    /* if some code is already present, then the pages are already
       protected. So we handle the case where only the first TB is
       allocated in a physical page */
    if (!page_already_protected) {
        tlb_protect_code(page_addr);
    }
#endif

#endif /* TARGET_HAS_SMC */
}

/* add a new TB and link it to the physical page tables. phys_page2 is
   (-1) to indicate that only one page contains the TB. */
void tb_link_page(TranslationBlock *tb,
                  tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
{
    unsigned int h;
    TranslationBlock **ptb;

    /* Grab the mmap lock to stop another thread invalidating this TB
       before we are done.  */
    mmap_lock();
    /* add in the physical hash table */
    h = tb_phys_hash_func(phys_pc);
    ptb = &tb_phys_hash[h];
    tb->phys_hash_next = *ptb;
    *ptb = tb;

    /* add in the page list */
    tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
    if (phys_page2 != -1)
        tb_alloc_page(tb, 1, phys_page2);
    else
        tb->page_addr[1] = -1;

    tb->jmp_first = (TranslationBlock *)((long)tb | 2);
    tb->jmp_next[0] = NULL;
    tb->jmp_next[1] = NULL;

    /* init original jump addresses */
    if (tb->tb_next_offset[0] != 0xffff)
        tb_reset_jump(tb, 0);
    if (tb->tb_next_offset[1] != 0xffff)
        tb_reset_jump(tb, 1);

#ifdef DEBUG_TB_CHECK
    tb_page_check();
#endif
    mmap_unlock();
}

/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
   tb[1].tc_ptr. Return NULL if not found */
TranslationBlock *tb_find_pc(unsigned long tc_ptr)
{
    int m_min, m_max, m;
    unsigned long v;
    TranslationBlock *tb;

    if (nb_tbs <= 0)
        return NULL;
    if (tc_ptr < (unsigned long)code_gen_buffer ||
        tc_ptr >= (unsigned long)code_gen_ptr)
        return NULL;
    /* binary search (cf Knuth) */
    m_min = 0;
    m_max = nb_tbs - 1;
    while (m_min <= m_max) {
        m = (m_min + m_max) >> 1;
        tb = &tbs[m];
        v = (unsigned long)tb->tc_ptr;
        if (v == tc_ptr)
            return tb;
        else if (tc_ptr < v) {
            m_max = m - 1;
        } else {
            m_min = m + 1;
        }
    }
    return &tbs[m_max];
}

static void tb_reset_jump_recursive(TranslationBlock *tb);

static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
{
    TranslationBlock *tb1, *tb_next, **ptb;
    unsigned int n1;

    tb1 = tb->jmp_next[n];
    if (tb1 != NULL) {
        /* find head of list */
        for(;;) {
            n1 = (long)tb1 & 3;
            tb1 = (TranslationBlock *)((long)tb1 & ~3);
            if (n1 == 2)
                break;
            tb1 = tb1->jmp_next[n1];
        }
        /* we are now sure now that tb jumps to tb1 */
        tb_next = tb1;

        /* remove tb from the jmp_first list */
        ptb = &tb_next->jmp_first;
        for(;;) {
            tb1 = *ptb;
            n1 = (long)tb1 & 3;
            tb1 = (TranslationBlock *)((long)tb1 & ~3);
            if (n1 == n && tb1 == tb)
                break;
            ptb = &tb1->jmp_next[n1];
        }
        *ptb = tb->jmp_next[n];
        tb->jmp_next[n] = NULL;

        /* suppress the jump to next tb in generated code */
        tb_reset_jump(tb, n);

        /* suppress jumps in the tb on which we could have jumped */
        tb_reset_jump_recursive(tb_next);
    }
}

static void tb_reset_jump_recursive(TranslationBlock *tb)
{
    tb_reset_jump_recursive2(tb, 0);
    tb_reset_jump_recursive2(tb, 1);
}

#if defined(TARGET_HAS_ICE)
#if defined(CONFIG_USER_ONLY)
static void breakpoint_invalidate(CPUState *env, target_ulong pc)
{
    tb_invalidate_phys_page_range(pc, pc + 1, 0);
}
#else
static void breakpoint_invalidate(CPUState *env, target_ulong pc)
{
    target_phys_addr_t addr;
    target_ulong pd;
    ram_addr_t ram_addr;
    PhysPageDesc *p;

    addr = cpu_get_phys_page_debug(env, pc);
    p = phys_page_find(addr >> TARGET_PAGE_BITS);
    if (!p) {
        pd = IO_MEM_UNASSIGNED;
    } else {
        pd = p->phys_offset;
    }
    ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
    tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
}
#endif
#endif /* TARGET_HAS_ICE */

#if defined(CONFIG_USER_ONLY)
void cpu_watchpoint_remove_all(CPUState *env, int mask)

{
}

int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
                          int flags, CPUWatchpoint **watchpoint)
{
    return -ENOSYS;
}
#else
/* Add a watchpoint.  */
int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
                          int flags, CPUWatchpoint **watchpoint)
{
    target_ulong len_mask = ~(len - 1);
    CPUWatchpoint *wp;

    /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
    if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
        fprintf(stderr, "qemu: tried to set invalid watchpoint at "
                TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
        return -EINVAL;
    }
    wp = g_malloc(sizeof(*wp));

    wp->vaddr = addr;
    wp->len_mask = len_mask;
    wp->flags = flags;

    /* keep all GDB-injected watchpoints in front */
    if (flags & BP_GDB)
        QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
    else
        QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);

    tlb_flush_page(env, addr);

    if (watchpoint)
        *watchpoint = wp;
    return 0;
}

/* Remove a specific watchpoint.  */
int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
                          int flags)
{
    target_ulong len_mask = ~(len - 1);
    CPUWatchpoint *wp;

    QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
        if (addr == wp->vaddr && len_mask == wp->len_mask
                && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
            cpu_watchpoint_remove_by_ref(env, wp);
            return 0;
        }
    }
    return -ENOENT;
}

/* Remove a specific watchpoint by reference.  */
void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
{
    QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);

    tlb_flush_page(env, watchpoint->vaddr);

    g_free(watchpoint);
}

/* Remove all matching watchpoints.  */
void cpu_watchpoint_remove_all(CPUState *env, int mask)
{
    CPUWatchpoint *wp, *next;

    QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
        if (wp->flags & mask)
            cpu_watchpoint_remove_by_ref(env, wp);
    }
}
#endif

/* Add a breakpoint.  */
int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
                          CPUBreakpoint **breakpoint)
{
#if defined(TARGET_HAS_ICE)
    CPUBreakpoint *bp;

    bp = g_malloc(sizeof(*bp));

    bp->pc = pc;
    bp->flags = flags;

    /* keep all GDB-injected breakpoints in front */
    if (flags & BP_GDB)
        QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
    else
        QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);

    breakpoint_invalidate(env, pc);

    if (breakpoint)
        *breakpoint = bp;
    return 0;
#else
    return -ENOSYS;
#endif
}

/* Remove a specific breakpoint.  */
int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
{
#if defined(TARGET_HAS_ICE)
    CPUBreakpoint *bp;

    QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
        if (bp->pc == pc && bp->flags == flags) {
            cpu_breakpoint_remove_by_ref(env, bp);
            return 0;
        }
    }
    return -ENOENT;
#else
    return -ENOSYS;
#endif
}

/* Remove a specific breakpoint by reference.  */
void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
{
#if defined(TARGET_HAS_ICE)
    QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);

    breakpoint_invalidate(env, breakpoint->pc);

    g_free(breakpoint);
#endif
}

/* Remove all matching breakpoints. */
void cpu_breakpoint_remove_all(CPUState *env, int mask)
{
#if defined(TARGET_HAS_ICE)
    CPUBreakpoint *bp, *next;

    QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
        if (bp->flags & mask)
            cpu_breakpoint_remove_by_ref(env, bp);
    }
#endif
}

/* enable or disable single step mode. EXCP_DEBUG is returned by the
   CPU loop after each instruction */
void cpu_single_step(CPUState *env, int enabled)
{
#if defined(TARGET_HAS_ICE)
    if (env->singlestep_enabled != enabled) {
        env->singlestep_enabled = enabled;
        if (kvm_enabled())
            kvm_update_guest_debug(env, 0);
        else {
            /* must flush all the translated code to avoid inconsistencies */
            /* XXX: only flush what is necessary */
            tb_flush(env);
        }
    }
#endif
}

/* enable or disable low levels log */
void cpu_set_log(int log_flags)
{
    loglevel = log_flags;
    if (loglevel && !logfile) {
        logfile = fopen(logfilename, log_append ? "a" : "w");
        if (!logfile) {
            perror(logfilename);
            _exit(1);
        }
#if !defined(CONFIG_SOFTMMU)
        /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
        {
            static char logfile_buf[4096];
            setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
        }
#elif defined(_WIN32)
        /* Win32 doesn't support line-buffering, so use unbuffered output. */
        setvbuf(logfile, NULL, _IONBF, 0);
#else
        setvbuf(logfile, NULL, _IOLBF, 0);
#endif
        log_append = 1;
    }
    if (!loglevel && logfile) {
        fclose(logfile);
        logfile = NULL;
    }
}

void cpu_set_log_filename(const char *filename)
{
    logfilename = strdup(filename);
    if (logfile) {
        fclose(logfile);
        logfile = NULL;
    }
    cpu_set_log(loglevel);
}

static void cpu_unlink_tb(CPUState *env)
{
    /* FIXME: TB unchaining isn't SMP safe.  For now just ignore the
       problem and hope the cpu will stop of its own accord.  For userspace
       emulation this often isn't actually as bad as it sounds.  Often
       signals are used primarily to interrupt blocking syscalls.  */
    TranslationBlock *tb;
    static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;

    spin_lock(&interrupt_lock);
    tb = env->current_tb;
    /* if the cpu is currently executing code, we must unlink it and
       all the potentially executing TB */
    if (tb) {
        env->current_tb = NULL;
        tb_reset_jump_recursive(tb);
    }
    spin_unlock(&interrupt_lock);
}

#ifndef CONFIG_USER_ONLY
/* mask must never be zero, except for A20 change call */
static void tcg_handle_interrupt(CPUState *env, int mask)
{
    int old_mask;

    old_mask = env->interrupt_request;
    env->interrupt_request |= mask;

    /*
     * If called from iothread context, wake the target cpu in
     * case its halted.
     */
    if (!qemu_cpu_is_self(env)) {
        qemu_cpu_kick(env);
        return;
    }

    if (use_icount) {
        env->icount_decr.u16.high = 0xffff;
        if (!can_do_io(env)
            && (mask & ~old_mask) != 0) {
            cpu_abort(env, "Raised interrupt while not in I/O function");
        }
    } else {
        cpu_unlink_tb(env);
    }
}

CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt;

