diff options
Diffstat (limited to 'target/arm/translate-a64.c')
-rw-r--r-- | target/arm/translate-a64.c | 11430 |
1 files changed, 11430 insertions, 0 deletions
diff --git a/target/arm/translate-a64.c b/target/arm/translate-a64.c new file mode 100644 index 0000000000..6dc27a6115 --- /dev/null +++ b/target/arm/translate-a64.c @@ -0,0 +1,11430 @@ +/* + * AArch64 translation + * + * Copyright (c) 2013 Alexander Graf <agraf@suse.de> + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, see <http://www.gnu.org/licenses/>. + */ +#include "qemu/osdep.h" + +#include "cpu.h" +#include "exec/exec-all.h" +#include "tcg-op.h" +#include "qemu/log.h" +#include "arm_ldst.h" +#include "translate.h" +#include "internals.h" +#include "qemu/host-utils.h" + +#include "exec/semihost.h" +#include "exec/gen-icount.h" + +#include "exec/helper-proto.h" +#include "exec/helper-gen.h" +#include "exec/log.h" + +#include "trace-tcg.h" + +static TCGv_i64 cpu_X[32]; +static TCGv_i64 cpu_pc; + +/* Load/store exclusive handling */ +static TCGv_i64 cpu_exclusive_high; +static TCGv_i64 cpu_reg(DisasContext *s, int reg); + +static const char *regnames[] = { + "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", + "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", + "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", + "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp" +}; + +enum a64_shift_type { + A64_SHIFT_TYPE_LSL = 0, + A64_SHIFT_TYPE_LSR = 1, + A64_SHIFT_TYPE_ASR = 2, + A64_SHIFT_TYPE_ROR = 3 +}; + +/* Table based decoder typedefs - used when the relevant bits for decode + * are too awkwardly scattered across the instruction (eg SIMD). + */ +typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn); + +typedef struct AArch64DecodeTable { + uint32_t pattern; + uint32_t mask; + AArch64DecodeFn *disas_fn; +} AArch64DecodeTable; + +/* Function prototype for gen_ functions for calling Neon helpers */ +typedef void NeonGenOneOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32); +typedef void NeonGenTwoOpFn(TCGv_i32, TCGv_i32, TCGv_i32); +typedef void NeonGenTwoOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32); +typedef void NeonGenTwo64OpFn(TCGv_i64, TCGv_i64, TCGv_i64); +typedef void NeonGenTwo64OpEnvFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i64); +typedef void NeonGenNarrowFn(TCGv_i32, TCGv_i64); +typedef void NeonGenNarrowEnvFn(TCGv_i32, TCGv_ptr, TCGv_i64); +typedef void NeonGenWidenFn(TCGv_i64, TCGv_i32); +typedef void NeonGenTwoSingleOPFn(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); +typedef void NeonGenTwoDoubleOPFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr); +typedef void NeonGenOneOpFn(TCGv_i64, TCGv_i64); +typedef void CryptoTwoOpEnvFn(TCGv_ptr, TCGv_i32, TCGv_i32); +typedef void CryptoThreeOpEnvFn(TCGv_ptr, TCGv_i32, TCGv_i32, TCGv_i32); + +/* initialize TCG globals. */ +void a64_translate_init(void) +{ + int i; + + cpu_pc = tcg_global_mem_new_i64(cpu_env, + offsetof(CPUARMState, pc), + "pc"); + for (i = 0; i < 32; i++) { + cpu_X[i] = tcg_global_mem_new_i64(cpu_env, + offsetof(CPUARMState, xregs[i]), + regnames[i]); + } + + cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env, + offsetof(CPUARMState, exclusive_high), "exclusive_high"); +} + +static inline ARMMMUIdx get_a64_user_mem_index(DisasContext *s) +{ + /* Return the mmu_idx to use for A64 "unprivileged load/store" insns: + * if EL1, access as if EL0; otherwise access at current EL + */ + switch (s->mmu_idx) { + case ARMMMUIdx_S12NSE1: + return ARMMMUIdx_S12NSE0; + case ARMMMUIdx_S1SE1: + return ARMMMUIdx_S1SE0; + case ARMMMUIdx_S2NS: + g_assert_not_reached(); + default: + return s->mmu_idx; + } +} + +void aarch64_cpu_dump_state(CPUState *cs, FILE *f, + fprintf_function cpu_fprintf, int flags) +{ + ARMCPU *cpu = ARM_CPU(cs); + CPUARMState *env = &cpu->env; + uint32_t psr = pstate_read(env); + int i; + int el = arm_current_el(env); + const char *ns_status; + + cpu_fprintf(f, "PC=%016"PRIx64" SP=%016"PRIx64"\n", + env->pc, env->xregs[31]); + for (i = 0; i < 31; i++) { + cpu_fprintf(f, "X%02d=%016"PRIx64, i, env->xregs[i]); + if ((i % 4) == 3) { + cpu_fprintf(f, "\n"); + } else { + cpu_fprintf(f, " "); + } + } + + if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) { + ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S "; + } else { + ns_status = ""; + } + + cpu_fprintf(f, "\nPSTATE=%08x %c%c%c%c %sEL%d%c\n", + psr, + psr & PSTATE_N ? 'N' : '-', + psr & PSTATE_Z ? 'Z' : '-', + psr & PSTATE_C ? 'C' : '-', + psr & PSTATE_V ? 'V' : '-', + ns_status, + el, + psr & PSTATE_SP ? 'h' : 't'); + + if (flags & CPU_DUMP_FPU) { + int numvfpregs = 32; + for (i = 0; i < numvfpregs; i += 2) { + uint64_t vlo = float64_val(env->vfp.regs[i * 2]); + uint64_t vhi = float64_val(env->vfp.regs[(i * 2) + 1]); + cpu_fprintf(f, "q%02d=%016" PRIx64 ":%016" PRIx64 " ", + i, vhi, vlo); + vlo = float64_val(env->vfp.regs[(i + 1) * 2]); + vhi = float64_val(env->vfp.regs[((i + 1) * 2) + 1]); + cpu_fprintf(f, "q%02d=%016" PRIx64 ":%016" PRIx64 "\n", + i + 1, vhi, vlo); + } + cpu_fprintf(f, "FPCR: %08x FPSR: %08x\n", + vfp_get_fpcr(env), vfp_get_fpsr(env)); + } +} + +void gen_a64_set_pc_im(uint64_t val) +{ + tcg_gen_movi_i64(cpu_pc, val); +} + +/* Load the PC from a generic TCG variable. + * + * If address tagging is enabled via the TCR TBI bits, then loading + * an address into the PC will clear out any tag in the it: + * + for EL2 and EL3 there is only one TBI bit, and if it is set + * then the address is zero-extended, clearing bits [63:56] + * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0 + * and TBI1 controls addressses with bit 55 == 1. + * If the appropriate TBI bit is set for the address then + * the address is sign-extended from bit 55 into bits [63:56] + * + * We can avoid doing this for relative-branches, because the + * PC + offset can never overflow into the tag bits (assuming + * that virtual addresses are less than 56 bits wide, as they + * are currently), but we must handle it for branch-to-register. + */ +static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src) +{ + + if (s->current_el <= 1) { + /* Test if NEITHER or BOTH TBI values are set. If so, no need to + * examine bit 55 of address, can just generate code. + * If mixed, then test via generated code + */ + if (s->tbi0 && s->tbi1) { + TCGv_i64 tmp_reg = tcg_temp_new_i64(); + /* Both bits set, sign extension from bit 55 into [63:56] will + * cover both cases + */ + tcg_gen_shli_i64(tmp_reg, src, 8); + tcg_gen_sari_i64(cpu_pc, tmp_reg, 8); + tcg_temp_free_i64(tmp_reg); + } else if (!s->tbi0 && !s->tbi1) { + /* Neither bit set, just load it as-is */ + tcg_gen_mov_i64(cpu_pc, src); + } else { + TCGv_i64 tcg_tmpval = tcg_temp_new_i64(); + TCGv_i64 tcg_bit55 = tcg_temp_new_i64(); + TCGv_i64 tcg_zero = tcg_const_i64(0); + + tcg_gen_andi_i64(tcg_bit55, src, (1ull << 55)); + + if (s->tbi0) { + /* tbi0==1, tbi1==0, so 0-fill upper byte if bit 55 = 0 */ + tcg_gen_andi_i64(tcg_tmpval, src, + 0x00FFFFFFFFFFFFFFull); + tcg_gen_movcond_i64(TCG_COND_EQ, cpu_pc, tcg_bit55, tcg_zero, + tcg_tmpval, src); + } else { + /* tbi0==0, tbi1==1, so 1-fill upper byte if bit 55 = 1 */ + tcg_gen_ori_i64(tcg_tmpval, src, + 0xFF00000000000000ull); + tcg_gen_movcond_i64(TCG_COND_NE, cpu_pc, tcg_bit55, tcg_zero, + tcg_tmpval, src); + } + tcg_temp_free_i64(tcg_zero); + tcg_temp_free_i64(tcg_bit55); + tcg_temp_free_i64(tcg_tmpval); + } + } else { /* EL > 1 */ + if (s->tbi0) { + /* Force tag byte to all zero */ + tcg_gen_andi_i64(cpu_pc, src, 0x00FFFFFFFFFFFFFFull); + } else { + /* Load unmodified address */ + tcg_gen_mov_i64(cpu_pc, src); + } + } +} + +typedef struct DisasCompare64 { + TCGCond cond; + TCGv_i64 value; +} DisasCompare64; + +static void a64_test_cc(DisasCompare64 *c64, int cc) +{ + DisasCompare c32; + + arm_test_cc(&c32, cc); + + /* Sign-extend the 32-bit value so that the GE/LT comparisons work + * properly. The NE/EQ comparisons are also fine with this choice. */ + c64->cond = c32.cond; + c64->value = tcg_temp_new_i64(); + tcg_gen_ext_i32_i64(c64->value, c32.value); + + arm_free_cc(&c32); +} + +static void a64_free_cc(DisasCompare64 *c64) +{ + tcg_temp_free_i64(c64->value); +} + +static void gen_exception_internal(int excp) +{ + TCGv_i32 tcg_excp = tcg_const_i32(excp); + + assert(excp_is_internal(excp)); + gen_helper_exception_internal(cpu_env, tcg_excp); + tcg_temp_free_i32(tcg_excp); +} + +static void gen_exception(int excp, uint32_t syndrome, uint32_t target_el) +{ + TCGv_i32 tcg_excp = tcg_const_i32(excp); + TCGv_i32 tcg_syn = tcg_const_i32(syndrome); + TCGv_i32 tcg_el = tcg_const_i32(target_el); + + gen_helper_exception_with_syndrome(cpu_env, tcg_excp, + tcg_syn, tcg_el); + tcg_temp_free_i32(tcg_el); + tcg_temp_free_i32(tcg_syn); + tcg_temp_free_i32(tcg_excp); +} + +static void gen_exception_internal_insn(DisasContext *s, int offset, int excp) +{ + gen_a64_set_pc_im(s->pc - offset); + gen_exception_internal(excp); + s->is_jmp = DISAS_EXC; +} + +static void gen_exception_insn(DisasContext *s, int offset, int excp, + uint32_t syndrome, uint32_t target_el) +{ + gen_a64_set_pc_im(s->pc - offset); + gen_exception(excp, syndrome, target_el); + s->is_jmp = DISAS_EXC; +} + +static void gen_ss_advance(DisasContext *s) +{ + /* If the singlestep state is Active-not-pending, advance to + * Active-pending. + */ + if (s->ss_active) { + s->pstate_ss = 0; + gen_helper_clear_pstate_ss(cpu_env); + } +} + +static void gen_step_complete_exception(DisasContext *s) +{ + /* We just completed step of an insn. Move from Active-not-pending + * to Active-pending, and then also take the swstep exception. + * This corresponds to making the (IMPDEF) choice to prioritize + * swstep exceptions over asynchronous exceptions taken to an exception + * level where debug is disabled. This choice has the advantage that + * we do not need to maintain internal state corresponding to the + * ISV/EX syndrome bits between completion of the step and generation + * of the exception, and our syndrome information is always correct. + */ + gen_ss_advance(s); + gen_exception(EXCP_UDEF, syn_swstep(s->ss_same_el, 1, s->is_ldex), + default_exception_el(s)); + s->is_jmp = DISAS_EXC; +} + +static inline bool use_goto_tb(DisasContext *s, int n, uint64_t dest) +{ + /* No direct tb linking with singlestep (either QEMU's or the ARM + * debug architecture kind) or deterministic io + */ + if (s->singlestep_enabled || s->ss_active || (s->tb->cflags & CF_LAST_IO)) { + return false; + } + +#ifndef CONFIG_USER_ONLY + /* Only link tbs from inside the same guest page */ + if ((s->tb->pc & TARGET_PAGE_MASK) != (dest & TARGET_PAGE_MASK)) { + return false; + } +#endif + + return true; +} + +static inline void gen_goto_tb(DisasContext *s, int n, uint64_t dest) +{ + TranslationBlock *tb; + + tb = s->tb; + if (use_goto_tb(s, n, dest)) { + tcg_gen_goto_tb(n); + gen_a64_set_pc_im(dest); + tcg_gen_exit_tb((intptr_t)tb + n); + s->is_jmp = DISAS_TB_JUMP; + } else { + gen_a64_set_pc_im(dest); + if (s->ss_active) { + gen_step_complete_exception(s); + } else if (s->singlestep_enabled) { + gen_exception_internal(EXCP_DEBUG); + } else { + tcg_gen_exit_tb(0); + s->is_jmp = DISAS_TB_JUMP; + } + } +} + +static void disas_set_insn_syndrome(DisasContext *s, uint32_t syn) +{ + /* We don't need to save all of the syndrome so we mask and shift + * out uneeded bits to help the sleb128 encoder do a better job. + */ + syn &= ARM_INSN_START_WORD2_MASK; + syn >>= ARM_INSN_START_WORD2_SHIFT; + + /* We check and clear insn_start_idx to catch multiple updates. */ + assert(s->insn_start_idx != 0); + tcg_set_insn_param(s->insn_start_idx, 2, syn); + s->insn_start_idx = 0; +} + +static void unallocated_encoding(DisasContext *s) +{ + /* Unallocated and reserved encodings are uncategorized */ + gen_exception_insn(s, 4, EXCP_UDEF, syn_uncategorized(), + default_exception_el(s)); +} + +#define unsupported_encoding(s, insn) \ + do { \ + qemu_log_mask(LOG_UNIMP, \ + "%s:%d: unsupported instruction encoding 0x%08x " \ + "at pc=%016" PRIx64 "\n", \ + __FILE__, __LINE__, insn, s->pc - 4); \ + unallocated_encoding(s); \ + } while (0); + +static void init_tmp_a64_array(DisasContext *s) +{ +#ifdef CONFIG_DEBUG_TCG + int i; + for (i = 0; i < ARRAY_SIZE(s->tmp_a64); i++) { + TCGV_UNUSED_I64(s->tmp_a64[i]); + } +#endif + s->tmp_a64_count = 0; +} + +static void free_tmp_a64(DisasContext *s) +{ + int i; + for (i = 0; i < s->tmp_a64_count; i++) { + tcg_temp_free_i64(s->tmp_a64[i]); + } + init_tmp_a64_array(s); +} + +static TCGv_i64 new_tmp_a64(DisasContext *s) +{ + assert(s->tmp_a64_count < TMP_A64_MAX); + return s->tmp_a64[s->tmp_a64_count++] = tcg_temp_new_i64(); +} + +static TCGv_i64 new_tmp_a64_zero(DisasContext *s) +{ + TCGv_i64 t = new_tmp_a64(s); + tcg_gen_movi_i64(t, 0); + return t; +} + +/* + * Register access functions + * + * These functions are used for directly accessing a register in where + * changes to the final register value are likely to be made. If you + * need to use a register for temporary calculation (e.g. index type + * operations) use the read_* form. + * + * B1.2.1 Register mappings + * + * In instruction register encoding 31 can refer to ZR (zero register) or + * the SP (stack pointer) depending on context. In QEMU's case we map SP + * to cpu_X[31] and ZR accesses to a temporary which can be discarded. + * This is the point of the _sp forms. + */ +static TCGv_i64 cpu_reg(DisasContext *s, int reg) +{ + if (reg == 31) { + return new_tmp_a64_zero(s); + } else { + return cpu_X[reg]; + } +} + +/* register access for when 31 == SP */ +static TCGv_i64 cpu_reg_sp(DisasContext *s, int reg) +{ + return cpu_X[reg]; +} + +/* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64 + * representing the register contents. This TCGv is an auto-freed + * temporary so it need not be explicitly freed, and may be modified. + */ +static TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf) +{ + TCGv_i64 v = new_tmp_a64(s); + if (reg != 31) { + if (sf) { + tcg_gen_mov_i64(v, cpu_X[reg]); + } else { + tcg_gen_ext32u_i64(v, cpu_X[reg]); + } + } else { + tcg_gen_movi_i64(v, 0); + } + return v; +} + +static TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf) +{ + TCGv_i64 v = new_tmp_a64(s); + if (sf) { + tcg_gen_mov_i64(v, cpu_X[reg]); + } else { + tcg_gen_ext32u_i64(v, cpu_X[reg]); + } + return v; +} + +/* We should have at some point before trying to access an FP register + * done the necessary access check, so assert that + * (a) we did the check and + * (b) we didn't then just plough ahead anyway if it failed. + * Print the instruction pattern in the abort message so we can figure + * out what we need to fix if a user encounters this problem in the wild. + */ +static inline void assert_fp_access_checked(DisasContext *s) +{ +#ifdef CONFIG_DEBUG_TCG + if (unlikely(!s->fp_access_checked || s->fp_excp_el)) { + fprintf(stderr, "target-arm: FP access check missing for " + "instruction 0x%08x\n", s->insn); + abort(); + } +#endif +} + +/* Return the offset into CPUARMState of an element of specified + * size, 'element' places in from the least significant end of + * the FP/vector register Qn. + */ +static inline int vec_reg_offset(DisasContext *s, int regno, + int element, TCGMemOp size) +{ + int offs = offsetof(CPUARMState, vfp.regs[regno * 2]); +#ifdef HOST_WORDS_BIGENDIAN + /* This is complicated slightly because vfp.regs[2n] is + * still the low half and vfp.regs[2n+1] the high half + * of the 128 bit vector, even on big endian systems. + * Calculate the offset assuming a fully bigendian 128 bits, + * then XOR to account for the order of the two 64 bit halves. + */ + offs += (16 - ((element + 1) * (1 << size))); + offs ^= 8; +#else + offs += element * (1 << size); +#endif + assert_fp_access_checked(s); + return offs; +} + +/* Return the offset into CPUARMState of a slice (from + * the least significant end) of FP register Qn (ie + * Dn, Sn, Hn or Bn). + * (Note that this is not the same mapping as for A32; see cpu.h) + */ +static inline int fp_reg_offset(DisasContext *s, int regno, TCGMemOp size) +{ + int offs = offsetof(CPUARMState, vfp.regs[regno * 2]); +#ifdef HOST_WORDS_BIGENDIAN + offs += (8 - (1 << size)); +#endif + assert_fp_access_checked(s); + return offs; +} + +/* Offset of the high half of the 128 bit vector Qn */ +static inline int fp_reg_hi_offset(DisasContext *s, int regno) +{ + assert_fp_access_checked(s); + return offsetof(CPUARMState, vfp.regs[regno * 2 + 1]); +} + +/* Convenience accessors for reading and writing single and double + * FP registers. Writing clears the upper parts of the associated + * 128 bit vector register, as required by the architecture. + * Note that unlike the GP register accessors, the values returned + * by the read functions must be manually freed. + */ +static TCGv_i64 read_fp_dreg(DisasContext *s, int reg) +{ + TCGv_i64 v = tcg_temp_new_i64(); + + tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64)); + return v; +} + +static TCGv_i32 read_fp_sreg(DisasContext *s, int reg) +{ + TCGv_i32 v = tcg_temp_new_i32(); + + tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32)); + return v; +} + +static void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v) +{ + TCGv_i64 tcg_zero = tcg_const_i64(0); + + tcg_gen_st_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64)); + tcg_gen_st_i64(tcg_zero, cpu_env, fp_reg_hi_offset(s, reg)); + tcg_temp_free_i64(tcg_zero); +} + +static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v) +{ + TCGv_i64 tmp = tcg_temp_new_i64(); + + tcg_gen_extu_i32_i64(tmp, v); + write_fp_dreg(s, reg, tmp); + tcg_temp_free_i64(tmp); +} + +static TCGv_ptr get_fpstatus_ptr(void) +{ + TCGv_ptr statusptr = tcg_temp_new_ptr(); + int offset; + + /* In A64 all instructions (both FP and Neon) use the FPCR; + * there is no equivalent of the A32 Neon "standard FPSCR value" + * and all operations use vfp.fp_status. + */ + offset = offsetof(CPUARMState, vfp.fp_status); + tcg_gen_addi_ptr(statusptr, cpu_env, offset); + return statusptr; +} + +/* Set ZF and NF based on a 64 bit result. This is alas fiddlier + * than the 32 bit equivalent. + */ +static inline void gen_set_NZ64(TCGv_i64 result) +{ + tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result); + tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF); +} + +/* Set NZCV as for a logical operation: NZ as per result, CV cleared. */ +static inline void gen_logic_CC(int sf, TCGv_i64 result) +{ + if (sf) { + gen_set_NZ64(result); + } else { + tcg_gen_extrl_i64_i32(cpu_ZF, result); + tcg_gen_mov_i32(cpu_NF, cpu_ZF); + } + tcg_gen_movi_i32(cpu_CF, 0); + tcg_gen_movi_i32(cpu_VF, 0); +} + +/* dest = T0 + T1; compute C, N, V and Z flags */ +static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) +{ + if (sf) { + TCGv_i64 result, flag, tmp; + result = tcg_temp_new_i64(); + flag = tcg_temp_new_i64(); + tmp = tcg_temp_new_i64(); + + tcg_gen_movi_i64(tmp, 0); + tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp); + + tcg_gen_extrl_i64_i32(cpu_CF, flag); + + gen_set_NZ64(result); + + tcg_gen_xor_i64(flag, result, t0); + tcg_gen_xor_i64(tmp, t0, t1); + tcg_gen_andc_i64(flag, flag, tmp); + tcg_temp_free_i64(tmp); + tcg_gen_extrh_i64_i32(cpu_VF, flag); + + tcg_gen_mov_i64(dest, result); + tcg_temp_free_i64(result); + tcg_temp_free_i64(flag); + } else { + /* 32 bit arithmetic */ + TCGv_i32 t0_32 = tcg_temp_new_i32(); + TCGv_i32 t1_32 = tcg_temp_new_i32(); + TCGv_i32 tmp = tcg_temp_new_i32(); + + tcg_gen_movi_i32(tmp, 0); + tcg_gen_extrl_i64_i32(t0_32, t0); + tcg_gen_extrl_i64_i32(t1_32, t1); + tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp); + tcg_gen_mov_i32(cpu_ZF, cpu_NF); + tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); + tcg_gen_xor_i32(tmp, t0_32, t1_32); + tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); + tcg_gen_extu_i32_i64(dest, cpu_NF); + + tcg_temp_free_i32(tmp); + tcg_temp_free_i32(t0_32); + tcg_temp_free_i32(t1_32); + } +} + +/* dest = T0 - T1; compute C, N, V and Z flags */ +static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) +{ + if (sf) { + /* 64 bit arithmetic */ + TCGv_i64 result, flag, tmp; + + result = tcg_temp_new_i64(); + flag = tcg_temp_new_i64(); + tcg_gen_sub_i64(result, t0, t1); + + gen_set_NZ64(result); + + tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1); + tcg_gen_extrl_i64_i32(cpu_CF, flag); + + tcg_gen_xor_i64(flag, result, t0); + tmp = tcg_temp_new_i64(); + tcg_gen_xor_i64(tmp, t0, t1); + tcg_gen_and_i64(flag, flag, tmp); + tcg_temp_free_i64(tmp); + tcg_gen_extrh_i64_i32(cpu_VF, flag); + tcg_gen_mov_i64(dest, result); + tcg_temp_free_i64(flag); + tcg_temp_free_i64(result); + } else { + /* 32 bit arithmetic */ + TCGv_i32 t0_32 = tcg_temp_new_i32(); + TCGv_i32 t1_32 = tcg_temp_new_i32(); + TCGv_i32 tmp; + + tcg_gen_extrl_i64_i32(t0_32, t0); + tcg_gen_extrl_i64_i32(t1_32, t1); + tcg_gen_sub_i32(cpu_NF, t0_32, t1_32); + tcg_gen_mov_i32(cpu_ZF, cpu_NF); + tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32); + tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); + tmp = tcg_temp_new_i32(); + tcg_gen_xor_i32(tmp, t0_32, t1_32); + tcg_temp_free_i32(t0_32); + tcg_temp_free_i32(t1_32); + tcg_gen_and_i32(cpu_VF, cpu_VF, tmp); + tcg_temp_free_i32(tmp); + tcg_gen_extu_i32_i64(dest, cpu_NF); + } +} + +/* dest = T0 + T1 + CF; do not compute flags. */ +static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) +{ + TCGv_i64 flag = tcg_temp_new_i64(); + tcg_gen_extu_i32_i64(flag, cpu_CF); + tcg_gen_add_i64(dest, t0, t1); + tcg_gen_add_i64(dest, dest, flag); + tcg_temp_free_i64(flag); + + if (!sf) { + tcg_gen_ext32u_i64(dest, dest); + } +} + +/* dest = T0 + T1 + CF; compute C, N, V and Z flags. */ +static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) +{ + if (sf) { + TCGv_i64 result, cf_64, vf_64, tmp; + result = tcg_temp_new_i64(); + cf_64 = tcg_temp_new_i64(); + vf_64 = tcg_temp_new_i64(); + tmp = tcg_const_i64(0); + + tcg_gen_extu_i32_i64(cf_64, cpu_CF); + tcg_gen_add2_i64(result, cf_64, t0, tmp, cf_64, tmp); + tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, tmp); + tcg_gen_extrl_i64_i32(cpu_CF, cf_64); + gen_set_NZ64(result); + + tcg_gen_xor_i64(vf_64, result, t0); + tcg_gen_xor_i64(tmp, t0, t1); + tcg_gen_andc_i64(vf_64, vf_64, tmp); + tcg_gen_extrh_i64_i32(cpu_VF, vf_64); + + tcg_gen_mov_i64(dest, result); + + tcg_temp_free_i64(tmp); + tcg_temp_free_i64(vf_64); + tcg_temp_free_i64(cf_64); + tcg_temp_free_i64(result); + } else { + TCGv_i32 t0_32, t1_32, tmp; + t0_32 = tcg_temp_new_i32(); + t1_32 = tcg_temp_new_i32(); + tmp = tcg_const_i32(0); + + tcg_gen_extrl_i64_i32(t0_32, t0); + tcg_gen_extrl_i64_i32(t1_32, t1); + tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, cpu_CF, tmp); + tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, tmp); + + tcg_gen_mov_i32(cpu_ZF, cpu_NF); + tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); + tcg_gen_xor_i32(tmp, t0_32, t1_32); + tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); + tcg_gen_extu_i32_i64(dest, cpu_NF); + + tcg_temp_free_i32(tmp); + tcg_temp_free_i32(t1_32); + tcg_temp_free_i32(t0_32); + } +} + +/* + * Load/Store generators + */ + +/* + * Store from GPR register to memory. + */ +static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source, + TCGv_i64 tcg_addr, int size, int memidx, + bool iss_valid, + unsigned int iss_srt, + bool iss_sf, bool iss_ar) +{ + g_assert(size <= 3); + tcg_gen_qemu_st_i64(source, tcg_addr, memidx, s->be_data + size); + + if (iss_valid) { + uint32_t syn; + + syn = syn_data_abort_with_iss(0, + size, + false, + iss_srt, + iss_sf, + iss_ar, + 0, 0, 0, 0, 0, false); + disas_set_insn_syndrome(s, syn); + } +} + +static void do_gpr_st(DisasContext *s, TCGv_i64 source, + TCGv_i64 tcg_addr, int size, + bool iss_valid, + unsigned int iss_srt, + bool iss_sf, bool iss_ar) +{ + do_gpr_st_memidx(s, source, tcg_addr, size, get_mem_index(s), + iss_valid, iss_srt, iss_sf, iss_ar); +} + +/* + * Load from memory to GPR register + */ +static void do_gpr_ld_memidx(DisasContext *s, + TCGv_i64 dest, TCGv_i64 tcg_addr, + int size, bool is_signed, + bool extend, int memidx, + bool iss_valid, unsigned int iss_srt, + bool iss_sf, bool iss_ar) +{ + TCGMemOp memop = s->be_data + size; + + g_assert(size <= 3); + + if (is_signed) { + memop += MO_SIGN; + } + + tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop); + + if (extend && is_signed) { + g_assert(size < 3); + tcg_gen_ext32u_i64(dest, dest); + } + + if (iss_valid) { + uint32_t syn; + + syn = syn_data_abort_with_iss(0, + size, + is_signed, + iss_srt, + iss_sf, + iss_ar, + 0, 0, 0, 0, 0, false); + disas_set_insn_syndrome(s, syn); + } +} + +static void do_gpr_ld(DisasContext *s, + TCGv_i64 dest, TCGv_i64 tcg_addr, + int size, bool is_signed, bool extend, + bool iss_valid, unsigned int iss_srt, + bool iss_sf, bool iss_ar) +{ + do_gpr_ld_memidx(s, dest, tcg_addr, size, is_signed, extend, + get_mem_index(s), + iss_valid, iss_srt, iss_sf, iss_ar); +} + +/* + * Store from FP register to memory + */ +static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, int size) +{ + /* This writes the bottom N bits of a 128 bit wide vector to memory */ + TCGv_i64 tmp = tcg_temp_new_i64(); + tcg_gen_ld_i64(tmp, cpu_env, fp_reg_offset(s, srcidx, MO_64)); + if (size < 4) { + tcg_gen_qemu_st_i64(tmp, tcg_addr, get_mem_index(s), + s->be_data + size); + } else { + bool be = s->be_data == MO_BE; + TCGv_i64 tcg_hiaddr = tcg_temp_new_i64(); + + tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8); + tcg_gen_qemu_st_i64(tmp, be ? tcg_hiaddr : tcg_addr, get_mem_index(s), + s->be_data | MO_Q); + tcg_gen_ld_i64(tmp, cpu_env, fp_reg_hi_offset(s, srcidx)); + tcg_gen_qemu_st_i64(tmp, be ? tcg_addr : tcg_hiaddr, get_mem_index(s), + s->be_data | MO_Q); + tcg_temp_free_i64(tcg_hiaddr); + } + + tcg_temp_free_i64(tmp); +} + +/* + * Load from memory to FP register + */ +static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, int size) +{ + /* This always zero-extends and writes to a full 128 bit wide vector */ + TCGv_i64 tmplo = tcg_temp_new_i64(); + TCGv_i64 tmphi; + + if (size < 4) { + TCGMemOp memop = s->be_data + size; + tmphi = tcg_const_i64(0); + tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), memop); + } else { + bool be = s->be_data == MO_BE; + TCGv_i64 tcg_hiaddr; + + tmphi = tcg_temp_new_i64(); + tcg_hiaddr = tcg_temp_new_i64(); + + tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8); + tcg_gen_qemu_ld_i64(tmplo, be ? tcg_hiaddr : tcg_addr, get_mem_index(s), + s->be_data | MO_Q); + tcg_gen_qemu_ld_i64(tmphi, be ? tcg_addr : tcg_hiaddr, get_mem_index(s), + s->be_data | MO_Q); + tcg_temp_free_i64(tcg_hiaddr); + } + + tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64)); + tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx)); + + tcg_temp_free_i64(tmplo); + tcg_temp_free_i64(tmphi); +} + +/* + * Vector load/store helpers. + * + * The principal difference between this and a FP load is that we don't + * zero extend as we are filling a partial chunk of the vector register. + * These functions don't support 128 bit loads/stores, which would be + * normal load/store operations. + * + * The _i32 versions are useful when operating on 32 bit quantities + * (eg for floating point single or using Neon helper functions). + */ + +/* Get value of an element within a vector register */ +static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx, + int element, TCGMemOp memop) +{ + int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); + switch (memop) { + case MO_8: + tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off); + break; + case MO_16: + tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off); + break; + case MO_32: + tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off); + break; + case MO_8|MO_SIGN: + tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off); + break; + case MO_16|MO_SIGN: + tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off); + break; + case MO_32|MO_SIGN: + tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off); + break; + case MO_64: + case MO_64|MO_SIGN: + tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off); + break; + default: + g_assert_not_reached(); + } +} + +static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx, + int element, TCGMemOp memop) +{ + int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); + switch (memop) { + case MO_8: + tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off); + break; + case MO_16: + tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off); + break; + case MO_8|MO_SIGN: + tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off); + break; + case MO_16|MO_SIGN: + tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off); + break; + case MO_32: + case MO_32|MO_SIGN: + tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off); + break; + default: + g_assert_not_reached(); + } +} + +/* Set value of an element within a vector register */ +static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx, + int element, TCGMemOp memop) +{ + int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); + switch (memop) { + case MO_8: + tcg_gen_st8_i64(tcg_src, cpu_env, vect_off); + break; + case MO_16: + tcg_gen_st16_i64(tcg_src, cpu_env, vect_off); + break; + case MO_32: + tcg_gen_st32_i64(tcg_src, cpu_env, vect_off); + break; + case MO_64: + tcg_gen_st_i64(tcg_src, cpu_env, vect_off); + break; + default: + g_assert_not_reached(); + } +} + +static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src, + int destidx, int element, TCGMemOp memop) +{ + int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); + switch (memop) { + case MO_8: + tcg_gen_st8_i32(tcg_src, cpu_env, vect_off); + break; + case MO_16: + tcg_gen_st16_i32(tcg_src, cpu_env, vect_off); + break; + case MO_32: + tcg_gen_st_i32(tcg_src, cpu_env, vect_off); + break; + default: + g_assert_not_reached(); + } +} + +/* Clear the high 64 bits of a 128 bit vector (in general non-quad + * vector ops all need to do this). + */ +static void clear_vec_high(DisasContext *s, int rd) +{ + TCGv_i64 tcg_zero = tcg_const_i64(0); + + write_vec_element(s, tcg_zero, rd, 1, MO_64); + tcg_temp_free_i64(tcg_zero); +} + +/* Store from vector register to memory */ +static void do_vec_st(DisasContext *s, int srcidx, int element, + TCGv_i64 tcg_addr, int size) +{ + TCGMemOp memop = s->be_data + size; + TCGv_i64 tcg_tmp = tcg_temp_new_i64(); + + read_vec_element(s, tcg_tmp, srcidx, element, size); + tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), memop); + + tcg_temp_free_i64(tcg_tmp); +} + +/* Load from memory to vector register */ +static void do_vec_ld(DisasContext *s, int destidx, int element, + TCGv_i64 tcg_addr, int size) +{ + TCGMemOp memop = s->be_data + size; + TCGv_i64 tcg_tmp = tcg_temp_new_i64(); + + tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), memop); + write_vec_element(s, tcg_tmp, destidx, element, size); + + tcg_temp_free_i64(tcg_tmp); +} + +/* Check that FP/Neon access is enabled. If it is, return + * true. If not, emit code to generate an appropriate exception, + * and return false; the caller should not emit any code for + * the instruction. Note that this check must happen after all + * unallocated-encoding checks (otherwise the syndrome information + * for the resulting exception will be incorrect). + */ +static inline bool fp_access_check(DisasContext *s) +{ + assert(!s->fp_access_checked); + s->fp_access_checked = true; + + if (!s->fp_excp_el) { + return true; + } + + gen_exception_insn(s, 4, EXCP_UDEF, syn_fp_access_trap(1, 0xe, false), + s->fp_excp_el); + return false; +} + +/* + * This utility function is for doing register extension with an + * optional shift. You will likely want to pass a temporary for the + * destination register. See DecodeRegExtend() in the ARM ARM. + */ +static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in, + int option, unsigned int shift) +{ + int extsize = extract32(option, 0, 2); + bool is_signed = extract32(option, 2, 1); + + if (is_signed) { + switch (extsize) { + case 0: + tcg_gen_ext8s_i64(tcg_out, tcg_in); + break; + case 1: + tcg_gen_ext16s_i64(tcg_out, tcg_in); + break; + case 2: + tcg_gen_ext32s_i64(tcg_out, tcg_in); + break; + case 3: + tcg_gen_mov_i64(tcg_out, tcg_in); + break; + } + } else { + switch (extsize) { + case 0: + tcg_gen_ext8u_i64(tcg_out, tcg_in); + break; + case 1: + tcg_gen_ext16u_i64(tcg_out, tcg_in); + break; + case 2: + tcg_gen_ext32u_i64(tcg_out, tcg_in); + break; + case 3: + tcg_gen_mov_i64(tcg_out, tcg_in); + break; + } + } + + if (shift) { + tcg_gen_shli_i64(tcg_out, tcg_out, shift); + } +} + +static inline void gen_check_sp_alignment(DisasContext *s) +{ + /* The AArch64 architecture mandates that (if enabled via PSTATE + * or SCTLR bits) there is a check that SP is 16-aligned on every + * SP-relative load or store (with an exception generated if it is not). + * In line with general QEMU practice regarding misaligned accesses, + * we omit these checks for the sake of guest program performance. + * This function is provided as a hook so we can more easily add these + * checks in future (possibly as a "favour catching guest program bugs + * over speed" user selectable option). + */ +} + +/* + * This provides a simple table based table lookup decoder. It is + * intended to be used when the relevant bits for decode are too + * awkwardly placed and switch/if based logic would be confusing and + * deeply nested. Since it's a linear search through the table, tables + * should be kept small. + * + * It returns the first handler where insn & mask == pattern, or + * NULL if there is no match. + * The table is terminated by an empty mask (i.e. 0) + */ +static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table, + uint32_t insn) +{ + const AArch64DecodeTable *tptr = table; + + while (tptr->mask) { + if ((insn & tptr->mask) == tptr->pattern) { + return tptr->disas_fn; + } + tptr++; + } + return NULL; +} + +/* + * the instruction disassembly implemented here matches + * the instruction encoding classifications in chapter 3 (C3) + * of the ARM Architecture Reference Manual (DDI0487A_a) + */ + +/* C3.2.7 Unconditional branch (immediate) + * 31 30 26 25 0 + * +----+-----------+-------------------------------------+ + * | op | 0 0 1 0 1 | imm26 | + * +----+-----------+-------------------------------------+ + */ +static void disas_uncond_b_imm(DisasContext *s, uint32_t insn) +{ + uint64_t addr = s->pc + sextract32(insn, 0, 26) * 4 - 4; + + if (insn & (1U << 31)) { + /* C5.6.26 BL Branch with link */ + tcg_gen_movi_i64(cpu_reg(s, 30), s->pc); + } + + /* C5.6.20 B Branch / C5.6.26 BL Branch with link */ + gen_goto_tb(s, 0, addr); +} + +/* C3.2.1 Compare & branch (immediate) + * 31 30 25 24 23 5 4 0 + * +----+-------------+----+---------------------+--------+ + * | sf | 0 1 1 0 1 0 | op | imm19 | Rt | + * +----+-------------+----+---------------------+--------+ + */ +static void disas_comp_b_imm(DisasContext *s, uint32_t insn) +{ + unsigned int sf, op, rt; + uint64_t addr; + TCGLabel *label_match; + TCGv_i64 tcg_cmp; + + sf = extract32(insn, 31, 1); + op = extract32(insn, 24, 1); /* 0: CBZ; 1: CBNZ */ + rt = extract32(insn, 0, 5); + addr = s->pc + sextract32(insn, 5, 19) * 4 - 4; + + tcg_cmp = read_cpu_reg(s, rt, sf); + label_match = gen_new_label(); + + tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ, + tcg_cmp, 0, label_match); + + gen_goto_tb(s, 0, s->pc); + gen_set_label(label_match); + gen_goto_tb(s, 1, addr); +} + +/* C3.2.5 Test & branch (immediate) + * 31 30 25 24 23 19 18 5 4 0 + * +----+-------------+----+-------+-------------+------+ + * | b5 | 0 1 1 0 1 1 | op | b40 | imm14 | Rt | + * +----+-------------+----+-------+-------------+------+ + */ +static void disas_test_b_imm(DisasContext *s, uint32_t insn) +{ + unsigned int bit_pos, op, rt; + uint64_t addr; + TCGLabel *label_match; + TCGv_i64 tcg_cmp; + + bit_pos = (extract32(insn, 31, 1) << 5) | extract32(insn, 19, 5); + op = extract32(insn, 24, 1); /* 0: TBZ; 1: TBNZ */ + addr = s->pc + sextract32(insn, 5, 14) * 4 - 4; + rt = extract32(insn, 0, 5); + + tcg_cmp = tcg_temp_new_i64(); + tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, rt), (1ULL << bit_pos)); + label_match = gen_new_label(); + tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ, + tcg_cmp, 0, label_match); + tcg_temp_free_i64(tcg_cmp); + gen_goto_tb(s, 0, s->pc); + gen_set_label(label_match); + gen_goto_tb(s, 1, addr); +} + +/* C3.2.2 / C5.6.19 Conditional branch (immediate) + * 31 25 24 23 5 4 3 0 + * +---------------+----+---------------------+----+------+ + * | 0 1 0 1 0 1 0 | o1 | imm19 | o0 | cond | + * +---------------+----+---------------------+----+------+ + */ +static void disas_cond_b_imm(DisasContext *s, uint32_t insn) +{ + unsigned int cond; + uint64_t addr; + + if ((insn & (1 << 4)) || (insn & (1 << 24))) { + unallocated_encoding(s); + return; + } + addr = s->pc + sextract32(insn, 5, 19) * 4 - 4; + cond = extract32(insn, 0, 4); + + if (cond < 0x0e) { + /* genuinely conditional branches */ + TCGLabel *label_match = gen_new_label(); + arm_gen_test_cc(cond, label_match); + gen_goto_tb(s, 0, s->pc); + gen_set_label(label_match); + gen_goto_tb(s, 1, addr); + } else { + /* 0xe and 0xf are both "always" conditions */ + gen_goto_tb(s, 0, addr); + } +} + +/* C5.6.68 HINT */ +static void handle_hint(DisasContext *s, uint32_t insn, + unsigned int op1, unsigned int op2, unsigned int crm) +{ + unsigned int selector = crm << 3 | op2; + + if (op1 != 3) { + unallocated_encoding(s); + return; + } + + switch (selector) { + case 0: /* NOP */ + return; + case 3: /* WFI */ + s->is_jmp = DISAS_WFI; + return; + case 1: /* YIELD */ + s->is_jmp = DISAS_YIELD; + return; + case 2: /* WFE */ + s->is_jmp = DISAS_WFE; + return; + case 4: /* SEV */ + case 5: /* SEVL */ + /* we treat all as NOP at least for now */ + return; + default: + /* default specified as NOP equivalent */ + return; + } +} + +static void gen_clrex(DisasContext *s, uint32_t insn) +{ + tcg_gen_movi_i64(cpu_exclusive_addr, -1); +} + +/* CLREX, DSB, DMB, ISB */ +static void handle_sync(DisasContext *s, uint32_t insn, + unsigned int op1, unsigned int op2, unsigned int crm) +{ + TCGBar bar; + + if (op1 != 3) { + unallocated_encoding(s); + return; + } + + switch (op2) { + case 2: /* CLREX */ + gen_clrex(s, insn); + return; + case 4: /* DSB */ + case 5: /* DMB */ + switch (crm & 3) { + case 1: /* MBReqTypes_Reads */ + bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST; + break; + case 2: /* MBReqTypes_Writes */ + bar = TCG_BAR_SC | TCG_MO_ST_ST; + break; + default: /* MBReqTypes_All */ + bar = TCG_BAR_SC | TCG_MO_ALL; + break; + } + tcg_gen_mb(bar); + return; + case 6: /* ISB */ + /* We need to break the TB after this insn to execute + * a self-modified code correctly and also to take + * any pending interrupts immediately. + */ + s->is_jmp = DISAS_UPDATE; + return; + default: + unallocated_encoding(s); + return; + } +} + +/* C5.6.130 MSR (immediate) - move immediate to processor state field */ +static void handle_msr_i(DisasContext *s, uint32_t insn, + unsigned int op1, unsigned int op2, unsigned int crm) +{ + int op = op1 << 3 | op2; + switch (op) { + case 0x05: /* SPSel */ + if (s->current_el == 0) { + unallocated_encoding(s); + return; + } + /* fall through */ + case 0x1e: /* DAIFSet */ + case 0x1f: /* DAIFClear */ + { + TCGv_i32 tcg_imm = tcg_const_i32(crm); + TCGv_i32 tcg_op = tcg_const_i32(op); + gen_a64_set_pc_im(s->pc - 4); + gen_helper_msr_i_pstate(cpu_env, tcg_op, tcg_imm); + tcg_temp_free_i32(tcg_imm); + tcg_temp_free_i32(tcg_op); + s->is_jmp = DISAS_UPDATE; + break; + } + default: + unallocated_encoding(s); + return; + } +} + +static void gen_get_nzcv(TCGv_i64 tcg_rt) +{ + TCGv_i32 tmp = tcg_temp_new_i32(); + TCGv_i32 nzcv = tcg_temp_new_i32(); + + /* build bit 31, N */ + tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31)); + /* build bit 30, Z */ + tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0); + tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1); + /* build bit 29, C */ + tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1); + /* build bit 28, V */ + tcg_gen_shri_i32(tmp, cpu_VF, 31); + tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1); + /* generate result */ + tcg_gen_extu_i32_i64(tcg_rt, nzcv); + + tcg_temp_free_i32(nzcv); + tcg_temp_free_i32(tmp); +} + +static void gen_set_nzcv(TCGv_i64 tcg_rt) + +{ + TCGv_i32 nzcv = tcg_temp_new_i32(); + + /* take NZCV from R[t] */ + tcg_gen_extrl_i64_i32(nzcv, tcg_rt); + + /* bit 31, N */ + tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31)); + /* bit 30, Z */ + tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30)); + tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0); + /* bit 29, C */ + tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29)); + tcg_gen_shri_i32(cpu_CF, cpu_CF, 29); + /* bit 28, V */ + tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28)); + tcg_gen_shli_i32(cpu_VF, cpu_VF, 3); + tcg_temp_free_i32(nzcv); +} + +/* C5.6.129 MRS - move from system register + * C5.6.131 MSR (register) - move to system register + * C5.6.204 SYS + * C5.6.205 SYSL + * These are all essentially the same insn in 'read' and 'write' + * versions, with varying op0 fields. + */ +static void handle_sys(DisasContext *s, uint32_t insn, bool isread, + unsigned int op0, unsigned int op1, unsigned int op2, + unsigned int crn, unsigned int crm, unsigned int rt) +{ + const ARMCPRegInfo *ri; + TCGv_i64 tcg_rt; + + ri = get_arm_cp_reginfo(s->cp_regs, + ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, + crn, crm, op0, op1, op2)); + + if (!ri) { + /* Unknown register; this might be a guest error or a QEMU + * unimplemented feature. + */ + qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 " + "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n", + isread ? "read" : "write", op0, op1, crn, crm, op2); + unallocated_encoding(s); + return; + } + + /* Check access permissions */ + if (!cp_access_ok(s->current_el, ri, isread)) { + unallocated_encoding(s); + return; + } + + if (ri->accessfn) { + /* Emit code to perform further access permissions checks at + * runtime; this may result in an exception. + */ + TCGv_ptr tmpptr; + TCGv_i32 tcg_syn, tcg_isread; + uint32_t syndrome; + + gen_a64_set_pc_im(s->pc - 4); + tmpptr = tcg_const_ptr(ri); + syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); + tcg_syn = tcg_const_i32(syndrome); + tcg_isread = tcg_const_i32(isread); + gen_helper_access_check_cp_reg(cpu_env, tmpptr, tcg_syn, tcg_isread); + tcg_temp_free_ptr(tmpptr); + tcg_temp_free_i32(tcg_syn); + tcg_temp_free_i32(tcg_isread); + } + + /* Handle special cases first */ + switch (ri->type & ~(ARM_CP_FLAG_MASK & ~ARM_CP_SPECIAL)) { + case ARM_CP_NOP: + return; + case ARM_CP_NZCV: + tcg_rt = cpu_reg(s, rt); + if (isread) { + gen_get_nzcv(tcg_rt); + } else { + gen_set_nzcv(tcg_rt); + } + return; + case ARM_CP_CURRENTEL: + /* Reads as current EL value from pstate, which is + * guaranteed to be constant by the tb flags. + */ + tcg_rt = cpu_reg(s, rt); + tcg_gen_movi_i64(tcg_rt, s->current_el << 2); + return; + case ARM_CP_DC_ZVA: + /* Writes clear the aligned block of memory which rt points into. */ + tcg_rt = cpu_reg(s, rt); + gen_helper_dc_zva(cpu_env, tcg_rt); + return; + default: + break; + } + + if ((s->tb->cflags & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) { + gen_io_start(); + } + + tcg_rt = cpu_reg(s, rt); + + if (isread) { + if (ri->type & ARM_CP_CONST) { + tcg_gen_movi_i64(tcg_rt, ri->resetvalue); + } else if (ri->readfn) { + TCGv_ptr tmpptr; + tmpptr = tcg_const_ptr(ri); + gen_helper_get_cp_reg64(tcg_rt, cpu_env, tmpptr); + tcg_temp_free_ptr(tmpptr); + } else { + tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset); + } + } else { + if (ri->type & ARM_CP_CONST) { + /* If not forbidden by access permissions, treat as WI */ + return; + } else if (ri->writefn) { + TCGv_ptr tmpptr; + tmpptr = tcg_const_ptr(ri); + gen_helper_set_cp_reg64(cpu_env, tmpptr, tcg_rt); + tcg_temp_free_ptr(tmpptr); + } else { + tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset); + } + } + + if ((s->tb->cflags & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) { + /* I/O operations must end the TB here (whether read or write) */ + gen_io_end(); + s->is_jmp = DISAS_UPDATE; + } else