#else /* CONFIG_USER_ONLY */

void cpu_interrupt(CPUState *env, int mask)
{
    env->interrupt_request |= mask;
    cpu_unlink_tb(env);
}
#endif /* CONFIG_USER_ONLY */

void cpu_reset_interrupt(CPUState *env, int mask)
{
    env->interrupt_request &= ~mask;
}

void cpu_exit(CPUState *env)
{
    env->exit_request = 1;
    cpu_unlink_tb(env);
}

const CPULogItem cpu_log_items[] = {
    { CPU_LOG_TB_OUT_ASM, "out_asm",
      "show generated host assembly code for each compiled TB" },
    { CPU_LOG_TB_IN_ASM, "in_asm",
      "show target assembly code for each compiled TB" },
    { CPU_LOG_TB_OP, "op",
      "show micro ops for each compiled TB" },
    { CPU_LOG_TB_OP_OPT, "op_opt",
      "show micro ops "
#ifdef TARGET_I386
      "before eflags optimization and "
#endif
      "after liveness analysis" },
    { CPU_LOG_INT, "int",
      "show interrupts/exceptions in short format" },
    { CPU_LOG_EXEC, "exec",
      "show trace before each executed TB (lots of logs)" },
    { CPU_LOG_TB_CPU, "cpu",
      "show CPU state before block translation" },
#ifdef TARGET_I386
    { CPU_LOG_PCALL, "pcall",
      "show protected mode far calls/returns/exceptions" },
    { CPU_LOG_RESET, "cpu_reset",
      "show CPU state before CPU resets" },
#endif
#ifdef DEBUG_IOPORT
    { CPU_LOG_IOPORT, "ioport",
      "show all i/o ports accesses" },
#endif
    { 0, NULL, NULL },
};

static int cmp1(const char *s1, int n, const char *s2)
{
    if (strlen(s2) != n)
        return 0;
    return memcmp(s1, s2, n) == 0;
}

/* takes a comma separated list of log masks. Return 0 if error. */
int cpu_str_to_log_mask(const char *str)
{
    const CPULogItem *item;
    int mask;
    const char *p, *p1;

    p = str;
    mask = 0;
    for(;;) {
        p1 = strchr(p, ',');
        if (!p1)
            p1 = p + strlen(p);
        if(cmp1(p,p1-p,"all")) {
            for(item = cpu_log_items; item->mask != 0; item++) {
                mask |= item->mask;
            }
        } else {
            for(item = cpu_log_items; item->mask != 0; item++) {
                if (cmp1(p, p1 - p, item->name))
                    goto found;
            }
            return 0;
        }
    found:
        mask |= item->mask;
        if (*p1 != ',')
            break;
        p = p1 + 1;
    }
    return mask;
}

void cpu_abort(CPUState *env, const char *fmt, ...)
{
    va_list ap;
    va_list ap2;

    va_start(ap, fmt);
    va_copy(ap2, ap);
    fprintf(stderr, "qemu: fatal: ");
    vfprintf(stderr, fmt, ap);
    fprintf(stderr, "\n");
#ifdef TARGET_I386
    cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
#else
    cpu_dump_state(env, stderr, fprintf, 0);
#endif
    if (qemu_log_enabled()) {
        qemu_log("qemu: fatal: ");
        qemu_log_vprintf(fmt, ap2);
        qemu_log("\n");
#ifdef TARGET_I386
        log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
#else
        log_cpu_state(env, 0);
#endif
        qemu_log_flush();
        qemu_log_close();
    }
    va_end(ap2);
    va_end(ap);
#if defined(CONFIG_USER_ONLY)
    {
        struct sigaction act;
        sigfillset(&act.sa_mask);
        act.sa_handler = SIG_DFL;
        sigaction(SIGABRT, &act, NULL);
    }
#endif
    abort();
}

CPUState *cpu_copy(CPUState *env)
{
    CPUState *new_env = cpu_init(env->cpu_model_str);
    CPUState *next_cpu = new_env->next_cpu;
    int cpu_index = new_env->cpu_index;
#if defined(TARGET_HAS_ICE)
    CPUBreakpoint *bp;
    CPUWatchpoint *wp;
#endif

    memcpy(new_env, env, sizeof(CPUState));

    /* Preserve chaining and index. */
    new_env->next_cpu = next_cpu;
    new_env->cpu_index = cpu_index;

    /* Clone all break/watchpoints.
       Note: Once we support ptrace with hw-debug register access, make sure
       BP_CPU break/watchpoints are handled correctly on clone. */
    QTAILQ_INIT(&env->breakpoints);
    QTAILQ_INIT(&env->watchpoints);
#if defined(TARGET_HAS_ICE)
    QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
        cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
    }
    QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
        cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
                              wp->flags, NULL);
    }
#endif

    return new_env;
}

#if !defined(CONFIG_USER_ONLY)

static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
{
    unsigned int i;

    /* Discard jump cache entries for any tb which might potentially
       overlap the flushed page.  */
    i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
    memset (&env->tb_jmp_cache[i], 0, 
            TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));

    i = tb_jmp_cache_hash_page(addr);
    memset (&env->tb_jmp_cache[i], 0, 
            TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
}

static CPUTLBEntry s_cputlb_empty_entry = {
    .addr_read  = -1,
    .addr_write = -1,
    .addr_code  = -1,
    .addend     = -1,
};

/* NOTE: if flush_global is true, also flush global entries (not
   implemented yet) */
void tlb_flush(CPUState *env, int flush_global)
{
    int i;

#if defined(DEBUG_TLB)
    printf("tlb_flush:\n");
#endif
    /* must reset current TB so that interrupts cannot modify the
       links while we are modifying them */
    env->current_tb = NULL;

    for(i = 0; i < CPU_TLB_SIZE; i++) {
        int mmu_idx;
        for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
            env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
        }
    }

    memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));

    env->tlb_flush_addr = -1;
    env->tlb_flush_mask = 0;
    tlb_flush_count++;
}

static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
{
    if (addr == (tlb_entry->addr_read &
                 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
        addr == (tlb_entry->addr_write &
                 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
        addr == (tlb_entry->addr_code &
                 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
        *tlb_entry = s_cputlb_empty_entry;
    }
}

void tlb_flush_page(CPUState *env, target_ulong addr)
{
    int i;
    int mmu_idx;

#if defined(DEBUG_TLB)
    printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
#endif
    /* Check if we need to flush due to large pages.  */
    if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
#if defined(DEBUG_TLB)
        printf("tlb_flush_page: forced full flush ("
               TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
               env->tlb_flush_addr, env->tlb_flush_mask);
#endif
        tlb_flush(env, 1);
        return;
    }
    /* must reset current TB so that interrupts cannot modify the
       links while we are modifying them */
    env->current_tb = NULL;

    addr &= TARGET_PAGE_MASK;
    i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
    for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
        tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);

    tlb_flush_jmp_cache(env, addr);
}

/* update the TLBs so that writes to code in the virtual page 'addr'
   can be detected */
static void tlb_protect_code(ram_addr_t ram_addr)
{
    cpu_physical_memory_reset_dirty(ram_addr,
                                    ram_addr + TARGET_PAGE_SIZE,
                                    CODE_DIRTY_FLAG);
}

/* update the TLB so that writes in physical page 'phys_addr' are no longer
   tested for self modifying code */
static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
                                    target_ulong vaddr)
{
    cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
}

static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
                                         unsigned long start, unsigned long length)
{
    unsigned long addr;
    if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
        addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
        if ((addr - start) < length) {
            tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
        }
    }
}

/* Note: start and end must be within the same ram block.  */
void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
                                     int dirty_flags)
{
    CPUState *env;
    unsigned long length, start1;
    int i;

    start &= TARGET_PAGE_MASK;
    end = TARGET_PAGE_ALIGN(end);

    length = end - start;
    if (length == 0)
        return;
    cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);

    /* we modify the TLB cache so that the dirty bit will be set again
       when accessing the range */
    start1 = (unsigned long)qemu_safe_ram_ptr(start);
    /* Check that we don't span multiple blocks - this breaks the
       address comparisons below.  */
    if ((unsigned long)qemu_safe_ram_ptr(end - 1) - start1
            != (end - 1) - start) {
        abort();
    }

    for(env = first_cpu; env != NULL; env = env->next_cpu) {
        int mmu_idx;
        for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
            for(i = 0; i < CPU_TLB_SIZE; i++)
                tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
                                      start1, length);
        }
    }
}

int cpu_physical_memory_set_dirty_tracking(int enable)
{
    int ret = 0;
    in_migration = enable;
    if (enable) {
        memory_global_dirty_log_start();
    } else {
        memory_global_dirty_log_stop();
    }
    return ret;
}

int cpu_physical_memory_get_dirty_tracking(void)
{
    return in_migration;
}

static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
{
    ram_addr_t ram_addr;
    void *p;

    if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
        p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
            + tlb_entry->addend);
        ram_addr = qemu_ram_addr_from_host_nofail(p);
        if (!cpu_physical_memory_is_dirty(ram_addr)) {
            tlb_entry->addr_write |= TLB_NOTDIRTY;
        }
    }
}

/* update the TLB according to the current state of the dirty bits */
void cpu_tlb_update_dirty(CPUState *env)
{
    int i;
    int mmu_idx;
    for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
        for(i = 0; i < CPU_TLB_SIZE; i++)
            tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
    }
}

static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
{
    if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
        tlb_entry->addr_write = vaddr;
}

/* update the TLB corresponding to virtual page vaddr
   so that it is no longer dirty */
static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
{
    int i;
    int mmu_idx;

    vaddr &= TARGET_PAGE_MASK;
    i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
    for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
        tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
}

/* Our TLB does not support large pages, so remember the area covered by
   large pages and trigger a full TLB flush if these are invalidated.  */
static void tlb_add_large_page(CPUState *env, target_ulong vaddr,
                               target_ulong size)
{
    target_ulong mask = ~(size - 1);

    if (env->tlb_flush_addr == (target_ulong)-1) {
        env->tlb_flush_addr = vaddr & mask;
        env->tlb_flush_mask = mask;
        return;
    }
    /* Extend the existing region to include the new page.
       This is a compromise between unnecessary flushes and the cost
       of maintaining a full variable size TLB.  */
    mask &= env->tlb_flush_mask;
    while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
        mask <<= 1;
    }
    env->tlb_flush_addr &= mask;
    env->tlb_flush_mask = mask;
}

/* Add a new TLB entry. At most one entry for a given virtual address
   is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
   supplied size is only used by tlb_flush_page.  */
void tlb_set_page(CPUState *env, target_ulong vaddr,
                  target_phys_addr_t paddr, int prot,
                  int mmu_idx, target_ulong size)
{
    PhysPageDesc *p;
    unsigned long pd;
    unsigned int index;
    target_ulong address;
    target_ulong code_address;
    unsigned long addend;
    CPUTLBEntry *te;
    CPUWatchpoint *wp;
    target_phys_addr_t iotlb;

    assert(size >= TARGET_PAGE_SIZE);
    if (size != TARGET_PAGE_SIZE) {
        tlb_add_large_page(env, vaddr, size);
    }
    p = phys_page_find(paddr >> TARGET_PAGE_BITS);
    if (!p) {
        pd = IO_MEM_UNASSIGNED;
    } else {
        pd = p->phys_offset;
    }
#if defined(DEBUG_TLB)
    printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
           " prot=%x idx=%d pd=0x%08lx\n",
           vaddr, paddr, prot, mmu_idx, pd);
#endif

    address = vaddr;
    if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
        /* IO memory case (romd handled later) */
        address |= TLB_MMIO;
    }
    addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
    if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
        /* Normal RAM.  */
        iotlb = pd & TARGET_PAGE_MASK;
        if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
            iotlb |= IO_MEM_NOTDIRTY;
        else
            iotlb |= IO_MEM_ROM;
    } else {
        /* IO handlers are currently passed a physical address.
           It would be nice to pass an offset from the base address
           of that region.  This would avoid having to special case RAM,
           and avoid full address decoding in every device.
           We can't use the high bits of pd for this because
           IO_MEM_ROMD uses these as a ram address.  */
        iotlb = (pd & ~TARGET_PAGE_MASK);
        if (p) {
            iotlb += p->region_offset;
        } else {
            iotlb += paddr;
        }
    }

    code_address = address;
    /* Make accesses to pages with watchpoints go via the
       watchpoint trap routines.  */
    QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
        if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
            /* Avoid trapping reads of pages with a write breakpoint. */
            if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
                iotlb = io_mem_watch + paddr;
                address |= TLB_MMIO;
                break;
            }
        }
    }

    index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
    env->iotlb[mmu_idx][index] = iotlb - vaddr;
    te = &env->tlb_table[mmu_idx][index];
    te->addend = addend - vaddr;
    if (prot & PAGE_READ) {
        te->addr_read = address;
    } else {
        te->addr_read = -1;
    }

    if (prot & PAGE_EXEC) {
        te->addr_code = code_address;
    } else {
        te->addr_code = -1;
    }
    if (prot & PAGE_WRITE) {
        if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
            (pd & IO_MEM_ROMD)) {
            /* Write access calls the I/O callback.  */
            te->addr_write = address | TLB_MMIO;
        } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
                   !cpu_physical_memory_is_dirty(pd)) {
            te->addr_write = address | TLB_NOTDIRTY;
        } else {
            te->addr_write = address;
        }
    } else {
        te->addr_write = -1;
    }
}

#else

void tlb_flush(CPUState *env, int flush_global)
{
}

void tlb_flush_page(CPUState *env, target_ulong addr)
{
}

/*
 * Walks guest process memory "regions" one by one
 * and calls callback function 'fn' for each region.
 */

struct walk_memory_regions_data
{
    walk_memory_regions_fn fn;
    void *priv;
    unsigned long start;
    int prot;
};

static int walk_memory_regions_end(struct walk_memory_regions_data *data,
                                   abi_ulong end, int new_prot)
{
    if (data->start != -1ul) {
        int rc = data->fn(data->priv, data->start, end, data->prot);
        if (rc != 0) {
            return rc;
        }
    }

    data->start = (new_prot ? end : -1ul);
    data->prot = new_prot;

    return 0;
}

static int walk_memory_regions_1(struct walk_memory_regions_data *data,
                                 abi_ulong base, int level, void **lp)
{
    abi_ulong pa;
    int i, rc;

    if (*lp == NULL) {
        return walk_memory_regions_end(data, base, 0);
    }

    if (level == 0) {
        PageDesc *pd = *lp;
        for (i = 0; i < L2_SIZE; ++i) {
            int prot = pd[i].flags;

            pa = base | (i << TARGET_PAGE_BITS);
            if (prot != data->prot) {
                rc = walk_memory_regions_end(data, pa, prot);
                if (rc != 0) {
                    return rc;
                }
            }
        }
    } else {
        void **pp = *lp;
        for (i = 0; i < L2_SIZE; ++i) {
            pa = base | ((abi_ulong)i <<
                (TARGET_PAGE_BITS + L2_BITS * level));
            rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
            if (rc != 0) {
                return rc;
            }
        }
    }

    return 0;
}

int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
{
    struct walk_memory_regions_data data;
    unsigned long i;

    data.fn = fn;
    data.priv = priv;
    data.start = -1ul;
    data.prot = 0;

    for (i = 0; i < V_L1_SIZE; i++) {
        int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
                                       V_L1_SHIFT / L2_BITS - 1, l1_map + i);
        if (rc != 0) {
            return rc;
        }
    }

    return walk_memory_regions_end(&data, 0, 0);
}

static int dump_region(void *priv, abi_ulong start,
    abi_ulong end, unsigned long prot)
{
    FILE *f = (FILE *)priv;

    (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
        " "TARGET_ABI_FMT_lx" %c%c%c\n",
        start, end, end - start,
        ((prot & PAGE_READ) ? 'r' : '-'),
        ((prot & PAGE_WRITE) ? 'w' : '-'),
        ((prot & PAGE_EXEC) ? 'x' : '-'));

    return (0);
}

/* dump memory mappings */
void page_dump(FILE *f)
{
    (void) fprintf(f, "%-8s %-8s %-8s %s\n",
            "start", "end", "size", "prot");
    walk_memory_regions(f, dump_region);
}

int page_get_flags(target_ulong address)
{
    PageDesc *p;

    p = page_find(address >> TARGET_PAGE_BITS);
    if (!p)
        return 0;
    return p->flags;
}

/* Modify the flags of a page and invalidate the code if necessary.
   The flag PAGE_WRITE_ORG is positioned automatically depending
   on PAGE_WRITE.  The mmap_lock should already be held.  */
void page_set_flags(target_ulong start, target_ulong end, int flags)
{
    target_ulong addr, len;

    /* This function should never be called with addresses outside the
       guest address space.  If this assert fires, it probably indicates
       a missing call to h2g_valid.  */
#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
    assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
#endif
    assert(start < end);

    start = start & TARGET_PAGE_MASK;
    end = TARGET_PAGE_ALIGN(end);

    if (flags & PAGE_WRITE) {
        flags |= PAGE_WRITE_ORG;
    }

    for (addr = start, len = end - start;
         len != 0;
         len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
        PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);

        /* If the write protection bit is set, then we invalidate
           the code inside.  */
        if (!(p->flags & PAGE_WRITE) &&
            (flags & PAGE_WRITE) &&
            p->first_tb) {
            tb_invalidate_phys_page(addr, 0, NULL);
        }
        p->flags = flags;
    }
}

int page_check_range(target_ulong start, target_ulong len, int flags)
{
    PageDesc *p;
    target_ulong end;
    target_ulong addr;

    /* This function should never be called with addresses outside the
       guest address space.  If this assert fires, it probably indicates
       a missing call to h2g_valid.  */
#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
    assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
#endif

    if (len == 0) {
        return 0;
    }
    if (start + len - 1 < start) {
        /* We've wrapped around.  */
        return -1;
    }

    end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
    start = start & TARGET_PAGE_MASK;

    for (addr = start, len = end - start;
         len != 0;
         len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
        p = page_find(addr >> TARGET_PAGE_BITS);
        if( !p )
            return -1;
        if( !(p->flags & PAGE_VALID) )
            return -1;

        if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
            return -1;
        if (flags & PAGE_WRITE) {
            if (!(p->flags & PAGE_WRITE_ORG))
                return -1;
            /* unprotect the page if it was put read-only because it
               contains translated code */
            if (!(p->flags & PAGE_WRITE)) {
                if (!page_unprotect(addr, 0, NULL))
                    return -1;
            }
            return 0;
        }
    }
    return 0;
}

/* called from signal handler: invalidate the code and unprotect the
   page. Return TRUE if the fault was successfully handled. */
int page_unprotect(target_ulong address, unsigned long pc, void *puc)
{
    unsigned int prot;
    PageDesc *p;
    target_ulong host_start, host_end, addr;

    /* Technically this isn't safe inside a signal handler.  However we
       know this only ever happens in a synchronous SEGV handler, so in
       practice it seems to be ok.  */
    mmap_lock();

    p = page_find(address >> TARGET_PAGE_BITS);
    if (!p) {
        mmap_unlock();
        return 0;
    }

    /* if the page was really writable, then we change its
       protection back to writable */
    if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
        host_start = address & qemu_host_page_mask;
        host_end = host_start + qemu_host_page_size;

        prot = 0;
        for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
            p = page_find(addr >> TARGET_PAGE_BITS);
            p->flags |= PAGE_WRITE;
            prot |= p->flags;

            /* and since the content will be modified, we must invalidate
               the corresponding translated code. */
            tb_invalidate_phys_page(addr, pc, puc);
#ifdef DEBUG_TB_CHECK
            tb_invalidate_check(addr);
#endif
        }
        mprotect((void *)g2h(host_start), qemu_host_page_size,
                 prot & PAGE_BITS);

        mmap_unlock();
        return 1;
    }
    mmap_unlock();
    return 0;
}

static inline void tlb_set_dirty(CPUState *env,
                                 unsigned long addr, target_ulong vaddr)
{
}
#endif /* defined(CONFIG_USER_ONLY) */

#if !defined(CONFIG_USER_ONLY)

#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
typedef struct subpage_t {
    target_phys_addr_t base;
    ram_addr_t sub_io_index[TARGET_PAGE_SIZE];
    ram_addr_t region_offset[TARGET_PAGE_SIZE];
} subpage_t;

static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
                             ram_addr_t memory, ram_addr_t region_offset);
static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
                                ram_addr_t orig_memory,
                                ram_addr_t region_offset);
#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
                      need_subpage)                                     \
    do {                                                                \
        if (addr > start_addr)                                          \
            start_addr2 = 0;                                            \
        else {                                                          \
            start_addr2 = start_addr & ~TARGET_PAGE_MASK;               \
            if (start_addr2 > 0)                                        \
                need_subpage = 1;                                       \
        }                                                               \
                                                                        \
        if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE)        \
            end_addr2 = TARGET_PAGE_SIZE - 1;                           \
        else {                                                          \
            end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
            if (end_addr2 < TARGET_PAGE_SIZE - 1)                       \
                need_subpage = 1;                                       \
        }                                                               \
    } while (0)

/* register physical memory.
   For RAM, 'size' must be a multiple of the target page size.
   If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
   io memory page.  The address used when calling the IO function is
   the offset from the start of the region, plus region_offset.  Both
   start_addr and region_offset are rounded down to a page boundary
   before calculating this offset.  This should not be a problem unless
   the low bits of start_addr and region_offset differ.  */
void cpu_register_physical_memory_log(target_phys_addr_t start_addr,
                                         ram_addr_t size,
                                         ram_addr_t phys_offset,
                                         ram_addr_t region_offset,
                                         bool log_dirty)
{
    target_phys_addr_t addr, end_addr;
    PhysPageDesc *p;
    CPUState *env;
    ram_addr_t orig_size = size;
    subpage_t *subpage;

    assert(size);

    if (phys_offset == IO_MEM_UNASSIGNED) {
        region_offset = start_addr;
    }
    region_offset &= TARGET_PAGE_MASK;
    size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
    end_addr = start_addr + (target_phys_addr_t)size;

    addr = start_addr;
    do {
        p = phys_page_find(addr >> TARGET_PAGE_BITS);
        if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
            ram_addr_t orig_memory = p->phys_offset;
            target_phys_addr_t start_addr2, end_addr2;
            int need_subpage = 0;

            CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
                          need_subpage);
            if (need_subpage) {
                if (!(orig_memory & IO_MEM_SUBPAGE)) {
                    subpage = subpage_init((addr & TARGET_PAGE_MASK),
                                           &p->phys_offset, orig_memory,
                                           p->region_offset);
                } else {
                    subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
                                            >> IO_MEM_SHIFT];
                }
                subpage_register(subpage, start_addr2, end_addr2, phys_offset,
                                 region_offset);
                p->region_offset = 0;
            } else {
                p->phys_offset = phys_offset;
                if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
                    (phys_offset & IO_MEM_ROMD))
                    phys_offset += TARGET_PAGE_SIZE;
            }
        } else {
            p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
            p->phys_offset = phys_offset;
            p->region_offset = region_offset;
            if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
                (phys_offset & IO_MEM_ROMD)) {
                phys_offset += TARGET_PAGE_SIZE;
            } else {
                target_phys_addr_t start_addr2, end_addr2;
                int need_subpage = 0;

                CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
                              end_addr2, need_subpage);

                if (need_subpage) {
                    subpage = subpage_init((addr & TARGET_PAGE_MASK),
                                           &p->phys_offset, IO_MEM_UNASSIGNED,
                                           addr & TARGET_PAGE_MASK);
                    subpage_register(subpage, start_addr2, end_addr2,
                                     phys_offset, region_offset);
                    p->region_offset = 0;
                }
            }
        }
        region_offset += TARGET_PAGE_SIZE;
        addr += TARGET_PAGE_SIZE;
    } while (addr != end_addr);

    /* since each CPU stores ram addresses in its TLB cache, we must
       reset the modified entries */
    /* XXX: slow ! */
    for(env = first_cpu; env != NULL; env = env->next_cpu) {
        tlb_flush(env, 1);
    }
}

void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
{
    if (kvm_enabled())
        kvm_coalesce_mmio_region(addr, size);
}

void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
{
    if (kvm_enabled())
        kvm_uncoalesce_mmio_region(addr, size);
}

void qemu_flush_coalesced_mmio_buffer(void)
{
    if (kvm_enabled())
        kvm_flush_coalesced_mmio_buffer();
}

#if defined(__linux__) && !defined(TARGET_S390X)

#include <sys/vfs.h>

#define HUGETLBFS_MAGIC       0x958458f6

static long gethugepagesize(const char *path)
{
    struct statfs fs;
    int ret;

    do {
        ret = statfs(path, &fs);
    } while (ret != 0 && errno == EINTR);

    if (ret != 0) {
        perror(path);
        return 0;
    }

    if (fs.f_type != HUGETLBFS_MAGIC)
        fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);

    return fs.f_bsize;
}

static void *file_ram_alloc(RAMBlock *block,
                            ram_addr_t memory,
                            const char *path)
{
    char *filename;
    void *area;
    int fd;
#ifdef MAP_POPULATE
    int flags;
#endif
    unsigned long hpagesize;

    hpagesize = gethugepagesize(path);
    if (!hpagesize) {
        return NULL;
    }

    if (memory < hpagesize) {
        return NULL;
    }

    if (kvm_enabled() && !kvm_has_sync_mmu()) {
        fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
        return NULL;
    }

    if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
        return NULL;
    }

    fd = mkstemp(filename);
    if (fd < 0) {
        perror("unable to create backing store for hugepages");
        free(filename);
        return NULL;
    }
    unlink(filename);
    free(filename);

    memory = (memory+hpagesize-1) & ~(hpagesize-1);

    /*
     * ftruncate is not supported by hugetlbfs in older
     * hosts, so don't bother bailing out on errors.
     * If anything goes wrong with it under other filesystems,
     * mmap will fail.
     */
    if (ftruncate(fd, memory))
        perror("ftruncate");

#ifdef MAP_POPULATE
    /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
     * MAP_PRIVATE is requested.  For mem_prealloc we mmap as MAP_SHARED
     * to sidestep this quirk.
     */
    flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
    area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
#else
    area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
#endif
    if (area == MAP_FAILED) {
        perror("file_ram_alloc: can't mmap RAM pages");
        close(fd);
        return (NULL);
    }
    block->fd = fd;
    return area;
}
#endif

static ram_addr_t find_ram_offset(ram_addr_t size)
{
    RAMBlock *block, *next_block;
    ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;

    if (QLIST_EMPTY(&ram_list.blocks))
        return 0;

    QLIST_FOREACH(block, &ram_list.blocks, next) {
        ram_addr_t end, next = RAM_ADDR_MAX;

        end = block->offset + block->length;

        QLIST_FOREACH(next_block, &ram_list.blocks, next) {
            if (next_block->offset >= end) {
                next = MIN(next, next_block->offset);
            }
        }
        if (next - end >= size && next - end < mingap) {
            offset = end;
            mingap = next - end;
        }
    }

    if (offset == RAM_ADDR_MAX) {
        fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
                (uint64_t)size);
        abort();
    }

    return offset;
}

static ram_addr_t last_ram_offset(void)
{
    RAMBlock *block;
    ram_addr_t last = 0;

    QLIST_FOREACH(block, &ram_list.blocks, next)
        last = MAX(last, block->offset + block->length);

    return last;
}

ram_addr_t qemu_ram_alloc_from_ptr(DeviceState *dev, const char *name,
                                   ram_addr_t size, void *host,
                                   MemoryRegion *mr)
{
    RAMBlock *new_block, *block;

    size = TARGET_PAGE_ALIGN(size);
    new_block = g_malloc0(sizeof(*new_block));

    if (dev && dev->parent_bus && dev->parent_bus->info->get_dev_path) {
        char *id = dev->parent_bus->info->get_dev_path(dev);
        if (id) {
            snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
            g_free(id);
        }
    }
    pstrcat(new_block->idstr, sizeof(new_block->idstr), name);

    QLIST_FOREACH(block, &ram_list.blocks, next) {
        if (!strcmp(block->idstr, new_block->idstr)) {
            fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
                    new_block->idstr);
            abort();
        }
    }

    new_block->offset = find_ram_offset(size);
    if (host) {
        new_block->host = host;
        new_block->flags |= RAM_PREALLOC_MASK;
    } else {
        if (mem_path) {
#if defined (__linux__) && !defined(TARGET_S390X)
            new_block->host = file_ram_alloc(new_block, size, mem_path);
            if (!new_block->host) {
                new_block->host = qemu_vmalloc(size);
                qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
            }
#else
            fprintf(stderr, "-mem-path option unsupported\n");
            exit(1);
#endif
        } else {
#if defined(TARGET_S390X) && defined(CONFIG_KVM)
            /* S390 KVM requires the topmost vma of the RAM to be smaller than
               an system defined value, which is at least 256GB. Larger systems
               have larger values. We put the guest between the end of data
               segment (system break) and this value. We use 32GB as a base to
               have enough room for the system break to grow. */
            new_block->host = mmap((void*)0x800000000, size,
                                   PROT_EXEC|PROT_READ|PROT_WRITE,
                                   MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
            if (new_block->host == MAP_FAILED) {
                fprintf(stderr, "Allocating RAM failed\n");
                abort();
            }
#else
            if (xen_enabled()) {
                xen_ram_alloc(new_block->offset, size, mr);
            } else {
                new_block->host = qemu_vmalloc(size);
            }
#endif
            qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
        }
    }
    new_block->length = size;

    QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next);

    ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
                                       last_ram_offset() >> TARGET_PAGE_BITS);
    memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
           0xff, size >> TARGET_PAGE_BITS);

    if (kvm_enabled())
        kvm_setup_guest_memory(new_block->host, size);

    return new_block->offset;
}

ram_addr_t qemu_ram_alloc(DeviceState *dev, const char *name, ram_addr_t size,
                          MemoryRegion *mr)
{
    return qemu_ram_alloc_from_ptr(dev, name, size, NULL, mr);
}

void qemu_ram_free_from_ptr(ram_addr_t addr)
{
    RAMBlock *block;

    QLIST_FOREACH(block, &ram_list.blocks, next) {
        if (addr == block->offset) {
            QLIST_REMOVE(block, next);
            g_free(block);
            return;
        }
    }
}

void qemu_ram_free(ram_addr_t addr)
{
    RAMBlock *block;

    QLIST_FOREACH(block, &ram_list.blocks, next) {
        if (addr == block->offset) {
            QLIST_REMOVE(block, next);
            if (block->flags & RAM_PREALLOC_MASK) {
                ;
            } else if (mem_path) {
#if defined (__linux__) && !defined(TARGET_S390X)
                if (block->fd) {
                    munmap(block->host, block->length);
                    close(block->fd);
                } else {
                    qemu_vfree(block->host);
                }
#else
                abort();
#endif
            } else {
#if defined(TARGET_S390X) && defined(CONFIG_KVM)
                munmap(block->host, block->length);
#else
                if (xen_enabled()) {
                    xen_invalidate_map_cache_entry(block->host);
                } else {
                    qemu_vfree(block->host);
                }
#endif
            }
            g_free(block);
            return;
        }
    }

}

#ifndef _WIN32
void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
{
    RAMBlock *block;
    ram_addr_t offset;
    int flags;
    void *area, *vaddr;

    QLIST_FOREACH(block, &ram_list.blocks, next) {
        offset = addr - block->offset;
        if (offset < block->length) {
            vaddr = block->host + offset;
            if (block->flags & RAM_PREALLOC_MASK) {
                ;
            } else {
                flags = MAP_FIXED;
                munmap(vaddr, length);
                if (mem_path) {
#if defined(__linux__) && !defined(TARGET_S390X)
                    if (block->fd) {
#ifdef MAP_POPULATE
                        flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
                            MAP_PRIVATE;
#else
                        flags |= MAP_PRIVATE;
#endif
                        area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
                                    flags, block->fd, offset);
                    } else {
                        flags |= MAP_PRIVATE | MAP_ANONYMOUS;
                        area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
                                    flags, -1, 0);
                    }
#else
                    abort();
#endif
                } else {
#if defined(TARGET_S390X) && defined(CONFIG_KVM)
                    flags |= MAP_SHARED | MAP_ANONYMOUS;
                    area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
                                flags, -1, 0);
#else
                    flags |= MAP_PRIVATE | MAP_ANONYMOUS;
                    area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
                                flags, -1, 0);
#endif
                }
                if (area != vaddr) {
                    fprintf(stderr, "Could not remap addr: "
                            RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
                            length, addr);
                    exit(1);
                }
                qemu_madvise(vaddr, length, QEMU_MADV_MERGEABLE);
            }
            return;
        }
    }
}
#endif /* !_WIN32 */

/* Return a host pointer to ram allocated with qemu_ram_alloc.
   With the exception of the softmmu code in this file, this should
   only be used for local memory (e.g. video ram) that the device owns,
   and knows it isn't going to access beyond the end of the block.