if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) { + /* We default to ending the TB on a coprocessor register write, + * but allow this to be suppressed by the register definition + * (usually only necessary to work around guest bugs). + */ + s->is_jmp = DISAS_UPDATE; + } +} + +/* C3.2.4 System + * 31 22 21 20 19 18 16 15 12 11 8 7 5 4 0 + * +---------------------+---+-----+-----+-------+-------+-----+------+ + * | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 | CRn | CRm | op2 | Rt | + * +---------------------+---+-----+-----+-------+-------+-----+------+ + */ +static void disas_system(DisasContext *s, uint32_t insn) +{ + unsigned int l, op0, op1, crn, crm, op2, rt; + l = extract32(insn, 21, 1); + op0 = extract32(insn, 19, 2); + op1 = extract32(insn, 16, 3); + crn = extract32(insn, 12, 4); + crm = extract32(insn, 8, 4); + op2 = extract32(insn, 5, 3); + rt = extract32(insn, 0, 5); + + if (op0 == 0) { + if (l || rt != 31) { + unallocated_encoding(s); + return; + } + switch (crn) { + case 2: /* C5.6.68 HINT */ + handle_hint(s, insn, op1, op2, crm); + break; + case 3: /* CLREX, DSB, DMB, ISB */ + handle_sync(s, insn, op1, op2, crm); + break; + case 4: /* C5.6.130 MSR (immediate) */ + handle_msr_i(s, insn, op1, op2, crm); + break; + default: + unallocated_encoding(s); + break; + } + return; + } + handle_sys(s, insn, l, op0, op1, op2, crn, crm, rt); +} + +/* C3.2.3 Exception generation + * + * 31 24 23 21 20 5 4 2 1 0 + * +-----------------+-----+------------------------+-----+----+ + * | 1 1 0 1 0 1 0 0 | opc | imm16 | op2 | LL | + * +-----------------------+------------------------+----------+ + */ +static void disas_exc(DisasContext *s, uint32_t insn) +{ + int opc = extract32(insn, 21, 3); + int op2_ll = extract32(insn, 0, 5); + int imm16 = extract32(insn, 5, 16); + TCGv_i32 tmp; + + switch (opc) { + case 0: + /* For SVC, HVC and SMC we advance the single-step state + * machine before taking the exception. This is architecturally + * mandated, to ensure that single-stepping a system call + * instruction works properly. + */ + switch (op2_ll) { + case 1: /* SVC */ + gen_ss_advance(s); + gen_exception_insn(s, 0, EXCP_SWI, syn_aa64_svc(imm16), + default_exception_el(s)); + break; + case 2: /* HVC */ + if (s->current_el == 0) { + unallocated_encoding(s); + break; + } + /* The pre HVC helper handles cases when HVC gets trapped + * as an undefined insn by runtime configuration. + */ + gen_a64_set_pc_im(s->pc - 4); + gen_helper_pre_hvc(cpu_env); + gen_ss_advance(s); + gen_exception_insn(s, 0, EXCP_HVC, syn_aa64_hvc(imm16), 2); + break; + case 3: /* SMC */ + if (s->current_el == 0) { + unallocated_encoding(s); + break; + } + gen_a64_set_pc_im(s->pc - 4); + tmp = tcg_const_i32(syn_aa64_smc(imm16)); + gen_helper_pre_smc(cpu_env, tmp); + tcg_temp_free_i32(tmp); + gen_ss_advance(s); + gen_exception_insn(s, 0, EXCP_SMC, syn_aa64_smc(imm16), 3); + break; + default: + unallocated_encoding(s); + break; + } + break; + case 1: + if (op2_ll != 0) { + unallocated_encoding(s); + break; + } + /* BRK */ + gen_exception_insn(s, 4, EXCP_BKPT, syn_aa64_bkpt(imm16), + default_exception_el(s)); + break; + case 2: + if (op2_ll != 0) { + unallocated_encoding(s); + break; + } + /* HLT. This has two purposes. + * Architecturally, it is an external halting debug instruction. + * Since QEMU doesn't implement external debug, we treat this as + * it is required for halting debug disabled: it will UNDEF. + * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction. + */ + if (semihosting_enabled() && imm16 == 0xf000) { +#ifndef CONFIG_USER_ONLY + /* In system mode, don't allow userspace access to semihosting, + * to provide some semblance of security (and for consistency + * with our 32-bit semihosting). + */ + if (s->current_el == 0) { + unsupported_encoding(s, insn); + break; + } +#endif + gen_exception_internal_insn(s, 0, EXCP_SEMIHOST); + } else { + unsupported_encoding(s, insn); + } + break; + case 5: + if (op2_ll < 1 || op2_ll > 3) { + unallocated_encoding(s); + break; + } + /* DCPS1, DCPS2, DCPS3 */ + unsupported_encoding(s, insn); + break; + default: + unallocated_encoding(s); + break; + } +} + +/* C3.2.7 Unconditional branch (register) + * 31 25 24 21 20 16 15 10 9 5 4 0 + * +---------------+-------+-------+-------+------+-------+ + * | 1 1 0 1 0 1 1 | opc | op2 | op3 | Rn | op4 | + * +---------------+-------+-------+-------+------+-------+ + */ +static void disas_uncond_b_reg(DisasContext *s, uint32_t insn) +{ + unsigned int opc, op2, op3, rn, op4; + + opc = extract32(insn, 21, 4); + op2 = extract32(insn, 16, 5); + op3 = extract32(insn, 10, 6); + rn = extract32(insn, 5, 5); + op4 = extract32(insn, 0, 5); + + if (op4 != 0x0 || op3 != 0x0 || op2 != 0x1f) { + unallocated_encoding(s); + return; + } + + switch (opc) { + case 0: /* BR */ + case 1: /* BLR */ + case 2: /* RET */ + gen_a64_set_pc(s, cpu_reg(s, rn)); + /* BLR also needs to load return address */ + if (opc == 1) { + tcg_gen_movi_i64(cpu_reg(s, 30), s->pc); + } + break; + case 4: /* ERET */ + if (s->current_el == 0) { + unallocated_encoding(s); + return; + } + gen_helper_exception_return(cpu_env); + s->is_jmp = DISAS_JUMP; + return; + case 5: /* DRPS */ + if (rn != 0x1f) { + unallocated_encoding(s); + } else { + unsupported_encoding(s, insn); + } + return; + default: + unallocated_encoding(s); + return; + } + + s->is_jmp = DISAS_JUMP; +} + +/* C3.2 Branches, exception generating and system instructions */ +static void disas_b_exc_sys(DisasContext *s, uint32_t insn) +{ + switch (extract32(insn, 25, 7)) { + case 0x0a: case 0x0b: + case 0x4a: case 0x4b: /* Unconditional branch (immediate) */ + disas_uncond_b_imm(s, insn); + break; + case 0x1a: case 0x5a: /* Compare & branch (immediate) */ + disas_comp_b_imm(s, insn); + break; + case 0x1b: case 0x5b: /* Test & branch (immediate) */ + disas_test_b_imm(s, insn); + break; + case 0x2a: /* Conditional branch (immediate) */ + disas_cond_b_imm(s, insn); + break; + case 0x6a: /* Exception generation / System */ + if (insn & (1 << 24)) { + disas_system(s, insn); + } else { + disas_exc(s, insn); + } + break; + case 0x6b: /* Unconditional branch (register) */ + disas_uncond_b_reg(s, insn); + break; + default: + unallocated_encoding(s); + break; + } +} + +/* + * Load/Store exclusive instructions are implemented by remembering + * the value/address loaded, and seeing if these are the same + * when the store is performed. This is not actually the architecturally + * mandated semantics, but it works for typical guest code sequences + * and avoids having to monitor regular stores. + * + * The store exclusive uses the atomic cmpxchg primitives to avoid + * races in multi-threaded linux-user and when MTTCG softmmu is + * enabled. + */ +static void gen_load_exclusive(DisasContext *s, int rt, int rt2, + TCGv_i64 addr, int size, bool is_pair) +{ + TCGv_i64 tmp = tcg_temp_new_i64(); + TCGMemOp memop = s->be_data + size; + + g_assert(size <= 3); + tcg_gen_qemu_ld_i64(tmp, addr, get_mem_index(s), memop); + + if (is_pair) { + TCGv_i64 addr2 = tcg_temp_new_i64(); + TCGv_i64 hitmp = tcg_temp_new_i64(); + + g_assert(size >= 2); + tcg_gen_addi_i64(addr2, addr, 1 << size); + tcg_gen_qemu_ld_i64(hitmp, addr2, get_mem_index(s), memop); + tcg_temp_free_i64(addr2); + tcg_gen_mov_i64(cpu_exclusive_high, hitmp); + tcg_gen_mov_i64(cpu_reg(s, rt2), hitmp); + tcg_temp_free_i64(hitmp); + } + + tcg_gen_mov_i64(cpu_exclusive_val, tmp); + tcg_gen_mov_i64(cpu_reg(s, rt), tmp); + + tcg_temp_free_i64(tmp); + tcg_gen_mov_i64(cpu_exclusive_addr, addr); +} + +static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2, + TCGv_i64 inaddr, int size, int is_pair) +{ + /* if (env->exclusive_addr == addr && env->exclusive_val == [addr] + * && (!is_pair || env->exclusive_high == [addr + datasize])) { + * [addr] = {Rt}; + * if (is_pair) { + * [addr + datasize] = {Rt2}; + * } + * {Rd} = 0; + * } else { + * {Rd} = 1; + * } + * env->exclusive_addr = -1; + */ + TCGLabel *fail_label = gen_new_label(); + TCGLabel *done_label = gen_new_label(); + TCGv_i64 addr = tcg_temp_local_new_i64(); + TCGv_i64 tmp; + + /* Copy input into a local temp so it is not trashed when the + * basic block ends at the branch insn. + */ + tcg_gen_mov_i64(addr, inaddr); + tcg_gen_brcond_i64(TCG_COND_NE, addr, cpu_exclusive_addr, fail_label); + + tmp = tcg_temp_new_i64(); + if (is_pair) { + if (size == 2) { + TCGv_i64 val = tcg_temp_new_i64(); + tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2)); + tcg_gen_concat32_i64(val, cpu_exclusive_val, cpu_exclusive_high); + tcg_gen_atomic_cmpxchg_i64(tmp, addr, val, tmp, + get_mem_index(s), + size | MO_ALIGN | s->be_data); + tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, val); + tcg_temp_free_i64(val); + } else if (s->be_data == MO_LE) { + gen_helper_paired_cmpxchg64_le(tmp, cpu_env, addr, cpu_reg(s, rt), + cpu_reg(s, rt2)); + } else { + gen_helper_paired_cmpxchg64_be(tmp, cpu_env, addr, cpu_reg(s, rt), + cpu_reg(s, rt2)); + } + } else { + TCGv_i64 val = cpu_reg(s, rt); + tcg_gen_atomic_cmpxchg_i64(tmp, addr, cpu_exclusive_val, val, + get_mem_index(s), + size | MO_ALIGN | s->be_data); + tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); + } + + tcg_temp_free_i64(addr); + + tcg_gen_mov_i64(cpu_reg(s, rd), tmp); + tcg_temp_free_i64(tmp); + tcg_gen_br(done_label); + + gen_set_label(fail_label); + tcg_gen_movi_i64(cpu_reg(s, rd), 1); + gen_set_label(done_label); + tcg_gen_movi_i64(cpu_exclusive_addr, -1); +} + +/* Update the Sixty-Four bit (SF) registersize. This logic is derived + * from the ARMv8 specs for LDR (Shared decode for all encodings). + */ +static bool disas_ldst_compute_iss_sf(int size, bool is_signed, int opc) +{ + int opc0 = extract32(opc, 0, 1); + int regsize; + + if (is_signed) { + regsize = opc0 ? 32 : 64; + } else { + regsize = size == 3 ? 64 : 32; + } + return regsize == 64; +} + +/* C3.3.6 Load/store exclusive + * + * 31 30 29 24 23 22 21 20 16 15 14 10 9 5 4 0 + * +-----+-------------+----+---+----+------+----+-------+------+------+ + * | sz | 0 0 1 0 0 0 | o2 | L | o1 | Rs | o0 | Rt2 | Rn | Rt | + * +-----+-------------+----+---+----+------+----+-------+------+------+ + * + * sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit + * L: 0 -> store, 1 -> load + * o2: 0 -> exclusive, 1 -> not + * o1: 0 -> single register, 1 -> register pair + * o0: 1 -> load-acquire/store-release, 0 -> not + */ +static void disas_ldst_excl(DisasContext *s, uint32_t insn) +{ + int rt = extract32(insn, 0, 5); + int rn = extract32(insn, 5, 5); + int rt2 = extract32(insn, 10, 5); + int is_lasr = extract32(insn, 15, 1); + int rs = extract32(insn, 16, 5); + int is_pair = extract32(insn, 21, 1); + int is_store = !extract32(insn, 22, 1); + int is_excl = !extract32(insn, 23, 1); + int size = extract32(insn, 30, 2); + TCGv_i64 tcg_addr; + + if ((!is_excl && !is_pair && !is_lasr) || + (!is_excl && is_pair) || + (is_pair && size < 2)) { + unallocated_encoding(s); + return; + } + + if (rn == 31) { + gen_check_sp_alignment(s); + } + tcg_addr = read_cpu_reg_sp(s, rn, 1); + + /* Note that since TCG is single threaded load-acquire/store-release + * semantics require no extra if (is_lasr) { ... } handling. + */ + + if (is_excl) { + if (!is_store) { + s->is_ldex = true; + gen_load_exclusive(s, rt, rt2, tcg_addr, size, is_pair); + if (is_lasr) { + tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); + } + } else { + if (is_lasr) { + tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); + } + gen_store_exclusive(s, rs, rt, rt2, tcg_addr, size, is_pair); + } + } else { + TCGv_i64 tcg_rt = cpu_reg(s, rt); + bool iss_sf = disas_ldst_compute_iss_sf(size, false, 0); + + /* Generate ISS for non-exclusive accesses including LASR. */ + if (is_store) { + if (is_lasr) { + tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); + } + do_gpr_st(s, tcg_rt, tcg_addr, size, + true, rt, iss_sf, is_lasr); + } else { + do_gpr_ld(s, tcg_rt, tcg_addr, size, false, false, + true, rt, iss_sf, is_lasr); + if (is_lasr) { + tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); + } + } + } +} + +/* + * C3.3.5 Load register (literal) + * + * 31 30 29 27 26 25 24 23 5 4 0 + * +-----+-------+---+-----+-------------------+-------+ + * | opc | 0 1 1 | V | 0 0 | imm19 | Rt | + * +-----+-------+---+-----+-------------------+-------+ + * + * V: 1 -> vector (simd/fp) + * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit, + * 10-> 32 bit signed, 11 -> prefetch + * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated) + */ +static void disas_ld_lit(DisasContext *s, uint32_t insn) +{ + int rt = extract32(insn, 0, 5); + int64_t imm = sextract32(insn, 5, 19) << 2; + bool is_vector = extract32(insn, 26, 1); + int opc = extract32(insn, 30, 2); + bool is_signed = false; + int size = 2; + TCGv_i64 tcg_rt, tcg_addr; + + if (is_vector) { + if (opc == 3) { + unallocated_encoding(s); + return; + } + size = 2 + opc; + if (!fp_access_check(s)) { + return; + } + } else { + if (opc == 3) { + /* PRFM (literal) : prefetch */ + return; + } + size = 2 + extract32(opc, 0, 1); + is_signed = extract32(opc, 1, 1); + } + + tcg_rt = cpu_reg(s, rt); + + tcg_addr = tcg_const_i64((s->pc - 4) + imm); + if (is_vector) { + do_fp_ld(s, rt, tcg_addr, size); + } else { + /* Only unsigned 32bit loads target 32bit registers. */ + bool iss_sf = opc != 0; + + do_gpr_ld(s, tcg_rt, tcg_addr, size, is_signed, false, + true, rt, iss_sf, false); + } + tcg_temp_free_i64(tcg_addr); +} + +/* + * C5.6.80 LDNP (Load Pair - non-temporal hint) + * C5.6.81 LDP (Load Pair - non vector) + * C5.6.82 LDPSW (Load Pair Signed Word - non vector) + * C5.6.176 STNP (Store Pair - non-temporal hint) + * C5.6.177 STP (Store Pair - non vector) + * C6.3.165 LDNP (Load Pair of SIMD&FP - non-temporal hint) + * C6.3.165 LDP (Load Pair of SIMD&FP) + * C6.3.284 STNP (Store Pair of SIMD&FP - non-temporal hint) + * C6.3.284 STP (Store Pair of SIMD&FP) + * + * 31 30 29 27 26 25 24 23 22 21 15 14 10 9 5 4 0 + * +-----+-------+---+---+-------+---+-----------------------------+ + * | opc | 1 0 1 | V | 0 | index | L | imm7 | Rt2 | Rn | Rt | + * +-----+-------+---+---+-------+---+-------+-------+------+------+ + * + * opc: LDP/STP/LDNP/STNP 00 -> 32 bit, 10 -> 64 bit + * LDPSW 01 + * LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit + * V: 0 -> GPR, 1 -> Vector + * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index, + * 10 -> signed offset, 11 -> pre-index + * L: 0 -> Store 1 -> Load + * + * Rt, Rt2 = GPR or SIMD registers to be stored + * Rn = general purpose register containing address + * imm7 = signed offset (multiple of 4 or 8 depending on size) + */ +static void disas_ldst_pair(DisasContext *s, uint32_t insn) +{ + int rt = extract32(insn, 0, 5); + int rn = extract32(insn, 5, 5); + int