   It should not be used for general purpose DMA.
   Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
 */
void *qemu_get_ram_ptr(ram_addr_t addr)
{
    RAMBlock *block;

    QLIST_FOREACH(block, &ram_list.blocks, next) {
        if (addr - block->offset < block->length) {
            /* Move this entry to to start of the list.  */
            if (block != QLIST_FIRST(&ram_list.blocks)) {
                QLIST_REMOVE(block, next);
                QLIST_INSERT_HEAD(&ram_list.blocks, block, next);
            }
            if (xen_enabled()) {
                /* We need to check if the requested address is in the RAM
                 * because we don't want to map the entire memory in QEMU.
                 * In that case just map until the end of the page.
                 */
                if (block->offset == 0) {
                    return xen_map_cache(addr, 0, 0);
                } else if (block->host == NULL) {
                    block->host =
                        xen_map_cache(block->offset, block->length, 1);
                }
            }
            return block->host + (addr - block->offset);
        }
    }

    fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
    abort();

    return NULL;
}

/* Return a host pointer to ram allocated with qemu_ram_alloc.
 * Same as qemu_get_ram_ptr but avoid reordering ramblocks.
 */
void *qemu_safe_ram_ptr(ram_addr_t addr)
{
    RAMBlock *block;

    QLIST_FOREACH(block, &ram_list.blocks, next) {
        if (addr - block->offset < block->length) {
            if (xen_enabled()) {
                /* We need to check if the requested address is in the RAM
                 * because we don't want to map the entire memory in QEMU.
                 * In that case just map until the end of the page.
                 */
                if (block->offset == 0) {
                    return xen_map_cache(addr, 0, 0);
                } else if (block->host == NULL) {
                    block->host =
                        xen_map_cache(block->offset, block->length, 1);
                }
            }
            return block->host + (addr - block->offset);
        }
    }

    fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
    abort();

    return NULL;
}

/* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
 * but takes a size argument */
void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size)
{
    if (*size == 0) {
        return NULL;
    }
    if (xen_enabled()) {
        return xen_map_cache(addr, *size, 1);
    } else {
        RAMBlock *block;

        QLIST_FOREACH(block, &ram_list.blocks, next) {
            if (addr - block->offset < block->length) {
                if (addr - block->offset + *size > block->length)
                    *size = block->length - addr + block->offset;
                return block->host + (addr - block->offset);
            }
        }

        fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
        abort();
    }
}

void qemu_put_ram_ptr(void *addr)
{
    trace_qemu_put_ram_ptr(addr);
}

int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
{
    RAMBlock *block;
    uint8_t *host = ptr;

    if (xen_enabled()) {
        *ram_addr = xen_ram_addr_from_mapcache(ptr);
        return 0;
    }

    QLIST_FOREACH(block, &ram_list.blocks, next) {
        /* This case append when the block is not mapped. */
        if (block->host == NULL) {
            continue;
        }
        if (host - block->host < block->length) {
            *ram_addr = block->offset + (host - block->host);
            return 0;
        }
    }

    return -1;
}

/* Some of the softmmu routines need to translate from a host pointer
   (typically a TLB entry) back to a ram offset.  */
ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
{
    ram_addr_t ram_addr;

    if (qemu_ram_addr_from_host(ptr, &ram_addr)) {
        fprintf(stderr, "Bad ram pointer %p\n", ptr);
        abort();
    }
    return ram_addr;
}

static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
{
#ifdef DEBUG_UNASSIGNED
    printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
#endif
#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
    cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, 1);
#endif
    return 0;
}

static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
{
#ifdef DEBUG_UNASSIGNED
    printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
#endif
#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
    cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, 2);
#endif
    return 0;
}

static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
{
#ifdef DEBUG_UNASSIGNED
    printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
#endif
#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
    cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, 4);
#endif
    return 0;
}

static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
{
#ifdef DEBUG_UNASSIGNED
    printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
#endif
#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
    cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, 1);
#endif
}

static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
{
#ifdef DEBUG_UNASSIGNED
    printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
#endif
#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
    cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, 2);
#endif
}

static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
{
#ifdef DEBUG_UNASSIGNED
    printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
#endif
#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
    cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, 4);
#endif
}

static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
    unassigned_mem_readb,
    unassigned_mem_readw,
    unassigned_mem_readl,
};

static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
    unassigned_mem_writeb,
    unassigned_mem_writew,
    unassigned_mem_writel,
};

static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
                                uint32_t val)
{
    int dirty_flags;
    dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
    if (!(dirty_flags & CODE_DIRTY_FLAG)) {
#if !defined(CONFIG_USER_ONLY)
        tb_invalidate_phys_page_fast(ram_addr, 1);
        dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
#endif
    }
    stb_p(qemu_get_ram_ptr(ram_addr), val);
    dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
    cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
    /* we remove the notdirty callback only if the code has been
       flushed */
    if (dirty_flags == 0xff)
        tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
}

static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
                                uint32_t val)
{
    int dirty_flags;
    dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
    if (!(dirty_flags & CODE_DIRTY_FLAG)) {
#if !defined(CONFIG_USER_ONLY)
        tb_invalidate_phys_page_fast(ram_addr, 2);
        dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
#endif
    }
    stw_p(qemu_get_ram_ptr(ram_addr), val);
    dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
    cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
    /* we remove the notdirty callback only if the code has been
       flushed */
    if (dirty_flags == 0xff)
        tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
}

static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
                                uint32_t val)
{
    int dirty_flags;
    dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
    if (!(dirty_flags & CODE_DIRTY_FLAG)) {
#if !defined(CONFIG_USER_ONLY)
        tb_invalidate_phys_page_fast(ram_addr, 4);
        dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
#endif
    }
    stl_p(qemu_get_ram_ptr(ram_addr), val);
    dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
    cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
    /* we remove the notdirty callback only if the code has been
       flushed */
    if (dirty_flags == 0xff)
        tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
}

static CPUReadMemoryFunc * const error_mem_read[3] = {
    NULL, /* never used */
    NULL, /* never used */
    NULL, /* never used */
};

static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
    notdirty_mem_writeb,
    notdirty_mem_writew,
    notdirty_mem_writel,
};

/* Generate a debug exception if a watchpoint has been hit.  */
static void check_watchpoint(int offset, int len_mask, int flags)
{
    CPUState *env = cpu_single_env;
    target_ulong pc, cs_base;
    TranslationBlock *tb;
    target_ulong vaddr;
    CPUWatchpoint *wp;
    int cpu_flags;

    if (env->watchpoint_hit) {
        /* We re-entered the check after replacing the TB. Now raise
         * the debug interrupt so that is will trigger after the
         * current instruction. */
        cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
        return;
    }
    vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
    QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
        if ((vaddr == (wp->vaddr & len_mask) ||
             (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
            wp->flags |= BP_WATCHPOINT_HIT;
            if (!env->watchpoint_hit) {
                env->watchpoint_hit = wp;
                tb = tb_find_pc(env->mem_io_pc);
                if (!tb) {
                    cpu_abort(env, "check_watchpoint: could not find TB for "
                              "pc=%p", (void *)env->mem_io_pc);
                }
                cpu_restore_state(tb, env, env->mem_io_pc);
                tb_phys_invalidate(tb, -1);
                if (wp->flags & BP_STOP_BEFORE_ACCESS) {
                    env->exception_index = EXCP_DEBUG;
                } else {
                    cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
                    tb_gen_code(env, pc, cs_base, cpu_flags, 1);
                }
                cpu_resume_from_signal(env, NULL);
            }
        } else {
            wp->flags &= ~BP_WATCHPOINT_HIT;
        }
    }
}

/* Watchpoint access routines.  Watchpoints are inserted using TLB tricks,
   so these check for a hit then pass through to the normal out-of-line
   phys routines.  */
static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
{
    check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
    return ldub_phys(addr);
}

static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
{
    check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
    return lduw_phys(addr);
}

static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
{
    check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
    return ldl_phys(addr);
}

static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
                             uint32_t val)
{
    check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
    stb_phys(addr, val);
}

static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
                             uint32_t val)
{
    check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
    stw_phys(addr, val);
}

static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
                             uint32_t val)
{
    check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
    stl_phys(addr, val);
}

static CPUReadMemoryFunc * const watch_mem_read[3] = {
    watch_mem_readb,
    watch_mem_readw,
    watch_mem_readl,
};

static CPUWriteMemoryFunc * const watch_mem_write[3] = {
    watch_mem_writeb,
    watch_mem_writew,
    watch_mem_writel,
};

static inline uint32_t subpage_readlen (subpage_t *mmio,
                                        target_phys_addr_t addr,
                                        unsigned int len)
{
    unsigned int idx = SUBPAGE_IDX(addr);
#if defined(DEBUG_SUBPAGE)
    printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
           mmio, len, addr, idx);
#endif

    addr += mmio->region_offset[idx];
    idx = mmio->sub_io_index[idx];
    return io_mem_read[idx][len](io_mem_opaque[idx], addr);
}

static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
                                     uint32_t value, unsigned int len)
{
    unsigned int idx = SUBPAGE_IDX(addr);
#if defined(DEBUG_SUBPAGE)
    printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n",
           __func__, mmio, len, addr, idx, value);
#endif

    addr += mmio->region_offset[idx];
    idx = mmio->sub_io_index[idx];
    io_mem_write[idx][len](io_mem_opaque[idx], addr, value);
}

static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
{
    return subpage_readlen(opaque, addr, 0);
}

static void subpage_writeb (void *opaque, target_phys_addr_t addr,
                            uint32_t value)
{
    subpage_writelen(opaque, addr, value, 0);
}

static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
{
    return subpage_readlen(opaque, addr, 1);
}

static void subpage_writew (void *opaque, target_phys_addr_t addr,
                            uint32_t value)
{
    subpage_writelen(opaque, addr, value, 1);
}

static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
{
    return subpage_readlen(opaque, addr, 2);
}

static void subpage_writel (void *opaque, target_phys_addr_t addr,
                            uint32_t value)
{
    subpage_writelen(opaque, addr, value, 2);
}

static CPUReadMemoryFunc * const subpage_read[] = {
    &subpage_readb,
    &subpage_readw,
    &subpage_readl,
};

static CPUWriteMemoryFunc * const subpage_write[] = {
    &subpage_writeb,
    &subpage_writew,
    &subpage_writel,
};

static uint32_t subpage_ram_readb(void *opaque, target_phys_addr_t addr)
{
    ram_addr_t raddr = addr;
    void *ptr = qemu_get_ram_ptr(raddr);
    return ldub_p(ptr);
}

static void subpage_ram_writeb(void *opaque, target_phys_addr_t addr,
                               uint32_t value)
{
    ram_addr_t raddr = addr;
    void *ptr = qemu_get_ram_ptr(raddr);
    stb_p(ptr, value);
}

static uint32_t subpage_ram_readw(void *opaque, target_phys_addr_t addr)
{
    ram_addr_t raddr = addr;
    void *ptr = qemu_get_ram_ptr(raddr);
    return lduw_p(ptr);
}

static void subpage_ram_writew(void *opaque, target_phys_addr_t addr,
                               uint32_t value)
{
    ram_addr_t raddr = addr;
    void *ptr = qemu_get_ram_ptr(raddr);
    stw_p(ptr, value);
}