rt2 = extract32(insn, 10, 5); + uint64_t offset = sextract64(insn, 15, 7); + int index = extract32(insn, 23, 2); + bool is_vector = extract32(insn, 26, 1); + bool is_load = extract32(insn, 22, 1); + int opc = extract32(insn, 30, 2); + + bool is_signed = false; + bool postindex = false; + bool wback = false; + + TCGv_i64 tcg_addr; /* calculated address */ + int size; + + if (opc == 3) { + unallocated_encoding(s); + return; + } + + if (is_vector) { + size = 2 + opc; + } else { + size = 2 + extract32(opc, 1, 1); + is_signed = extract32(opc, 0, 1); + if (!is_load && is_signed) { + unallocated_encoding(s); + return; + } + } + + switch (index) { + case 1: /* post-index */ + postindex = true; + wback = true; + break; + case 0: + /* signed offset with "non-temporal" hint. Since we don't emulate + * caches we don't care about hints to the cache system about + * data access patterns, and handle this identically to plain + * signed offset. + */ + if (is_signed) { + /* There is no non-temporal-hint version of LDPSW */ + unallocated_encoding(s); + return; + } + postindex = false; + break; + case 2: /* signed offset, rn not updated */ + postindex = false; + break; + case 3: /* pre-index */ + postindex = false; + wback = true; + break; + } + + if (is_vector && !fp_access_check(s)) { + return; + } + + offset <<= size; + + if (rn == 31) { + gen_check_sp_alignment(s); + } + + tcg_addr = read_cpu_reg_sp(s, rn, 1); + + if (!postindex) { + tcg_gen_addi_i64(tcg_addr, tcg_addr, offset); + } + + if (is_vector) { + if (is_load) { + do_fp_ld(s, rt, tcg_addr, size); + } else { + do_fp_st(s, rt, tcg_addr, size); + } + } else { + TCGv_i64 tcg_rt = cpu_reg(s, rt); + if (is_load) { + do_gpr_ld(s, tcg_rt, tcg_addr, size, is_signed, false, + false, 0, false, false); + } else { + do_gpr_st(s, tcg_rt, tcg_addr, size, + false, 0, false, false); + } + } + tcg_gen_addi_i64(tcg_addr, tcg_addr, 1 << size); + if (is_vector) { + if (is_load) { + do_fp_ld(s, rt2, tcg_addr, size); + } else { + do_fp_st(s, rt2, tcg_addr, size); + } + } else { + TCGv_i64 tcg_rt2 = cpu_reg(s, rt2); + if (is_load) { + do_gpr_ld(s, tcg_rt2, tcg_addr, size, is_signed, false, + false, 0, false, false); + } else { + do_gpr_st(s, tcg_rt2, tcg_addr, size, + false, 0, false, false); + } + } + + if (wback) { + if (postindex) { + tcg_gen_addi_i64(tcg_addr, tcg_addr, offset - (1 << size)); + } else { + tcg_gen_subi_i64(tcg_addr, tcg_addr, 1 << size); + } + tcg_gen_mov_i64(cpu_reg_sp(s, rn), tcg_addr); + } +} + +/* + * C3.3.8 Load/store (immediate post-indexed) + * C3.3.9 Load/store (immediate pre-indexed) + * C3.3.12 Load/store (unscaled immediate) + * + * 31 30 29 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0 + * +----+-------+---+-----+-----+---+--------+-----+------+------+ + * |size| 1 1 1 | V | 0 0 | opc | 0 | imm9 | idx | Rn | Rt | + * +----+-------+---+-----+-----+---+--------+-----+------+------+ + * + * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback) + 10 -> unprivileged + * V = 0 -> non-vector + * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit + * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 + */ +static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn, + int opc, + int size, + int rt, + bool is_vector) +{ + int rn = extract32(insn, 5, 5); + int imm9 = sextract32(insn, 12, 9); + int idx = extract32(insn, 10, 2); + bool is_signed = false; + bool is_store = false; + bool is_extended = false; + bool is_unpriv = (idx == 2); + bool iss_valid = !is_vector; + bool post_index; + bool writeback; + + TCGv_i64 tcg_addr; + + if (is_vector) { + size |= (opc & 2) << 1; + if (size > 4 || is_unpriv) { + unallocated_encoding(s); + return; + } + is_store = ((opc & 1) == 0); + if (!fp_access_check(s)) { + return; + } + } else { + if (size == 3 && opc == 2) { + /* PRFM - prefetch */ + if (is_unpriv) { + unallocated_encoding(s); + return; + } + return; + } + if (opc == 3 && size > 1) { + unallocated_encoding(s); + return; + } + is_store = (opc == 0); + is_signed = extract32(opc, 1, 1); + is_extended = (size < 3) && extract32(opc, 0, 1); + } + + switch (idx) { + case 0: + case 2: + post_index = false; + writeback = false; + break; + case 1: + post_index = true; + writeback = true; + break; + case 3: + post_index = false; + writeback = true; + break; + } + + if (rn == 31) { + gen_check_sp_alignment(s); + } + tcg_addr = read_cpu_reg_sp(s, rn, 1); + + if (!post_index) { + tcg_gen_addi_i64(tcg_addr, tcg_addr, imm9); + } + + if (is_vector) { + if (is_store) { + do_fp_st(s, rt, tcg_addr, size); + } else { + do_fp_ld(s, rt, tcg_addr, size); + } + } else { + TCGv_i64 tcg_rt = cpu_reg(s, rt); + int memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s); + bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); + + if (is_store) { + do_gpr_st_memidx(s, tcg_rt, tcg_addr, size, memidx, + iss_valid, rt, iss_sf, false); + } else { + do_gpr_ld_memidx(s, tcg_rt, tcg_addr, size, + is_signed, is_extended, memidx, + iss_valid, rt, iss_sf, false); + } + } + + if (writeback) { + TCGv_i64 tcg_rn = cpu_reg_sp(s, rn); + if (post_index) { + tcg_gen_addi_i64(tcg_addr, tcg_addr, imm9); + } + tcg_gen_mov_i64(tcg_rn, tcg_addr); + } +} + +/* + * C3.3.10 Load/store (register offset) + * + * 31 30 29 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0 + * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+ + * |size| 1 1 1 | V | 0 0 | opc | 1 | Rm | opt | S| 1 0 | Rn | Rt | + * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+ + * + * For non-vector: + * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit + * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 + * For vector: + * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated + * opc<0>: 0 -> store, 1 -> load + * V: 1 -> vector/simd + * opt: extend encoding (see DecodeRegExtend) + * S: if S=1 then scale (essentially index by sizeof(size)) + * Rt: register to transfer into/out of + * Rn: address register or SP for base + * Rm: offset register or ZR for offset + */ +static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn, + int opc, + int size, + int rt, + bool is_vector) +{ + int rn = extract32(insn, 5, 5); + int shift = extract32(insn, 12, 1); + int rm = extract32(insn, 16, 5); + int opt = extract32(insn, 13, 3); + bool is_signed = false; + bool is_store = false; + bool is_extended = false; + + TCGv_i64 tcg_rm; + TCGv_i64 tcg_addr; + + if (extract32(opt, 1, 1) == 0) { + unallocated_encoding(s); + return; + } + + if (is_vector) { + size |= (opc & 2) << 1; + if (size > 4) { + unallocated_encoding(s); + return; + } + is_store = !extract32(opc, 0, 1); + if (!fp_access_check(s)) { + return; + } + } else { + if (size == 3 && opc == 2) { + /* PRFM - prefetch */ + return; + } + if (opc == 3 && size > 1) { + unallocated_encoding(s); + return; + } + is_store = (opc == 0); + is_signed = extract32(opc, 1, 1); + is_extended = (size < 3) && extract32(opc, 0, 1); + } + + if (rn == 31) { + gen_check_sp_alignment(s); + } + tcg_addr = read_cpu_reg_sp(s, rn, 1); + + tcg_rm = read_cpu_reg(s, rm, 1); + ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0); + + tcg_gen_add_i64(tcg_addr, tcg_addr, tcg_rm); + + if (is_vector) { + if (is_store) { + do_fp_st(s, rt, tcg_addr, size); + } else { + do_fp_ld(s, rt, tcg_addr, size); + } + } else { + TCGv_i64 tcg_rt = cpu_reg(s, rt); + bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); + if (is_store) { + do_gpr_st(s, tcg_rt, tcg_addr, size, + true, rt, iss_sf, false); + } else { + do_gpr_ld(s, tcg_rt, tcg_addr, size, + is_signed, is_extended, + true, rt, iss_sf, false); + } + } +} + +/* + * C3.3.13 Load/store (unsigned immediate) + * + * 31 30 29 27 26 25 24 23 22 21 10 9 5 + * +----+-------+---+-----+-----+------------+-------+------+ + * |size| 1 1 1 | V | 0 1 | opc | imm12 | Rn | Rt | + * +----+-------+---+-----+-----+------------+-------+------+ + * + * For non-vector: + * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit + * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 + * For vector: + * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated + * opc<0>: 0 -> store, 1 -> load + * Rn: base address register (inc SP) + * Rt: target register + */ +static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn, + int opc, + int size, + int rt, + bool is_vector) +{ + int rn = extract32(insn, 5, 5); + unsigned int imm12 = extract32(insn, 10, 12); + unsigned int offset; + + TCGv_i64 tcg_addr; + + bool is_store; + bool is_signed = false; + bool is_extended = false; + + if (is_vector) { + size |= (opc & 2) << 1; + if (size > 4) { + unallocated_encoding(s); + return; + } + is_store = !extract32(opc, 0, 1); + if (!fp_access_check(s)) { + return; + } + } else { + if (size == 3 && opc == 2) { + /* PRFM - prefetch */ + return; + } + if (opc == 3 && size > 1) { + unallocated_encoding(s); + return; + } + is_store = (opc == 0); + is_signed = extract32(opc, 1, 1); + is_extended = (size < 3) && extract32(opc, 0, 1); + } + + if (rn == 31) { + gen_check_sp_alignment(s); + } + tcg_addr = read_cpu_reg_sp(s, rn, 1); + offset = imm12 << size; + tcg_gen_addi_i64(tcg_addr, tcg_addr, offset); + + if (is_vector) { + if (is_store) { + do_fp_st(s, rt, tcg_addr, size); + } else { + do_fp_ld(s, rt, tcg_addr, size); + } + } else { + TCGv_i64 tcg_rt = cpu_reg(s, rt); + bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); + if (is_store) { + do_gpr_st(s, tcg_rt, tcg_addr, size, + true, rt, iss_sf, false); + } else { + do_gpr_ld(s, tcg_rt, tcg_addr, size, is_signed, is_extended, + true, rt, iss_sf, false); + } + } +} + +/* Load/store register (all forms) */ +static void disas_ldst_reg(DisasContext *s, uint32_t insn) +{ + int rt = extract32(insn, 0, 5); + int opc = extract32(insn, 22, 2); + bool is_vector = extract32(insn, 26, 1); + int size = extract32(insn, 30, 2); + + switch (extract32(insn, 24, 2)) { + case 0: + if (extract32(insn, 21, 1) == 1 && extract32(insn, 10, 2) == 2) { + disas_ldst_reg_roffset(s, insn, opc, size, rt, is_vector); + } else { + /* Load/store register (unscaled immediate) + * Load/store immediate pre/post-indexed + * Load/store register unprivileged + */ + disas_ldst_reg_imm9(s, insn, opc, size, rt, is_vector); + } + break; + case 1: + disas_ldst_reg_unsigned_imm(s, insn, opc, size, rt, is_vector); + break; + default: + unallocated_encoding(s); + break; + } +} + +/* C3.3.1 AdvSIMD load/store multiple structures + * + * 31 30 29 23 22 21 16 15 12 11 10 9 5 4 0 + * +---+---+---------------+---+-------------+--------+------+------+------+ + * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size | Rn | Rt | + * +---+---+---------------+---+-------------+--------+------+------+------+ + * + * C3.3.2 AdvSIMD load/store multiple structures (post-indexed) + * + * 31 30 29 23 22 21 20 16 15 12 11 10 9 5 4 0 + * +---+---+---------------+---+---+---------+--------+------+------+------+ + * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 | Rm | opcode | size | Rn | Rt | + * +---+---+---------------+---+---+---------+--------+------+------+------+ + * + * Rt: first (or only) SIMD&FP register to be transferred + * Rn: base address or SP + * Rm (post-index only): post-index register (when !31) or size dependent #imm + */ +static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn) +{ + int rt = extract32(insn, 0, 5); + int rn = extract32(insn, 5, 5); + int size = extract32(insn, 10, 2); + int opcode = extract32(insn, 12, 4); + bool is_store = !extract32(insn, 22, 1); + bool is_postidx = extract32(insn, 23, 1); + bool is_q = extract32(insn, 30, 1); + TCGv_i64 tcg_addr, tcg_rn; + + int ebytes = 1 << size; + int elements = (is_q ? 128 : 64) / (8 << size); + int rpt; /* num iterations */ + int selem; /* structure elements */ + int r; + + if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) { + unallocated_encoding(s); + return; + } + + /* From the shared decode logic */ + switch (opcode) { + case 0x0: + rpt = 1; + selem = 4; + break; + case 0x2: + rpt = 4; + selem = 1; + break; + case 0x4: + rpt = 1; + selem = 3; + break; + case 0x6: + rpt = 3; + selem = 1; + break; + case 0x7: + rpt = 1; + selem = 1; + break; + case 0x8: + rpt = 1; + selem = 2; + break; + case 0xa: + rpt = 2; + selem = 1; + break; + default: + unallocated_encoding(s); + return; + } + + if (size == 3 && !is_q && selem != 1) { + /* reserved */ + unallocated_encoding(s); + return; + } + + if (!fp_access_check(s)) { + return; + } + + if (rn == 31) { + gen_check_sp_alignment(s); + } + + tcg_rn = cpu_reg_sp(s, rn); + tcg_addr = tcg_temp_new_i64(); + tcg_gen_mov_i64(tcg_addr, tcg_rn); + + for (r = 0; r < rpt; r++) { + int e; + for (e = 0; e < elements; e++) { + int tt = (rt + r) % 32; + int xs; + for (xs = 0; xs < selem; xs++) { + if (is_store) { + do_vec_st(s, tt, e, tcg_addr, size); + } else { + do_vec_ld(s, tt, e, tcg_addr, size); + + /* For non-quad operations, setting a slice of the low + * 64 bits of the register clears the high 64 bits (in + * the ARM ARM pseudocode this is implicit in the fact + * that 'rval' is a 64 bit wide variable). We optimize + * by noticing that we only need to do this the first + * time we touch a register. + */ + if (!is_q && e == 0 && (r == 0 || xs == selem - 1)) { + clear_vec_high(s, tt); + } + } + tcg_gen_addi_i64(tcg_addr, tcg_addr, ebytes); + tt = (tt + 1) % 32; + } + } + } + + if (is_postidx) { + int rm = extract32(insn, 16, 5); + if (rm == 31) { + tcg_gen_mov_i64(tcg_rn, tcg_addr); + } else { + tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm)); + } + } + tcg_temp_free_i64(tcg_addr); +} + +/* C3.3.3 AdvSIMD load/store single structure + * + * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0 + * +---+---+---------------+-----+-----------+-----+---+------+------+------+ + * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size | Rn | Rt | + * +---+---+---------------+-----+-----------+-----+---+------+------+------+ + * + * C3.3.4 AdvSIMD load/store single structure (post-indexed) + * + * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0 + * +---+---+---------------+-----+-----------+-----+---+------+------+------+ + * | 0 | Q | 0 0 1 1 0 1 1 | L R | Rm | opc | S | size | Rn | Rt | + * +---+---+---------------+-----+-----------+-----+---+------+------+------+ + * + * Rt: first (or only) SIMD&FP register to be transferred + * Rn: base address or SP + * Rm (post-index only): post-index register (when !31) or size dependent #imm + * index = encoded in Q:S:size dependent on size + * + * lane_size = encoded in R, opc + * transfer width = encoded in opc, S, size + */ +static void disas_ldst_single_struct(DisasContext *s, uint32_t insn) +{ + int rt = extract32(insn, 0, 5); + int rn = extract32(insn, 5, 5); + int size = extract32(insn, 10, 2); + int S = extract32(insn, 12, 1); + int opc = extract32(insn, 13, 3); + int R = extract32(insn, 21, 1); + int is_load = extract32(insn, 22, 1); + int is_postidx = extract32(insn, 23, 1); + int is_q = extract32(insn, 30, 1); + + int scale = extract32(opc, 1, 2); + int selem = (extract32(opc, 0, 1) << 1 | R) + 1; + bool replicate = false; + int index = is_q << 3 | S << 2 | size; + int ebytes, xs; + TCGv_i64 tcg_addr, tcg_rn; + + switch (scale) { + case 3: + if (!is_load || S) { + unallocated_encoding(s); + return; + } + scale = size; + replicate = true; + break; + case 0: + break; + case 1: + if (extract32(size, 0, 1)) { + unallocated_encoding(s); + return; + } + index >>= 1; + break; + case 2: + if (extract32(size, 1, 1)) { + unallocated_encoding(s); + return; + } + if (!extract32(size, 0, 1)) { + index >>= 2; + } else { + if (S) { + unallocated_encoding(s); + return; + } + index >>= 3; + scale = 3; + } + break; + default: + g_assert_not_reached(); + } + + if (!fp_access_check(s)) { + return; + } + + ebytes = 1 << scale; + + if (rn == 31) { + gen_check_sp_alignment(s); + } + + tcg_rn = cpu_reg_sp(s, rn); + tcg_addr = tcg_temp_new_i64(); + tcg_gen_mov_i64(tcg_addr, tcg_rn); + + for (xs = 0; xs < selem; xs++) { + if (replicate) { + /* Load and replicate to all elements */ + uint64_t mulconst; + TCGv_i64 tcg_tmp = tcg_temp_new_i64(); + + tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, + get_mem_index(s), s->be_data + scale); + switch (scale) { + case 0: + mulconst = 0x0101010101010101ULL; + break; + case 1: + mulconst = 0x0001000100010001ULL; + break; + case 2: + mulconst = 0x0000000100000001ULL; + break; + case 3: + mulconst = 0; + break; + default: + g_assert_not_reached(); + } + if (mulconst) { + tcg_gen_muli_i64(tcg_tmp, tcg_tmp, mulconst); + } + write_vec_element(s, tcg_tmp, rt, 0, MO_64); + if (is_q) { + write_vec_element(s, tcg_tmp, rt, 1, MO_64); + } else { + clear_vec_high(s, rt); + } + tcg_temp_free_i64(tcg_tmp); + } else { + /* Load/store one element per register */ + if (is_load) { + do_vec_ld(s, rt, index, tcg_addr, s->be_data + scale); + } else { + do_vec_st(s, rt, index, tcg_addr, s->be_data + scale); + } + } + tcg_gen_addi_i64(tcg_addr, tcg_addr, ebytes); + rt = (rt + 1) % 32; + } + + if (is_postidx) { + int rm = extract32(insn, 16, 5); + if (rm == 31) { + tcg_gen_mov_i64(tcg_rn, tcg_addr); + } else { + tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm)); + } + } + tcg_temp_free_i64(tcg_addr); +} + +/* C3.3 Loads and stores */ +static void disas_ldst(DisasContext *s, uint32_t insn) +{ + switch (extract32(insn, 24, 6)) { + case 0x08: /* Load/store exclusive */ + disas_ldst_excl(s, insn); + break; + case 0x18: case 0x1c: /* Load register (literal) */ + disas_ld_lit(s, insn); + break; + case 0x28: case 0x29: + case 0x2c: case 0x2d: /* Load/store pair (all forms) */ + disas_ldst_pair(s, insn); + break; + case 0x38: case 0x39: + case 0x3c: case 0x3d: /* Load/store register (all forms) */ + disas_ldst_reg(s, insn); + break; + case 0x0c: /* AdvSIMD load/store multiple structures */ + disas_ldst_multiple_struct(s, insn); + break; + case 0x0d: /* AdvSIMD load/store single structure */ + disas_ldst_single_struct(s, insn); + break; + default: + unallocated_encoding(s); + break; + } +} + +/* C3.4.6 PC-rel. addressing + * 31 30 29 28 24 23 5 4 0 + * +----+-------+-----------+-------------------+------+ + * | op | immlo | 1 0 0 0 0 | immhi | Rd | + * +----+-------+-----------+-------------------+------+ + */ +static void disas_pc_rel_adr(DisasContext *s, uint32_t insn) +{ + unsigned int page, rd; + uint64_t base; + uint64_t offset; + + page = extract32(insn, 31, 1); + /* SignExtend(immhi:immlo) -> offset */ + offset = sextract64(insn, 5, 19); + offset = offset << 2 | extract32(insn, 29, 2); + rd = extract32(insn, 0, 5); + base = s->pc - 4; + + if (page) { + /* ADRP (page based) */ + base &= ~0xfff; + offset <<= 12; + } + + tcg_gen_movi_i64(cpu_reg(s, rd), base + offset); +} + +/* + * C3.4.1 Add/subtract (immediate) + * + * 31 30 29 28 24 23 22 21 10 9 5 4 0 + * +--+--+--+-----------+-----+-------------+-----+-----+ + * |sf|op| S| 1 0 0 0 1 |shift| imm12 | Rn | Rd | + * +--+--+--+-----------+-----+-------------+-----+-----+ + * + * sf: 0 -> 32bit, 1 -> 64bit + * op: 0 -> add , 1 -> sub + * S: 1 -> set flags + * shift: 00 -> LSL imm by 0, 01 -> LSL imm by 12 + */ +static void disas_add_sub_imm(DisasContext *s, uint32_t insn) +{ + int rd = extract32(insn, 0, 5); + int rn = extract32(insn, 5, 5); + uint64_t imm = extract32(insn, 10, 12); + int shift = extract32(insn, 22, 2); + bool setflags = extract32(insn, 29, 1); + bool sub_op = extract32(insn, 30, 1); + bool is_64bit = extract32(insn, 31, 1); + + TCGv_i64 tcg_rn = cpu_reg_sp(s, rn); + TCGv_i64 tcg_rd = setflags ? cpu_reg(s, rd) : cpu_reg_sp(s, rd); + TCGv_i64 tcg_result; + + switch (shift) { + case 0x0: + break; + case 0x1: + imm <<= 12; + break; + default: + unallocated_encoding(s); + return; + } + + tcg_result = tcg_temp_new_i64(); + if (!setflags) { + if (sub_op) { + tcg_gen_subi_i64(tcg_result, tcg_rn, imm); + } else { + tcg_gen_addi_i64(tcg_result, tcg_rn, imm); + } + } else { + TCGv_i64 tcg_imm = tcg_const_i64(imm); + if (sub_op) { + gen_sub_CC(is_64bit, tcg_result, tcg_rn, tcg_imm); + } else { + gen_add_CC(is_64bit, tcg_result, tcg_rn, tcg_imm); + } + tcg_temp_free_i64(tcg_imm); + } + + if (is_64bit) { + tcg_gen_mov_i64(tcg_rd, tcg_result); + } else { + tcg_gen_ext32u_i64(tcg_rd, tcg_result); + } + + tcg_temp_free_i64(tcg_result); +} + +/* The input should be a value in the bottom e bits (with higher + * bits zero); returns that value replicated into every element + * of size e in a 64 bit integer. + */ +static uint64_t bitfield_replicate(uint64_t mask, unsigned int e) +{ + assert(e != 0); + while (e < 64) { + mask |= mask << e; + e *= 2; + } + return mask; +} + +/* Return a value with the bottom len bits set (where 0 < len <= 64) */ +static inline uint64_t bitmask64(unsigned int length) +{ + assert(length > 0 && length <= 64); + return ~0ULL >> (64 - length); +} + +/* Simplified variant of pseudocode DecodeBitMasks() for the case where we + * only require the wmask. Returns false if the imms/immr/immn are a reserved + * value (ie should cause a guest UNDEF exception), and true if they are + * valid, in which case the decoded bit pattern is written to result. + */ +static bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn, + unsigned int imms, unsigned int immr) +{ + uint64_t mask; + unsigned e, levels, s, r; + int len; + + assert(immn < 2 && imms < 64 && immr < 64); + + /* The bit patterns we create here are 64 bit patterns which + * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or + * 64 bits each. Each element contains the same value: a run + * of between 1 and e-1 non-zero bits, rotated within the + * element by between 0 and e-1 bits. + * + * The element size and run length are encoded into immn (1 bit) + * and imms (6 bits) as follows: + * 64 bit elements: immn = 1, imms = <length of run - 1> + * 32 bit elements: immn = 0, imms = 0 : <length of run - 1> + * 16 bit elements: immn = 0, imms = 10 : <length of run - 1> + * 8 bit elements: immn = 0, imms = 110 : <length of run - 1> + * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1> + * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1> + * Notice that immn = 0, imms = 11111x is the only combination + * not covered by one of the above options; this is reserved. + * Further, <length of run - 1> all-ones is a reserved pattern. + * + * In all cases the rotation is by immr % e (and immr is 6 bits). + */ + + /* First determine the element size */ + len = 31 - clz32((immn << 6) | (~imms & 0x3f)); + if (len < 1) { + /* This is the immn == 0, imms == 0x11111x case */ + return false; + } + e = 1 << len; + + levels = e - 1; + s = imms & levels; + r = immr & levels; + + if (s == levels) { + /* <length of run - 1> mustn't be all-ones. */ + return false; + } + + /* Create the value of one element: s+1 set bits rotated + * by r within the element (which is e bits wide)... + */ + mask = bitmask64(s + 1); + if (r) { + mask = (mask >> r) | (mask << (e - r)); + mask &= bitmask64(e); + } + /* ...then replicate the element over the whole 64 bit value */ + mask = bitfield_replicate(mask, e); + *result = mask; + return true; +} + +/* C3.4.4 Logical (immediate) + * 31 30 29 28 23 22 21 16 15 10 9 5 4 0 + * +----+-----+-------------+---+------+------+------+------+ + * | sf | opc | 1 0 0 1 0 0 | N | immr | imms | Rn | Rd | + * +----+-----+-------------+---+------+------+------+------+ + */ +static void disas_logic_imm(DisasContext *s, uint32_t insn) +{ + unsigned int sf, opc, is_n, immr, imms, rn, rd; + TCGv_i64 tcg_rd, tcg_rn; + uint64_t wmask; + bool is_and = false; + + sf = extract32(insn, 31, 1); + opc = extract32(insn, 29, 2); + is_n = extract32(insn, 22, 1); + immr = extract32(insn, 16, 6); + imms = extract32(insn, 10, 6); + rn = extract32(insn, 5, 5); + rd = extract32(insn, 0, 5); + + if (!sf && is_n) { + unallocated_encoding(s); + return; + } + + if (opc == 0x3) { /* ANDS */ + tcg_rd = cpu_reg(s, rd); + } else { + tcg_rd = cpu_reg_sp(s, rd); + } + tcg_rn = cpu_reg(s, rn); + + if (!logic_imm_decode_wmask(&wmask, is_n, imms, immr)) { + /* some immediate field values are reserved */ + unallocated_encoding(s); + return; + } + + if (!sf) { + wmask &= 0xffffffff; + } + + switch (opc) { + case 0x3: /* ANDS */ + case 0x0: /* AND */ + tcg_gen_andi_i64(tcg_rd, tcg_rn, wmask); + is_and = true; + break; + case 0x1: /* ORR */ + tcg_gen_ori_i64(tcg_rd, tcg_rn, wmask); + break; + case 0x2: /* EOR */ + tcg_gen_xori_i64(tcg_rd, tcg_rn, wmask); + break; + default: + assert(FALSE); /* must handle all above */ + break; + } + + if (!sf && !is_and) { + /* zero extend final result; we know we can skip this for AND + * since the immediate had the high 32 bits clear. + */ + tcg_gen_ext32u_i64(tcg_rd, tcg_rd); + } + + if (opc == 3) { /* ANDS */ + gen_logic_CC(sf, tcg_rd); + } +} + +/* + * C3.4.5 Move wide (immediate) + * + * 31 30 29 28 23 22 21 20 5 4 0 + * +--+-----+-------------+-----+----------------+------+ + * |sf| opc | 1 0 0 1 0 1 | hw | imm16 | Rd | + * +--+-----+-------------+-----+----------------+------+ + * + * sf: 0 -> 32 bit, 1 -> 64 bit + * opc: 00 -> N, 10 -> Z, 11 -> K + * hw: shift/16 (0,16, and sf only 32, 48) + */ +static void disas_movw_imm(DisasContext *s, uint32_t insn) +{ + int rd = extract32(insn, 0, 5); + uint64_t imm = extract32(insn, 5, 16); + int sf = extract32(insn, 31, 1); + int opc = extract32(insn, 29, 2); + int pos = extract32(insn, 21, 2) << 4; + TCGv_i64 tcg_rd = cpu_reg(s, rd); + TCGv_i64 tcg_imm; + + if (!sf && (pos >= 32)) { + unallocated_encoding(s); + return; + } + + switch (opc) { + case 0: /* MOVN */ + case 2: /* MOVZ */ + imm <<= pos; + if (opc == 0) { + imm = ~imm; + } + if (!sf) { + imm &= 0xffffffffu; + } + tcg_gen_movi_i64(tcg_rd, imm); + break; + case 3: /* MOVK */ + tcg_imm = tcg_const_i64(imm); + tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_imm, pos, 16); + tcg_temp_free_i64(tcg_imm); + if (!sf) { + tcg_gen_ext32u_i64(tcg_rd, tcg_rd); + } + break; + default: + unallocated_encoding(s); + break; + } +} + +/* C3.4.2 Bitfield + * 31 30 29 28 23 22 21 16 15 10 9 5 4 0 + * +----+-----+-------------+---+------+------+------+------+ + * | sf | opc | 1 0 0 1 1 0 | N | immr | imms | Rn | Rd | + * +----+-----+-------------+---+------+------+------+------+ + */ +static void disas_bitfield(DisasContext *s, uint32_t insn) +{ + unsigned int sf, n, opc, ri, si, rn, rd, bitsize, pos, len; + TCGv_i64 tcg_rd, tcg_tmp; + + sf = extract32(insn, 31, 1); + opc = extract32(insn, 29, 2); + n = extract32(insn, 22, 1); + ri = extract32(insn, 16, 6); + si = extract32(insn, 10, 6); + rn = extract32(insn, 5, 5); + rd = extract32(insn, 0, 5); + bitsize = sf ? 64 : 32; + + if (sf != n || ri >= bitsize || si >= bitsize || opc > 2) { + unallocated_encoding(s); + return; + } + + tcg_rd = cpu_reg(s, rd); + + /* Suppress the zero-extend for !sf. Since RI and SI are constrained + to be smaller than bitsize, we'll never reference data outside the + low 32-bits anyway. */ + tcg_tmp = read_cpu_reg(s, rn, 1); + + /* Recognize the common aliases. */ + if (opc == 0) { /* SBFM */ + if (ri == 0) { + if (si == 7) { /* SXTB */ + tcg_gen_ext8s_i64(tcg_rd, tcg_tmp); + goto done; + } else if (si == 15) { /* SXTH */ + tcg_gen_ext16s_i64(tcg_rd, tcg_tmp); + goto done; + } else if (si == 31) { /* SXTW */ + tcg_gen_ext32s_i64(tcg_rd, tcg_tmp); + goto done; + } + } + if (si == 63 || (si == 31 && ri <= si)) { /* ASR */ + if (si == 31) { + tcg_gen_ext32s_i64(tcg_tmp, tcg_tmp); + } + tcg_gen_sari_i64(tcg_rd, tcg_tmp, ri); + goto done; + } + } else if (opc == 2) { /* UBFM */ + if (ri == 0) { /* UXTB, UXTH, plus non-canonical AND */ + tcg_gen_andi_i64(tcg_rd, tcg_tmp, bitmask64(si + 1)); + return; + } + if (si == 63 || (si == 31 && ri <= si)) { /* LSR */ + if (si == 31) { + tcg_gen_ext32u_i64(tcg_tmp, tcg_tmp); + } + tcg_gen_shri_i64(tcg_rd, tcg_tmp, ri); + return; + } + if (si + 1 == ri && si != bitsize - 1) { /* LSL */ + int shift = bitsize - 1 - si; + tcg_gen_shli_i64(tcg_rd, tcg_tmp, shift); + goto done; + } + } + + if (opc != 1) { /* SBFM or UBFM */ + tcg_gen_movi_i64(tcg_rd, 0); + } + + /* do the bit move operation */ + if (si >= ri) { + /* Wd<s-r:0> = Wn<s:r> */ + tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri); + pos = 0; + len = (si - ri) + 1; + } else { + /* Wd<32+s-r,32-r> = Wn<s:0> */ + pos = bitsize - ri; + len = si + 1; + } + + tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len); + + if (opc == 0) { /* SBFM - sign extend the destination field */ + tcg_gen_shli_i64(tcg_rd, tcg_rd, 64 - (pos + len)); + tcg_gen_sari_i64(tcg_rd, tcg_rd, 64 - (pos + len)); + } + + done: + if (!sf) { /* zero extend final result */ + tcg_gen_ext32u_i64(tcg_rd, tcg_rd); + } +} + +/* C3.4.3 Extract + * 31 30 29 28 23 22 21 20 16 15 10 9 5 4 0 + * +----+------+-------------+---+----+------+--------+------+------+ + * | sf | op21 | 1 0 0 1 1 1 | N | o0 | Rm | imms | Rn | Rd | + * +----+------+-------------+---+----+------+--------+------+------+ + */ +static void disas_extract(DisasContext *s, uint32_t insn) +{ + unsigned int sf, n, rm, imm, rn, rd, bitsize, op21, op0; + + sf = extract32(insn, 31, 1); + n = extract32(insn, 22, 1); + rm = extract32(insn, 16, 5); + imm = extract32(insn, 10, 6); + rn = extract32(insn, 5, 5); + rd = extract32(insn, 0, 5); + op21 = extract32(insn, 29, 2); + op0 = extract32(insn, 21, 1); + bitsize = sf ? 