static uint32_t subpage_ram_readl(void *opaque, target_phys_addr_t addr)
{
    ram_addr_t raddr = addr;
    void *ptr = qemu_get_ram_ptr(raddr);
    return ldl_p(ptr);
}

static void subpage_ram_writel(void *opaque, target_phys_addr_t addr,
                               uint32_t value)
{
    ram_addr_t raddr = addr;
    void *ptr = qemu_get_ram_ptr(raddr);
    stl_p(ptr, value);
}

static CPUReadMemoryFunc * const subpage_ram_read[] = {
    &subpage_ram_readb,
    &subpage_ram_readw,
    &subpage_ram_readl,
};

static CPUWriteMemoryFunc * const subpage_ram_write[] = {
    &subpage_ram_writeb,
    &subpage_ram_writew,
    &subpage_ram_writel,
};

static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
                             ram_addr_t memory, ram_addr_t region_offset)
{
    int idx, eidx;

    if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
        return -1;
    idx = SUBPAGE_IDX(start);
    eidx = SUBPAGE_IDX(end);
#if defined(DEBUG_SUBPAGE)
    printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
           mmio, start, end, idx, eidx, memory);
#endif
    if ((memory & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
        memory = IO_MEM_SUBPAGE_RAM;
    }
    memory = (memory >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
    for (; idx <= eidx; idx++) {
        mmio->sub_io_index[idx] = memory;
        mmio->region_offset[idx] = region_offset;
    }

    return 0;
}

static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
                                ram_addr_t orig_memory,
                                ram_addr_t region_offset)
{
    subpage_t *mmio;
    int subpage_memory;

    mmio = g_malloc0(sizeof(subpage_t));

    mmio->base = base;
    subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio,
                                            DEVICE_NATIVE_ENDIAN);
#if defined(DEBUG_SUBPAGE)
    printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
           mmio, base, TARGET_PAGE_SIZE, subpage_memory);
#endif
    *phys = subpage_memory | IO_MEM_SUBPAGE;
    subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, orig_memory, region_offset);

    return mmio;
}

static int get_free_io_mem_idx(void)
{
    int i;

    for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
        if (!io_mem_used[i]) {
            io_mem_used[i] = 1;
            return i;
        }
    fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
    return -1;
}

/*
 * Usually, devices operate in little endian mode. There are devices out
 * there that operate in big endian too. Each device gets byte swapped
 * mmio if plugged onto a CPU that does the other endianness.
 *
 * CPU          Device           swap?
 *
 * little       little           no
 * little       big              yes
 * big          little           yes
 * big          big              no
 */

typedef struct SwapEndianContainer {
    CPUReadMemoryFunc *read[3];
    CPUWriteMemoryFunc *write[3];
    void *opaque;
} SwapEndianContainer;

static uint32_t swapendian_mem_readb (void *opaque, target_phys_addr_t addr)
{
    uint32_t val;
    SwapEndianContainer *c = opaque;
    val = c->read[0](c->opaque, addr);
    return val;
}

static uint32_t swapendian_mem_readw(void *opaque, target_phys_addr_t addr)
{
    uint32_t val;
    SwapEndianContainer *c = opaque;
    val = bswap16(c->read[1](c->opaque, addr));
    return val;
}

static uint32_t swapendian_mem_readl(void *opaque, target_phys_addr_t addr)
{
    uint32_t val;
    SwapEndianContainer *c = opaque;
    val = bswap32(c->read[2](c->opaque, addr));
    return val;
}

static CPUReadMemoryFunc * const swapendian_readfn[3]={
    swapendian_mem_readb,
    swapendian_mem_readw,
    swapendian_mem_readl
};

static void swapendian_mem_writeb(void *opaque, target_phys_addr_t addr,
                                  uint32_t val)
{
    SwapEndianContainer *c = opaque;
    c->write[0](c->opaque, addr, val);
}

static void swapendian_mem_writew(void *opaque, target_phys_addr_t addr,
                                  uint32_t val)
{
    SwapEndianContainer *c = opaque;
    c->write[1](c->opaque, addr, bswap16(val));
}

static void swapendian_mem_writel(void *opaque, target_phys_addr_t addr,
                                  uint32_t val)
{
    SwapEndianContainer *c = opaque;
    c->write[2](c->opaque, addr, bswap32(val));
}

static CPUWriteMemoryFunc * const swapendian_writefn[3]={
    swapendian_mem_writeb,
    swapendian_mem_writew,
    swapendian_mem_writel
};

static void swapendian_init(int io_index)
{
    SwapEndianContainer *c = g_malloc(sizeof(SwapEndianContainer));
    int i;

    /* Swap mmio for big endian targets */
    c->opaque = io_mem_opaque[io_index];
    for (i = 0; i < 3; i++) {
        c->read[i] = io_mem_read[io_index][i];
        c->write[i] = io_mem_write[io_index][i];

        io_mem_read[io_index][i] = swapendian_readfn[i];
        io_mem_write[io_index][i] = swapendian_writefn[i];
    }
    io_mem_opaque[io_index] = c;
}

static void swapendian_del(int io_index)
{
    if (io_mem_read[io_index][0] == swapendian_readfn[0]) {
        g_free(io_mem_opaque[io_index]);
    }
}

/* mem_read and mem_write are arrays of functions containing the
   function to access byte (index 0), word (index 1) and dword (index
   2). Functions can be omitted with a NULL function pointer.
   If io_index is non zero, the corresponding io zone is
   modified. If it is zero, a new io zone is allocated. The return
   value can be used with cpu_register_physical_memory(). (-1) is
   returned if error. */
static int cpu_register_io_memory_fixed(int io_index,
                                        CPUReadMemoryFunc * const *mem_read,
                                        CPUWriteMemoryFunc * const *mem_write,
                                        void *opaque, enum device_endian endian)
{
    int i;

    if (io_index <= 0) {
        io_index = get_free_io_mem_idx();
        if (io_index == -1)
            return io_index;
    } else {
        io_index >>= IO_MEM_SHIFT;
        if (io_index >= IO_MEM_NB_ENTRIES)
            return -1;
    }

    for (i = 0; i < 3; ++i) {
        io_mem_read[io_index][i]
            = (mem_read[i] ? mem_read[i] : unassigned_mem_read[i]);
    }
    for (i = 0; i < 3; ++i) {
        io_mem_write[io_index][i]
            = (mem_write[i] ? mem_write[i] : unassigned_mem_write[i]);
    }
    io_mem_opaque[io_index] = opaque;

    switch (endian) {
    case DEVICE_BIG_ENDIAN:
#ifndef TARGET_WORDS_BIGENDIAN
        swapendian_init(io_index);
#endif
        break;
    case DEVICE_LITTLE_ENDIAN:
#ifdef TARGET_WORDS_BIGENDIAN
        swapendian_init(io_index);
#endif
        break;
    case DEVICE_NATIVE_ENDIAN:
    default:
        break;
    }

    return (io_index << IO_MEM_SHIFT);
}

int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
                           CPUWriteMemoryFunc * const *mem_write,
                           void *opaque, enum device_endian endian)
{
    return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque, endian);
}

void cpu_unregister_io_memory(int io_table_address)
{
    int i;
    int io_index = io_table_address >> IO_MEM_SHIFT;

    swapendian_del(io_index);

    for (i=0;i < 3; i++) {
        io_mem_read[io_index][i] = unassigned_mem_read[i];
        io_mem_write[io_index][i] = unassigned_mem_write[i];
    }
    io_mem_opaque[io_index] = NULL;
    io_mem_used[io_index] = 0;
}

static void io_mem_init(void)
{
    int i;

    cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read,
                                 unassigned_mem_write, NULL,
                                 DEVICE_NATIVE_ENDIAN);
    cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read,
                                 unassigned_mem_write, NULL,
                                 DEVICE_NATIVE_ENDIAN);
    cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read,
                                 notdirty_mem_write, NULL,
                                 DEVICE_NATIVE_ENDIAN);
    cpu_register_io_memory_fixed(IO_MEM_SUBPAGE_RAM, subpage_ram_read,
                                 subpage_ram_write, NULL,
                                 DEVICE_NATIVE_ENDIAN);
    for (i=0; i<5; i++)
        io_mem_used[i] = 1;

    io_mem_watch = cpu_register_io_memory(watch_mem_read,
                                          watch_mem_write, NULL,
                                          DEVICE_NATIVE_ENDIAN);
}

static void memory_map_init(void)
{
    system_memory = g_malloc(sizeof(*system_memory));
    memory_region_init(system_memory, "system", INT64_MAX);
    set_system_memory_map(system_memory);

    system_io = g_malloc(sizeof(*system_io));
    memory_region_init(system_io, "io", 65536);
    set_system_io_map(system_io);
}

MemoryRegion *get_system_memory(void)
{
    return system_memory;
}

MemoryRegion *get_system_io(void)
{
    return system_io;
}

#endif /* !defined(CONFIG_USER_ONLY) */

/* physical memory access (slow version, mainly for debug) */
#if defined(CONFIG_USER_ONLY)
int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
                        uint8_t *buf, int len, int is_write)
{
    int l, flags;
    target_ulong page;
    void * p;

    while (len > 0) {
        page = addr & TARGET_PAGE_MASK;
        l = (page + TARGET_PAGE_SIZE) - addr;
        if (l > len)
            l = len;
        flags = page_get_flags(page);
        if (!(flags & PAGE_VALID))
            return -1;
        if (is_write) {
            if (!(flags & PAGE_WRITE))
                return -1;
            /* XXX: this code should not depend on lock_user */
            if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
                return -1;
            memcpy(p, buf, l);
            unlock_user(p, addr, l);
        } else {
            if (!(flags & PAGE_READ))
                return -1;
            /* XXX: this code should not depend on lock_user */
            if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
                return -1;
            memcpy(buf, p, l);
            unlock_user(p, addr, 0);
        }
        len -= l;
        buf += l;
        addr += l;
    }
    return 0;
}

#else
void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
                            int len, int is_write)
{
    int l, io_index;
    uint8_t *ptr;
    uint32_t val;
    target_phys_addr_t page;
    ram_addr_t pd;
    PhysPageDesc *p;

    while (len > 0) {
        page = addr & TARGET_PAGE_MASK;
        l = (page + TARGET_PAGE_SIZE) - addr;
        if (l > len)
            l = len;
        p = phys_page_find(page >> TARGET_PAGE_BITS);
        if (!p) {
            pd = IO_MEM_UNASSIGNED;
        } else {
            pd = p->phys_offset;
        }

        if (is_write) {
            if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
                target_phys_addr_t addr1 = addr;
                io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
                if (p)
                    addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
                /* XXX: could force cpu_single_env to NULL to avoid
                   potential bugs */
                if (l >= 4 && ((addr1 & 3) == 0)) {
                    /* 32 bit write access */
                    val = ldl_p(buf);
                    io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
                    l = 4;
                } else if (l >= 2 && ((addr1 & 1) == 0)) {
                    /* 16 bit write access */
                    val = lduw_p(buf);
                    io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
                    l = 2;
                } else {
                    /* 8 bit write access */
                    val = ldub_p(buf);
                    io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
                    l = 1;
                }
            } else {
                ram_addr_t addr1;
                addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
                /* RAM case */
                ptr = qemu_get_ram_ptr(addr1);
                memcpy(ptr, buf, l);
                if (!cpu_physical_memory_is_dirty(addr1)) {
                    /* invalidate code */
                    tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
                    /* set dirty bit */
                    cpu_physical_memory_set_dirty_flags(
                        addr1, (0xff & ~CODE_DIRTY_FLAG));
                }
                qemu_put_ram_ptr(ptr);
            }
        } else {
            if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
                !(pd & IO_MEM_ROMD)) {
                target_phys_addr_t addr1 = addr;
                /* I/O case */
                io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
                if (p)
                    addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
                if (l >= 4 && ((addr1 & 3) == 0)) {
                    /* 32 bit read access */
                    val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
                    stl_p(buf, val);
                    l = 4;
                } else if (l >= 2 && ((addr1 & 1) == 0)) {
                    /* 16 bit read access */
                    val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
                    stw_p(buf, val);
                    l = 2;
                } else {
                    /* 8 bit read access */
                    val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
                    stb_p(buf, val);
                    l = 1;
                }
            } else {
                /* RAM case */
                ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
                memcpy(buf, ptr + (addr & ~TARGET_PAGE_MASK), l);
                qemu_put_ram_ptr(ptr);
            }
        }
        len -= l;
        buf += l;
        addr += l;
    }
}

/* used for ROM loading : can write in RAM and ROM */
void cpu_physical_memory_write_rom(target_phys_addr_t addr,
                                   const uint8_t *buf, int len)
{
    int l;
    uint8_t *ptr;
    target_phys_addr_t page;
    unsigned long pd;
    PhysPageDesc *p;

    while (len > 0) {
        page = addr & TARGET_PAGE_MASK;
        l = (page + TARGET_PAGE_SIZE) - addr;
        if (l > len)
            l = len;
        p = phys_page_find(page >> TARGET_PAGE_BITS);
        if (!p) {
            pd = IO_MEM_UNASSIGNED;
        } else {
            pd = p->phys_offset;
        }

        if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
            (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
            !(pd & IO_MEM_ROMD)) {
            /* do nothing */
        } else {
            unsigned long addr1;
            addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
            /* ROM/RAM case */
            ptr = qemu_get_ram_ptr(addr1);
            memcpy(ptr, buf, l);
            qemu_put_ram_ptr(ptr);
        }
        len -= l;
        buf += l;
        addr += l;
    }
}

typedef struct {
    void *buffer;
    target_phys_addr_t addr;
    target_phys_addr_t len;
} BounceBuffer;

static BounceBuffer bounce;

typedef struct MapClient {
    void *opaque;
    void (*callback)(void *opaque);
    QLIST_ENTRY(MapClient) link;
} MapClient;

static QLIST_HEAD(map_client_list, MapClient) map_client_list
    = QLIST_HEAD_INITIALIZER(map_client_list);

void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
{
    MapClient *client = g_malloc(sizeof(*client));

    client->opaque = opaque;
    client->callback = callback;
    QLIST_INSERT_HEAD(&map_client_list, client, link);
    return client;
}

void cpu_unregister_map_client(void *_client)
{
    MapClient *client = (MapClient *)_client;

    QLIST_REMOVE(client, link);
    g_free(client);
}

static void cpu_notify_map_clients(void)
{
    MapClient *client;

    while (!QLIST_EMPTY(&map_client_list)) {
        client = QLIST_FIRST(&map_client_list);
        client->callback(client->opaque);
        cpu_unregister_map_client(client);
    }
}

/* Map a physical memory region into a host virtual address.
 * May map a subset of the requested range, given by and returned in *plen.
 * May return NULL if resources needed to perform the mapping are exhausted.
 * Use only for reads OR writes - not for read-modify-write operations.
 * Use cpu_register_map_client() to know when retrying the map operation is
 * likely to succeed.
 */
void *cpu_physical_memory_map(target_phys_addr_t addr,
                              target_phys_addr_t *plen,
                              int is_write)
{
    target_phys_addr_t len = *plen;
    target_phys_addr_t todo = 0;
    int l;
    target_phys_addr_t page;
    unsigned long pd;
    PhysPageDesc *p;
    ram_addr_t raddr = RAM_ADDR_MAX;
    ram_addr_t rlen;
    void *ret;

    while (len > 0) {
        page = addr & TARGET_PAGE_MASK;
        l = (page + TARGET_PAGE_SIZE) - addr;
        if (l > len)
            l = len;
        p = phys_page_find(page >> TARGET_PAGE_BITS);
        if (!p) {
            pd = IO_MEM_UNASSIGNED;
        } else {
            pd = p->phys_offset;
        }

        if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
            if (todo || bounce.buffer) {
                break;
            }
            bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
            bounce.addr = addr;
            bounce.len = l;
            if (!is_write) {
                cpu_physical_memory_read(addr, bounce.buffer, l);
            }

            *plen = l;
            return bounce.buffer;
        }
        if (!todo) {
            raddr = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
        }

        len -= l;
        addr += l;
        todo += l;
    }
    rlen = todo;
    ret = qemu_ram_ptr_length(raddr, &rlen);
    *plen = rlen;
    return ret;
}

/* Unmaps a memory region previously mapped by cpu_physical_memory_map().
 * Will also mark the memory as dirty if is_write == 1.  access_len gives
 * the amount of memory that was actually read or written by the caller.
 */
void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
                               int is_write, target_phys_addr_t access_len)
{
    if (buffer != bounce.buffer) {
        if (is_write) {
            ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer);
            while (access_len) {
                unsigned l;
                l = TARGET_PAGE_SIZE;
                if (l > access_len)
                    l = access_len;
                if (!cpu_physical_memory_is_dirty(addr1)) {
                    /* invalidate code */
                    tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
                    /* set dirty bit */
                    cpu_physical_memory_set_dirty_flags(
                        addr1, (0xff & ~CODE_DIRTY_FLAG));
                }
                addr1 += l;
                access_len -= l;
            }
        }
        if (xen_enabled()) {
            xen_invalidate_map_cache_entry(buffer);
        }
        return;
    }
    if (is_write) {
        cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
    }
    qemu_vfree(bounce.buffer);
    bounce.buffer = NULL;
    cpu_notify_map_clients();
}

/* warning: addr must be aligned */
static inline uint32_t ldl_phys_internal(target_phys_addr_t addr,
                                         enum device_endian endian)
{
    int io_index;
    uint8_t *ptr;
    uint32_t val;
    unsigned long pd;
    PhysPageDesc *p;

    p = phys_page_find(addr >> TARGET_PAGE_BITS);
    if (!p) {
        pd = IO_MEM_UNASSIGNED;
    } else {
        pd = p->phys_offset;
    }

    if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
        !(pd & IO_MEM_ROMD)) {
        /* I/O case */
        io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
        if (p)
            addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
        val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
#if defined(TARGET_WORDS_BIGENDIAN)
        if (endian == DEVICE_LITTLE_ENDIAN) {
            val = bswap32(val);
        }
#else
        if (endian == DEVICE_BIG_ENDIAN) {
            val = bswap32(val);
        }
#endif
    } else {
        /* RAM case */
        ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
            (addr & ~TARGET_PAGE_MASK);
        switch (endian) {
        case DEVICE_LITTLE_ENDIAN:
            val = ldl_le_p(ptr);
            break;
        case DEVICE_BIG_ENDIAN:
            val = ldl_be_p(ptr);
            break;
        default:
            val = ldl_p(ptr);
            break;
        }
    }
    return val;
}

uint32_t ldl_phys(target_phys_addr_t addr)
{
    return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
}

uint32_t ldl_le_phys(target_phys_addr_t addr)
{
    return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
}

uint32_t ldl_be_phys(target_phys_addr_t addr)
{
    return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
}

/* warning: addr must be aligned */
static inline uint64_t ldq_phys_internal(target_phys_addr_t addr,
                                         enum device_endian endian)
{
    int io_index;
    uint8_t *ptr;
    uint64_t val;
    unsigned long pd;
    PhysPageDesc *p;

    p = phys_page_find(addr >> TARGET_PAGE_BITS);
    if (!p) {
        pd = IO_MEM_UNASSIGNED;
    } else {
        pd = p->phys_offset;
    }

    if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
        !(pd & IO_MEM_ROMD)) {
        /* I/O case */
        io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
        if (p)
            addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;

        /* XXX This is broken when device endian != cpu endian.
               Fix and add "endian" variable check */
#ifdef TARGET_WORDS_BIGENDIAN
        val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
        val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
#else
        val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
        val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
#endif
    } else {
        /* RAM case */
        ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
            (addr & ~TARGET_PAGE_MASK);
        switch (endian) {
        case DEVICE_LITTLE_ENDIAN:
            val = ldq_le_p(ptr);
            break;
        case DEVICE_BIG_ENDIAN:
            val = ldq_be_p(ptr);
            break;
        default:
            val = ldq_p(ptr);
            break;
        }
    }
    return val;
}

uint64_t ldq_phys(target_phys_addr_t addr)
{
    return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
}

uint64_t ldq_le_phys(target_phys_addr_t addr)
{
    return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
}

uint64_t ldq_be_phys(target_phys_addr_t addr)
{
    return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
}

/* XXX: optimize */
uint32_t ldub_phys(target_phys_addr_t addr)
{
    uint8_t val;
    cpu_physical_memory_read(addr, &val, 1);
    return val;
}

/* warning: addr must be aligned */
static inline uint32_t lduw_phys_internal(target_phys_addr_t addr,
                                          enum device_endian endian)
{
    int io_index;
    uint8_t *ptr;
    uint64_t val;
    unsigned long pd;
    PhysPageDesc *p;

    p = phys_page_find(addr >> TARGET_PAGE_BITS);
    if (!p) {
        pd = IO_MEM_UNASSIGNED;
    } else {
        pd = p->phys_offset;
    }

    if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
        !(pd & IO_MEM_ROMD)) {
        /* I/O case */
        io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
        if (p)
            addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
        val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
#if defined(TARGET_WORDS_BIGENDIAN)
        if (endian == DEVICE_LITTLE_ENDIAN) {
            val = bswap16(val);
        }
#else
        if (endian == DEVICE_BIG_ENDIAN) {
            val = bswap16(val);
        }
#endif
    } else {
        /* RAM case */
        ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
            (addr & ~TARGET_PAGE_MASK);
        switch (endian) {
        case DEVICE_LITTLE_ENDIAN:
            val = lduw_le_p(ptr);
            break;
        case DEVICE_BIG_ENDIAN:
            val = lduw_be_p(ptr);
            break;
        default:
            val = lduw_p(ptr);
            break;
        }
    }
    return val;
}

uint32_t lduw_phys(target_phys_addr_t addr)
{
    return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
}

uint32_t lduw_le_phys(target_phys_addr_t addr)
{
    return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
}

uint32_t lduw_be_phys(target_phys_addr_t addr)
{
    return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
}

/* warning: addr must be aligned. The ram page is not masked as dirty
   and the code inside is not invalidated. It is useful if the dirty
   bits are used to track modified PTEs */
void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
{
    int io_index;
    uint8_t *ptr;
    unsigned long pd;
    PhysPageDesc *p;

    p = phys_page_find(addr >> TARGET_PAGE_BITS);
    if (!p) {
        pd = IO_MEM_UNASSIGNED;
    } else {
        pd = p->phys_offset;
    }

    if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
        io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
        if (p)
            addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
        io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
    } else {
        unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
        ptr = qemu_get_ram_ptr(addr1);
        stl_p(ptr, val);

        if (unlikely(in_migration)) {
            if (!cpu_physical_memory_is_dirty(addr1)) {
                /* invalidate code */
                tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
                /* set dirty bit */
                cpu_physical_memory_set_dirty_flags(
                    addr1, (0xff & ~CODE_DIRTY_FLAG));
            }
        }
    }
}

void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
{
    int io_index;
    uint8_t *ptr;
    unsigned long pd;
    PhysPageDesc *p;

    p = phys_page_find(addr >> TARGET_PAGE_BITS);
    if (!p) {
        pd = IO_MEM_UNASSIGNED;
    } else {
        pd = p->phys_offset;
    }

    if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
        io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
        if (p)
            addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
#ifdef TARGET_WORDS_BIGENDIAN
        io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
        io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
#else
        io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
        io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
#endif
    } else {
        ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
            (addr & ~TARGET_PAGE_MASK);
        stq_p(ptr, val);
    }
}

/* warning: addr must be aligned */
static inline void stl_phys_internal(target_phys_addr_t addr, uint32_t val,
                                     enum device_endian endian)
{
    int io_index;
    uint8_t *ptr;
    unsigned long pd;
    PhysPageDesc *p;

    p = phys_page_find(addr >> TARGET_PAGE_BITS);
    if (!p) {
        pd = IO_MEM_UNASSIGNED;
    } else {
        pd = p->phys_offset;
    }

    if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
        io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
        if (p)
            addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
#if defined(TARGET_WORDS_BIGENDIAN)
        if (endian == DEVICE_LITTLE_ENDIAN) {
            val = bswap32(val);
        }
#else
        if (endian == DEVICE_BIG_ENDIAN) {
            val = bswap32(val);
        }
#endif
        io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
    } else {
        unsigned long addr1;
        addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
        /* RAM case */
        ptr = qemu_get_ram_ptr(addr1);
        switch (endian) {
        case DEVICE_LITTLE_ENDIAN:
            stl_le_p(ptr, val);
            break;
        case DEVICE_BIG_ENDIAN:
            stl_be_p(ptr, val);
            break;
        default:
            stl_p(ptr, val);
            break;
        }
        if (!cpu_physical_memory_is_dirty(addr1)) {
            /* invalidate code */
            tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
            /* set dirty bit */
            cpu_physical_memory_set_dirty_flags(addr1,
                (0xff & ~CODE_DIRTY_FLAG));
        }
    }
}

void stl_phys(target_phys_addr_t addr, uint32_t val)
{
    stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
}

void stl_le_phys(target_phys_addr_t addr, uint32_t val)
{
    stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
}

void stl_be_phys(target_phys_addr_t addr, uint32_t val)
{
    stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
}

/* XXX: optimize */
void stb_phys(target_phys_addr_t addr, uint32_t val)
{
    uint8_t v = val;
    cpu_physical_memory_write(addr, &v, 1);
}

/* warning: addr must be aligned */
static inline void stw_phys_internal(target_phys_addr_t addr, uint32_t val,
                                     enum device_endian endian)
{
    int io_index;
    uint8_t *ptr;
    unsigned long pd;
    PhysPageDesc *p;

    p = phys_page_find(addr >> TARGET_PAGE_BITS);
    if (!p) {
        pd = IO_MEM_UNASSIGNED;
    } else {
        pd = p->phys_offset;
    }

    if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
        io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
        if (p)
            addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
#if defined(TARGET_WORDS_BIGENDIAN)
        if (endian == DEVICE_LITTLE_ENDIAN) {
            val = bswap16(val);
        }
#else
        if (endian == DEVICE_BIG_ENDIAN) {
            val = bswap16(val);
        }
#endif
        io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
    } else {
        unsigned long addr1;
        addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
        /* RAM case */
        ptr = qemu_get_ram_ptr(addr1);
        switch (endian) {
        case DEVICE_LITTLE_ENDIAN:
            stw_le_p(ptr, val);
            break;
        case DEVICE_BIG_ENDIAN:
            stw_be_p(ptr, val);
            break;
        default:
            stw_p(ptr, val);
            break;
        }
        if (!cpu_physical_memory_is_dirty(addr1)) {
            /* invalidate code */
            tb_invalidate_phys_page_range(addr1, addr1 + 2, 0);
            /* set dirty bit */
            cpu_physical_memory_set_dirty_flags(addr1,
                (0xff & ~CODE_DIRTY_FLAG));
        }
    }
}

void stw_phys(target_phys_addr_t addr, uint32_t val)
{
    stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
}

void stw_le_phys(target_phys_addr_t addr, uint32_t val)
{
    stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
}

void stw_be_phys(target_phys_addr_t addr, uint32_t val)
{
    stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
}

/* XXX: optimize */
void stq_phys(target_phys_addr_t addr, uint64_t val)
{
    val = tswap64(val);
    cpu_physical_memory_write(addr, &val, 8);
}

void stq_le_phys(target_phys_addr_t addr, uint64_t val)
{
    val = cpu_to_le64(val);
    cpu_physical_memory_write(addr, &val, 8);
}

void stq_be_phys(target_phys_addr_t addr, uint64_t val)
{
    val = cpu_to_be64(val);
    cpu_physical_memory_write(addr, &val, 8);
}

/* virtual memory access for debug (includes writing to ROM) */
int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
                        uint8_t *buf, int len, int is_write)
{
    int l;
    target_phys_addr_t phys_addr;
    target_ulong page;

    while (len > 0) {
        page = addr & TARGET_PAGE_MASK;
        phys_addr = cpu_get_phys_page_debug(env, page);
        /* if no physical page mapped, return an error */
        if (phys_addr == -1)
            return -1;
        l = (page + TARGET_PAGE_SIZE) - addr;
        if (l > len)
            l = len;
        phys_addr += (addr & ~TARGET_PAGE_MASK);
        if (is_write)
            cpu_physical_memory_write_rom(phys_addr, buf, l);
        else
            cpu_physical_memory_rw(phys_addr, buf, l, is_write);
        len -= l;
        buf += l;
        addr += l;
    }
    return 0;
}
#endif

/* in deterministic execution mode, instructions doing device I/Os
   must be at the end of the TB */
void cpu_io_recompile(CPUState *env, void *retaddr)
{
    TranslationBlock *tb;
    uint32_t n, cflags;
    target_ulong pc, cs_base;
    uint64_t flags;

    tb = tb_find_pc((unsigned long)retaddr);
    if (!tb) {
        cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p", 
                  retaddr);
    }
    n = env->icount_decr.u16.low + tb->icount;
    cpu_restore_state(tb, env, (unsigned long)retaddr);
    /* Calculate how many instructions had been executed before the fault
       occurred.  */
    n = n - env->icount_decr.u16.low;
    /* Generate a new TB ending on the I/O insn.  */
    n++;
    /* On MIPS and SH, delay slot instructions can only be restarted if
       they were already the first instruction in the TB.  If this is not
       the first instruction in a TB then re-execute the preceding
       branch.  */
#if defined(TARGET_MIPS)
    if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
        env->active_tc.PC -= 4;
        env->icount_decr.u16.low++;
        env->hflags &= ~MIPS_HFLAG_BMASK;
    }
#elif defined(TARGET_SH4)
    if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
            && n > 1) {
        env->pc -= 2;
        env->icount_decr.u16.low++;
        env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
    }
#endif
    /* This should never happen.  */
    if (n > CF_COUNT_MASK)
        cpu_abort(env, "TB too big during recompile");

    cflags = n | CF_LAST_IO;
    pc = tb->pc;
    cs_base = tb->cs_base;
    flags = tb->flags;
    tb_phys_invalidate(tb, -1);
    /* FIXME: In theory this could raise an exception.  In practice
       we have already translated the block once so it's probably ok.  */
    tb_gen_code(env, pc, cs_base, flags, cflags);
    /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
       the first in the TB) then we end up generating a whole new TB and
       repeating the fault, which is horribly inefficient.
       Better would be to execute just this insn uncached, or generate a
       second new TB.  */
    cpu_resume_from_signal(env, NULL);
}

#if !defined(CONFIG_USER_ONLY)

void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
{
    int i, target_code_size, max_target_code_size;
    int direct_jmp_count, direct_jmp2_count, cross_page;
    TranslationBlock *tb;

    target_code_size = 0;
    max_target_code_size = 0;
    cross_page = 0;
    direct_jmp_count = 0;
    direct_jmp2_count = 0;
    for(i = 0; i < nb_tbs; i++) {
        tb = &tbs[i];
        target_code_size += tb->size;
        if (tb->size > max_target_code_size)
            max_target_code_size = tb->size;
        if (tb->page_addr[1] != -1)
            cross_page++;
        if (tb->tb_next_offset[0] != 0xffff) {
            direct_jmp_count++;
            if (tb->tb_next_offset[1] != 0xffff) {
                direct_jmp2_count++;
            }
        }
    }
    /* XXX: avoid using doubles ? */
    cpu_fprintf(f, "Translation buffer state:\n");
    cpu_fprintf(f, "gen code size       %td/%ld\n",
                code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
    cpu_fprintf(f, "TB count            %d/%d\n", 
                nb_tbs, code_gen_max_blocks);
    cpu_fprintf(f, "TB avg target size  %d max=%d bytes\n",
                nb_tbs ? target_code_size / nb_tbs : 0,
                max_target_code_size);
    cpu_fprintf(f, "TB avg host size    %td bytes (expansion ratio: %0.1f)\n",
                nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
                target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
    cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
            cross_page,
            nb_tbs ? (cross_page * 100) / nb_tbs : 0);
    cpu_fprintf(f, "direct jump count   %d (%d%%) (2 jumps=%d %d%%)\n",
                direct_jmp_count,
                nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
                direct_jmp2_count,
                nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
    cpu_fprintf(f, "\nStatistics:\n");
    cpu_fprintf(f, "TB flush count      %d\n", tb_flush_count);
    cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
    cpu_fprintf(f, "TLB flush count     %d\n", tlb_flush_count);
    tcg_dump_info(f, cpu_fprintf);
}

#define MMUSUFFIX _cmmu
#undef GETPC
#define GETPC() NULL
#define env cpu_single_env
#define SOFTMMU_CODE_ACCESS

#define SHIFT 0
#include "softmmu_template.h"

#define SHIFT 1
#include "softmmu_template.h"

#define SHIFT 2
#include "softmmu_template.h"

#define SHIFT 3
#include "softmmu_template.h"

#undef env

#endif