64 : 32; + + if (sf != n || op21 || op0 || imm >= bitsize) { + unallocated_encoding(s); + } else { + TCGv_i64 tcg_rd, tcg_rm, tcg_rn; + + tcg_rd = cpu_reg(s, rd); + + if (unlikely(imm == 0)) { + /* tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts, + * so an extract from bit 0 is a special case. + */ + if (sf) { + tcg_gen_mov_i64(tcg_rd, cpu_reg(s, rm)); + } else { + tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rm)); + } + } else if (rm == rn) { /* ROR */ + tcg_rm = cpu_reg(s, rm); + if (sf) { + tcg_gen_rotri_i64(tcg_rd, tcg_rm, imm); + } else { + TCGv_i32 tmp = tcg_temp_new_i32(); + tcg_gen_extrl_i64_i32(tmp, tcg_rm); + tcg_gen_rotri_i32(tmp, tmp, imm); + tcg_gen_extu_i32_i64(tcg_rd, tmp); + tcg_temp_free_i32(tmp); + } + } else { + tcg_rm = read_cpu_reg(s, rm, sf); + tcg_rn = read_cpu_reg(s, rn, sf); + tcg_gen_shri_i64(tcg_rm, tcg_rm, imm); + tcg_gen_shli_i64(tcg_rn, tcg_rn, bitsize - imm); + tcg_gen_or_i64(tcg_rd, tcg_rm, tcg_rn); + if (!sf) { + tcg_gen_ext32u_i64(tcg_rd, tcg_rd); + } + } + } +} + +/* C3.4 Data processing - immediate */ +static void disas_data_proc_imm(DisasContext *s, uint32_t insn) +{ + switch (extract32(insn, 23, 6)) { + case 0x20: case 0x21: /* PC-rel. addressing */ + disas_pc_rel_adr(s, insn); + break; + case 0x22: case 0x23: /* Add/subtract (immediate) */ + disas_add_sub_imm(s, insn); + break; + case 0x24: /* Logical (immediate) */ + disas_logic_imm(s, insn); + break; + case 0x25: /* Move wide (immediate) */ + disas_movw_imm(s, insn); + break; + case 0x26: /* Bitfield */ + disas_bitfield(s, insn); + break; + case 0x27: /* Extract */ + disas_extract(s, insn); + break; + default: + unallocated_encoding(s); + break; + } +} + +/* Shift a TCGv src by TCGv shift_amount, put result in dst. + * Note that it is the caller's responsibility to ensure that the + * shift amount is in range (ie 0..31 or 0..63) and provide the ARM + * mandated semantics for out of range shifts. + */ +static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf, + enum a64_shift_type shift_type, TCGv_i64 shift_amount) +{ + switch (shift_type) { + case A64_SHIFT_TYPE_LSL: + tcg_gen_shl_i64(dst, src, shift_amount); + break; + case A64_SHIFT_TYPE_LSR: + tcg_gen_shr_i64(dst, src, shift_amount); + break; + case A64_SHIFT_TYPE_ASR: + if (!sf) { + tcg_gen_ext32s_i64(dst, src); + } + tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount); + break; + case A64_SHIFT_TYPE_ROR: + if (sf) { + tcg_gen_rotr_i64(dst, src, shift_amount); + } else { + TCGv_i32 t0, t1; + t0 = tcg_temp_new_i32(); + t1 = tcg_temp_new_i32(); + tcg_gen_extrl_i64_i32(t0, src); + tcg_gen_extrl_i64_i32(t1, shift_amount); + tcg_gen_rotr_i32(t0, t0, t1); + tcg_gen_extu_i32_i64(dst, t0); + tcg_temp_free_i32(t0); + tcg_temp_free_i32(t1); + } + break; + default: + assert(FALSE); /* all shift types should be handled */ + break; + } + + if (!sf) { /* zero extend final result */ + tcg_gen_ext32u_i64(dst, dst); + } +} + +/* Shift a TCGv src by immediate, put result in dst. + * The shift amount must be in range (this should always be true as the + * relevant instructions will UNDEF on bad shift immediates). + */ +static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf, + enum a64_shift_type shift_type, unsigned int shift_i) +{ + assert(shift_i < (sf ? 64 : 32)); + + if (shift_i == 0) { + tcg_gen_mov_i64(dst, src); + } else { + TCGv_i64 shift_const; + + shift_const = tcg_const_i64(shift_i); + shift_reg(dst, src, sf, shift_type, shift_const); + tcg_temp_free_i64(shift_const); + } +} + +/* C3.5.10 Logical (shifted register) + * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 + * +----+-----+-----------+-------+---+------+--------+------+------+ + * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd | + * +----+-----+-----------+-------+---+------+--------+------+------+ + */ +static void disas_logic_reg(DisasContext *s, uint32_t insn) +{ + TCGv_i64 tcg_rd, tcg_rn, tcg_rm; + unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd; + + sf = extract32(insn, 31, 1); + opc = extract32(insn, 29, 2); + shift_type = extract32(insn, 22, 2); + invert = extract32(insn, 21, 1); + rm = extract32(insn, 16, 5); + shift_amount = extract32(insn, 10, 6); + rn = extract32(insn, 5, 5); + rd = extract32(insn, 0, 5); + + if (!sf && (shift_amount & (1 << 5))) { + unallocated_encoding(s); + return; + } + + tcg_rd = cpu_reg(s, rd); + + if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) { + /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for + * register-register MOV and MVN, so it is worth special casing. + */ + tcg_rm = cpu_reg(s, rm); + if (invert) { + tcg_gen_not_i64(tcg_rd, tcg_rm); + if (!sf) { + tcg_gen_ext32u_i64(tcg_rd, tcg_rd); + } + } else { + if (sf) { + tcg_gen_mov_i64(tcg_rd, tcg_rm); + } else { + tcg_gen_ext32u_i64(tcg_rd, tcg_rm); + } + } + return; + } + + tcg_rm = read_cpu_reg(s, rm, sf); + + if (shift_amount) { + shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount); + } + + tcg_rn = cpu_reg(s, rn); + + switch (opc | (invert << 2)) { + case 0: /* AND */ + case 3: /* ANDS */ + tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm); + break; + case 1: /* ORR */ + tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm); + break; + case 2: /* EOR */ + tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm); + break; + case 4: /* BIC */ + case 7: /* BICS */ + tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm); + break; + case 5: /* ORN */ + tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm); + break; + case 6: /* EON */ + tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm); + break; + default: + assert(FALSE); + break; + } + + if (!sf) { + tcg_gen_ext32u_i64(tcg_rd, tcg_rd); + } + + if (opc == 3) { + gen_logic_CC(sf, tcg_rd); + } +} + +/* + * C3.5.1 Add/subtract (extended register) + * + * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0| + * +--+--+--+-----------+-----+--+-------+------+------+----+----+ + * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd | + * +--+--+--+-----------+-----+--+-------+------+------+----+----+ + * + * sf: 0 -> 32bit, 1 -> 64bit + * op: 0 -> add , 1 -> sub + * S: 1 -> set flags + * opt: 00 + * option: extension type (see DecodeRegExtend) + * imm3: optional shift to Rm + * + * Rd = Rn + LSL(extend(Rm), amount) + */ +static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn) +{ + int rd = extract32(insn, 0, 5); + int rn = extract32(insn, 5, 5); + int imm3 = extract32(insn, 10, 3); + int option = extract32(insn, 13, 3); + int rm = extract32(insn, 16, 5); + bool setflags = extract32(insn, 29, 1); + bool sub_op = extract32(insn, 30, 1); + bool sf = extract32(insn, 31, 1); + + TCGv_i64 tcg_rm, tcg_rn; /* temps */ + TCGv_i64 tcg_rd; + TCGv_i64 tcg_result; + + if (imm3 > 4) { + unallocated_encoding(s); + return; + } + + /* non-flag setting ops may use SP */ + if (!setflags) { + tcg_rd = cpu_reg_sp(s, rd); + } else { + tcg_rd = cpu_reg(s, rd); + } + tcg_rn = read_cpu_reg_sp(s, rn, sf); + + tcg_rm = read_cpu_reg(s, rm, sf); + ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3); + + tcg_result = tcg_temp_new_i64(); + + if (!setflags) { + if (sub_op) { + tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); + } else { + tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); + } + } else { + if (sub_op) { + gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); + } else { + gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); + } + } + + if (sf) { + tcg_gen_mov_i64(tcg_rd, tcg_result); + } else { + tcg_gen_ext32u_i64(tcg_rd, tcg_result); + } + + tcg_temp_free_i64(tcg_result); +} + +/* + * C3.5.2 Add/subtract (shifted register) + * + * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 + * +--+--+--+-----------+-----+--+-------+---------+------+------+ + * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd | + * +--+--+--+-----------+-----+--+-------+---------+------+------+ + * + * sf: 0 -> 32bit, 1 -> 64bit + * op: 0 -> add , 1 -> sub + * S: 1 -> set flags + * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED + * imm6: Shift amount to apply to Rm before the add/sub + */ +static void disas_add_sub_reg(DisasContext *s, uint32_t insn) +{ + int rd = extract32(insn, 0, 5); + int rn = extract32(insn, 5, 5); + int imm6 = extract32(insn, 10, 6); + int rm = extract32(insn, 16, 5); + int shift_type = extract32(insn, 22, 2); + bool setflags = extract32(insn, 29, 1); + bool sub_op = extract32(insn, 30, 1); + bool sf = extract32(insn, 31, 1); + + TCGv_i64 tcg_rd = cpu_reg(s, rd); + TCGv_i64 tcg_rn, tcg_rm; + TCGv_i64 tcg_result; + + if ((shift_type == 3) || (!sf && (imm6 > 31))) { + unallocated_encoding(s); + return; + } + + tcg_rn = read_cpu_reg(s, rn, sf); + tcg_rm = read_cpu_reg(s, rm, sf); + + shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6); + + tcg_result = tcg_temp_new_i64(); + + if (!setflags) { + if (sub_op) { + tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); + } else { + tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); + } + } else { + if (sub_op) { + gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); + } else { + gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); + } + } + + if (sf) { + tcg_gen_mov_i64(tcg_rd, tcg_result); + } else { + tcg_gen_ext32u_i64(tcg_rd, tcg_result); + } + + tcg_temp_free_i64(tcg_result); +} + +/* C3.5.9 Data-processing (3 source) + + 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0 + +--+------+-----------+------+------+----+------+------+------+ + |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd | + +--+------+-----------+------+------+----+------+------+------+ + + */ +static void disas_data_proc_3src(DisasContext *s, uint32_t insn) +{ + int rd = extract32(insn, 0, 5); + int rn = extract32(insn, 5, 5); + int ra = extract32(insn, 10, 5); + int rm = extract32(insn, 16, 5); + int op_id = (extract32(insn, 29, 3) << 4) | + (extract32(insn, 21, 3) << 1) | + extract32(insn, 15, 1); + bool sf = extract32(insn, 31, 1); + bool is_sub = extract32(op_id, 0, 1); + bool is_high = extract32(op_id, 2, 1); + bool is_signed = false; + TCGv_i64 tcg_op1; + TCGv_i64 tcg_op2; + TCGv_i64 tcg_tmp; + + /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */ + switch (op_id) { + case 0x42: /* SMADDL */ + case 0x43: /* SMSUBL */ + case 0x44: /* SMULH */ + is_signed = true; + break; + case 0x0: /* MADD (32bit) */ + case 0x1: /* MSUB (32bit) */ + case 0x40: /* MADD (64bit) */ + case 0x41: /* MSUB (64bit) */ + case 0x4a: /* UMADDL */ + case 0x4b: /* UMSUBL */ + case 0x4c: /* UMULH */ + break; + default: + unallocated_encoding(s); + return; + } + + if (is_high) { + TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */ + TCGv_i64 tcg_rd = cpu_reg(s, rd); + TCGv_i64 tcg_rn = cpu_reg(s, rn); + TCGv_i64 tcg_rm = cpu_reg(s, rm); + + if (is_signed) { + tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); + } else { + tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); + } + + tcg_temp_free_i64(low_bits); + return; + } + + tcg_op1 = tcg_temp_new_i64(); + tcg_op2 = tcg_temp_new_i64(); + tcg_tmp = tcg_temp_new_i64(); + + if (op_id < 0x42) { + tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn)); + tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm)); + } else { + if (is_signed) { + tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn)); + tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm)); + } else { + tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn)); + tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm)); + } + } + + if (ra == 31 && !is_sub) { + /* Special-case MADD with rA == XZR; it is the standard MUL alias */ + tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2); + } else { + tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2); + if (is_sub) { + tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); + } else { + tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); + } + } + + if (!sf) { + tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd)); + } + + tcg_temp_free_i64(tcg_op1); + tcg_temp_free_i64(tcg_op2); + tcg_temp_free_i64(tcg_tmp); +} + +/* C3.5.3 - Add/subtract (with carry) + * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0 + * +--+--+--+------------------------+------+---------+------+-----+ + * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | opcode2 | Rn | Rd | + * +--+--+--+------------------------+------+---------+------+-----+ + * [000000] + */ + +static void disas_adc_sbc(DisasContext *s, uint32_t insn) +{ + unsigned int sf, op, setflags, rm, rn, rd; + TCGv_i64 tcg_y, tcg_rn, tcg_rd; + + if (extract32(insn, 10, 6) != 0) { + unallocated_encoding(s); + return; + } + + sf = extract32(insn, 31, 1); + op = extract32(insn, 30, 1); + setflags = extract32(insn, 29, 1); + rm = extract32(insn, 16, 5); + rn = extract32(insn, 5, 5); + rd = extract32(insn, 0, 5); + + tcg_rd = cpu_reg(s, rd); + tcg_rn = cpu_reg(s, rn); + + if (op) { + tcg_y = new_tmp_a64(s); + tcg_gen_not_i64(tcg_y, cpu_reg(s, rm)); + } else { + tcg_y = cpu_reg(s, rm); + } + + if (setflags) { + gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y); + } else { + gen_adc(sf, tcg_rd, tcg_rn, tcg_y); + } +} + +/* C3.5.4 - C3.5.5 Conditional compare (immediate / register) + * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 + * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ + * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv | + * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ + * [1] y [0] [0] + */ +static void disas_cc(DisasContext *s, uint32_t insn) +{ + unsigned int sf, op, y, cond, rn, nzcv, is_imm; + TCGv_i32 tcg_t0, tcg_t1, tcg_t2; + TCGv_i64 tcg_tmp, tcg_y, tcg_rn; + DisasCompare c; + + if (!extract32(insn, 29, 1)) { + unallocated_encoding(s); + return; + } + if (insn & (1 << 10 | 1 << 4)) { + unallocated_encoding(s); + return; + } + sf = extract32(insn, 31, 1); + op = extract32(insn, 30, 1); + is_imm = extract32(insn, 11, 1); + y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */ + cond = extract32(insn, 12, 4); + rn = extract32(insn, 5, 5); + nzcv = extract32(insn, 0, 4); + + /* Set T0 = !COND. */ + tcg_t0 = tcg_temp_new_i32(); + arm_test_cc(&c, cond); + tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0); + arm_free_cc(&c); + + /* Load the arguments for the new comparison. */ + if (is_imm) { + tcg_y = new_tmp_a64(s); + tcg_gen_movi_i64(tcg_y, y); + } else { + tcg_y = cpu_reg(s, y); + } + tcg_rn = cpu_reg(s, rn); + + /* Set the flags for the new comparison. */ + tcg_tmp = tcg_temp_new_i64(); + if (op) { + gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y); + } else { + gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y); + } + tcg_temp_free_i64(tcg_tmp); + + /* If COND was false, force the flags to #nzcv. Compute two masks + * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0). + * For tcg hosts that support ANDC, we can make do with just T1. + * In either case, allow the tcg optimizer to delete any unused mask. + */ + tcg_t1 = tcg_temp_new_i32(); + tcg_t2 = tcg_temp_new_i32(); + tcg_gen_neg_i32(tcg_t1, tcg_t0); + tcg_gen_subi_i32(tcg_t2, tcg_t0, 1); + + if (nzcv & 8) { /* N */ + tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1); + } else { + if (TCG_TARGET_HAS_andc_i32) { + tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1); + } else { + tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2); + } + } + if (nzcv & 4) { /* Z */ + if (TCG_TARGET_HAS_andc_i32) { + tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1); + } else { + tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2); + } + } else { + tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0); + } + if (nzcv & 2) { /* C */ + tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0); + } else { + if (TCG_TARGET_HAS_andc_i32) { + tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1); + } else { + tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2); + } + } + if (nzcv & 1) { /* V */ + tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1); + } else { + if (TCG_TARGET_HAS_andc_i32) { + tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1); + } else { + tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2); + } + } + tcg_temp_free_i32(tcg_t0); + tcg_temp_free_i32(tcg_t1); + tcg_temp_free_i32(tcg_t2); +} + +/* C3.5.6 Conditional select + * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0 + * +----+----+---+-----------------+------+------+-----+------+------+ + * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd | + * +----+----+---+-----------------+------+------+-----+------+------+ + */ +static void disas_cond_select(DisasContext *s, uint32_t insn) +{ + unsigned int sf, else_inv, rm, cond, else_inc, rn, rd; + TCGv_i64 tcg_rd, zero; + DisasCompare64 c; + + if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) { + /* S == 1 or op2<1> == 1 */ + unallocated_encoding(s); + return; + } + sf = extract32(insn, 31, 1); + else_inv = extract32(insn, 30, 1); + rm = extract32(insn, 16, 5); + cond = extract32(insn, 12, 4); + else_inc = extract32(insn, 10, 1); + rn = extract32(insn, 5, 5); + rd = extract32(insn, 0, 5); + + tcg_rd = cpu_reg(s, rd); + + a64_test_cc(&c, cond); + zero = tcg_const_i64(0); + + if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) { + /* CSET & CSETM. */ + tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero); + if (else_inv) { + tcg_gen_neg_i64(tcg_rd, tcg_rd); + } + } else { + TCGv_i64 t_true = cpu_reg(s, rn); + TCGv_i64 t_false = read_cpu_reg(s, rm, 1); + if (else_inv && else_inc) { + tcg_gen_neg_i64(t_false, t_false); + } else if (else_inv) { + tcg_gen_not_i64(t_false, t_false); + } else if (else_inc) { + tcg_gen_addi_i64(t_false, t_false, 1); + } + tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false); + } + + tcg_temp_free_i64(zero); + a64_free_cc(&c); + + if (!sf) { + tcg_gen_ext32u_i64(tcg_rd, tcg_rd); + } +} + +static void handle_clz(DisasContext *s, unsigned int sf, + unsigned int rn, unsigned int rd) +{ + TCGv_i64 tcg_rd, tcg_rn; + tcg_rd = cpu_reg(s, rd); + tcg_rn = cpu_reg(s, rn); + + if (sf) { + gen_helper_clz64(tcg_rd, tcg_rn); + } else { + TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); + tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); + gen_helper_clz(tcg_tmp32, tcg_tmp32); + tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); + tcg_temp_free_i32(tcg_tmp32); + } +} + +static void handle_cls(DisasContext *s, unsigned int sf, + unsigned int rn, unsigned int rd) +{ + TCGv_i64 tcg_rd, tcg_rn; + tcg_rd = cpu_reg(s, rd); + tcg_rn = cpu_reg(s, rn); + + if (sf) { + gen_helper_cls64(tcg_rd, tcg_rn); + } else { + TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); + tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); + gen_helper_cls32(tcg_tmp32, tcg_tmp32); + tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); + tcg_temp_free_i32(tcg_tmp32); + } +} + +static void handle_rbit(DisasContext *s, unsigned int sf, + unsigned int rn, unsigned int rd) +{ + TCGv_i64 tcg_rd, tcg_rn; + tcg_rd = cpu_reg(s, rd); + tcg_rn = cpu_reg(s, rn); + + if (sf) { + gen_helper_rbit64(tcg_rd, tcg_rn); + } else { + TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); + tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); + gen_helper_rbit(tcg_tmp32, tcg_tmp32); + tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); + tcg_temp_free_i32(tcg_tmp32); + } +} + +/* C5.6.149 REV with sf==1, opcode==3 ("REV64") */ +static void handle_rev64(DisasContext *s, unsigned int sf, + unsigned int rn, unsigned int rd) +{ + if (!sf) { + unallocated_encoding(s); + return; + } + tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn)); +} + +/* C5.6.149 REV with sf==0, opcode==2 + * C5.6.151 REV32 (sf==1, opcode==2) + */ +static void handle_rev32(DisasContext *s, unsigned int sf, + unsigned int rn, unsigned int rd) +{ + TCGv_i64 tcg_rd = cpu_reg(s, rd); + + if (sf) { + TCGv_i64 tcg_tmp = tcg_temp_new_i64(); + TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); + + /* bswap32_i64 requires zero high word */ + tcg_gen_ext32u_i64(tcg_tmp, tcg_rn); + tcg_gen_bswap32_i64(tcg_rd, tcg_tmp); + tcg_gen_shri_i64(tcg_tmp, tcg_rn, 32); + tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp); + tcg_gen_concat32_i64(tcg_rd, tcg_rd, tcg_tmp); + + tcg_temp_free_i64(tcg_tmp); + } else { + tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rn)); + tcg_gen_bswap32_i64(tcg_rd, tcg_rd); + } +} + +/* C5.6.150 REV16 (opcode==1) */ +static void handle_rev16(DisasContext *s, unsigned int sf, + unsigned int rn, unsigned int rd) +{ + TCGv_i64 tcg_rd = cpu_reg(s, rd); + TCGv_i64 tcg_tmp = tcg_temp_new_i64(); + TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); + + tcg_gen_andi_i64(tcg_tmp, tcg_rn, 0xffff); + tcg_gen_bswap16_i64(tcg_rd, tcg_tmp); + + tcg_gen_shri_i64(tcg_tmp, tcg_rn, 16); + tcg_gen_andi_i64(tcg_tmp, tcg_tmp, 0xffff); + tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp); + tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, 16, 16); + + if (sf) { + tcg_gen_shri_i64(tcg_tmp, tcg_rn, 32); + tcg_gen_andi_i64(tcg_tmp, tcg_tmp, 0xffff); + tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp); + tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, 32, 16); + + tcg_gen_shri_i64(tcg_tmp, tcg_rn, 48); + tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp); + tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, 48, 16); + } + + tcg_temp_free_i64(tcg_tmp); +} + +/* C3.5.7 Data-processing (1 source) + * 31 30 29 28 21 20 16 15 10 9 5 4 0 + * +----+---+---+-----------------+---------+--------+------+------+ + * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd | + * +----+---+---+-----------------+---------+--------+------+------+ + */ +static void disas_data_proc_1src(DisasContext *s, uint32_t insn) +{ + unsigned int sf, opcode, rn, rd; + + if (extract32(insn, 29, 1) || extract32(insn, 16, 5)) { + unallocated_encoding(s); + return; + } + + sf = extract32(insn, 31, 1); + opcode = extract32(insn, 10, 6); + rn = extract32(insn, 5, 5); + rd = extract32(insn, 0, 5); + + switch (opcode) { + case 0: /* RBIT */ + handle_rbit(s, sf, rn, rd); + break; + case 1: /* REV16 */ + handle_rev16(s, sf, rn, rd); + break; + case 2: /* REV32 */ + handle_rev32(s, sf, rn, rd); + break; + case 3: /* REV64 */ + handle_rev64(s, sf, rn, rd); + break; + case 4: /* CLZ */ + handle_clz(s, sf, rn, rd); + break; + case 5: /* CLS */ + handle_cls(s, sf, rn, rd); + break; + } +} + +static void handle_div(DisasContext *s, bool is_signed, unsigned int sf, + unsigned int rm, unsigned int rn, unsigned int rd) +{ + TCGv_i64 tcg_n, tcg_m, tcg_rd; + tcg_rd = cpu_reg(s, rd); + + if (!sf && is_signed) { + tcg_n = new_tmp_a64(s); + tcg_m = new_tmp_a64(s); + tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn)); + tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm)); + } else { + tcg_n = read_cpu_reg(s, rn, sf); + tcg_m = read_cpu_reg(s, rm, sf); + } + + if (is_signed) { + gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m); + } else { + gen_helper_udiv64(tcg_rd, tcg_n, tcg_m); + } + + if (!sf) { /* zero extend final result */ + tcg_gen_ext32u_i64(tcg_rd, tcg_rd); + } +} + +/* C5.6.115 LSLV, C5.6.118 LSRV, C5.6.17 ASRV, C5.6.154 RORV */ +static void handle_shift_reg(DisasContext *s, + enum a64_shift_type shift_type, unsigned int sf, + unsigned int rm, unsigned int rn, unsigned int rd) +{ + TCGv_i64 tcg_shift = tcg_temp_new_i64(); + TCGv_i64 tcg_rd = cpu_reg(s, rd); + TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); + + tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31); + shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift); + tcg_temp_free_i64(tcg_shift); +} + +/* CRC32[BHWX], CRC32C[BHWX] */ +static void handle_crc32(DisasContext *s, + unsigned int sf, unsigned int sz, bool crc32c, + unsigned int rm, unsigned int rn, unsigned int rd) +{ + TCGv_i64 tcg_acc, tcg_val; + TCGv_i32 tcg_bytes; + + if (!arm_dc_feature(s, ARM_FEATURE_CRC) + || (sf == 1 && sz != 3) + || (sf == 0 && sz == 3)) { + unallocated_encoding(s); + return; + } + + if (sz == 3) { + tcg_val = cpu_reg(s, rm); + } else { + uint64_t mask; + switch (sz) { + case 0: + mask = 0xFF; + break; + case 1: + mask = 0xFFFF; + break; + case 2: + mask = 0xFFFFFFFF; + break; + default: + g_assert_not_reached(); + } + tcg_val = new_tmp_a64(s); + tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask); + } + + tcg_acc = cpu_reg(s, rn); + tcg_bytes = tcg_const_i32(1 << sz); + + if (crc32c) { + gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); + } else { + gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); + } + + tcg_temp_free_i32(tcg_bytes); +} + +/* C3.5.8 Data-processing (2 source) + * 31 30 29 28 21 20 16 15 10 9 5 4 0 + * +----+---+---+-----------------+------+--------+------+------+ + * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd | + * +----+---+---+-----------------+------+--------+------+------+ + */ +static void disas_data_proc_2src(DisasContext *s, uint32_t insn) +{ + unsigned int sf, rm, opcode, rn, rd; + sf = extract32(insn, 31, 1); + rm = extract32(insn, 16, 5); + opcode = extract32(insn, 10, 6); + rn = extract32(insn, 5, 5); + rd = extract32(insn, 0, 5); + + if (extract32(insn, 29, 1)) { + unallocated_encoding(s); + return; + } + + switch (opcode) { + case 2: /* UDIV */ + handle_div(s, false, sf, rm, rn, rd); + break; + case 3: /* SDIV */ + handle_div(s, true, sf, rm, rn, rd); + break; + case 8: /* LSLV */ + handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd); + break; + case 9: /* LSRV */ + handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd); + break; + case 10: /* ASRV */ + handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd); + break; + case 11: /* RORV */ + handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd); + break; + case 16: + case 17: + case 18: + case 19: + case 20: + case 21: + case 22: + case 23: /* CRC32 */ + { + int sz = extract32(opcode, 0, 2); + bool crc32c = extract32(opcode, 2, 1); + handle_crc32(s, sf, sz, crc32c, rm, rn, rd); + break; + } + default: + unallocated_encoding(s); + break; + } +} + +/* C3.5 Data processing - register */ +static void disas_data_proc_reg(DisasContext *s, uint32_t insn) +{ + switch (extract32(insn, 24, 5)) { + case 0x0a: /* Logical (shifted register) */ + disas_logic_reg(s, insn); + break; + case 0x0b: /* Add/subtract */ + if (insn & (1 << 21)) { /* (extended register) */ + disas_add_sub_ext_reg(s, insn); + } else { + disas_add_sub_reg(s, insn); + } + break; + case 0x1b: /* Data-processing (3 source) */ + disas_data_proc_3src(s, insn); + break; + case 0x1a: + switch (extract32(insn, 21, 3)) { + case 0x0: /* Add/subtract (with carry) */ + disas_adc_sbc(s, insn); + break; + case 0x2: /* Conditional compare */ + disas_cc(s, insn); /* both imm and reg forms */ + break; + case 0x4: /* Conditional select */ + disas_cond_select(s, insn); + break; + case 0x6: /* Data-processing */ + if (insn & (1 << 30)) { /* (1 source) */ + disas_data_proc_1src(s, insn); + } else { /* (2 source) */ + disas_data_proc_2src(s, insn); + } + break; + default: + unallocated_encoding(s); + break; + } + break; + default: + unallocated_encoding(s); + break; + } +} + +static void handle_fp_compare(DisasContext *s, bool is_double, + unsigned int rn, unsigned int rm, + bool cmp_with_zero, bool signal_all_nans) +{ + TCGv_i64 tcg_flags = tcg_temp_new_i64(); + TCGv_ptr fpst = get_fpstatus_ptr(); + + if (is_double) { + TCGv_i64 tcg_vn, tcg_vm; + + tcg_vn = read_fp_dreg(s, rn); + if (cmp_with_zero) { + tcg_vm = tcg_const_i64(0); + } else { + tcg_vm = read_fp_dreg(s, rm); + } + if (signal_all_nans) { + gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst); + } else { + gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst); + } + tcg_temp_free_i64(tcg_vn); + tcg_temp_free_i64(tcg_vm); + } else { + TCGv_i32 tcg_vn, tcg_vm; + + tcg_vn = read_fp_sreg(s, rn); + if (cmp_with_zero) { + tcg_vm = tcg_const_i32(0); + } else { + tcg_vm = read_fp_sreg(s, rm); + } + if (signal_all_nans) { + gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst); + } else { + gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst); + } + tcg_temp_free_i32(tcg_vn); + tcg_temp_free_i32(tcg_vm); + } + + tcg_temp_free_ptr(fpst); + + gen_set_nzcv(tcg_flags); + + tcg_temp_free_i64(tcg_flags); +} + +/* C3.6.22 Floating point compare + * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0 + * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ + * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 | + * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ + */ +static void disas_fp_compare(DisasContext *s, uint32_t insn) +{ + unsigned int mos, type, rm, op, rn, opc, op2r; + + mos = extract32(insn, 29, 3); + type = extract32(insn, 22, 2); /* 0 = single, 1 = double */ + rm = extract32(insn, 16, 5); + op = extract32(insn, 14, 2); + rn = extract32(insn, 5, 5); + opc = extract32(insn, 3, 2); + op2r = extract32(insn, 0, 3); + + if (mos || op || op2r || type > 1) { + unallocated_encoding(s); + return; + } + + if (!fp_access_check(s)) { + return; + } + + handle_fp_compare(s, type, rn, rm, opc & 1, opc & 2); +} + +/* C3.6.23 Floating point conditional compare + * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 + * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ + * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv | + * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ + */ +static void disas_fp_ccomp(DisasContext *s, uint32_t insn) +{ + unsigned int mos, type, rm, cond, rn, op, nzcv; + TCGv_i64 tcg_flags; + TCGLabel *label_continue = NULL; + + mos = extract32(insn, 29, 3); + type = extract32(insn, 22, 2); /* 0 = single, 1 = double */ + rm = extract32(insn, 16, 5); + cond = extract32(insn, 12, 4); + rn = extract32(insn, 5, 5); + op = extract32(insn, 4, 1); + nzcv = extract32(insn, 0, 4); + + if (mos || type > 1) { + unallocated_encoding(s); + return; + } + + if (!fp_access_check(s)) { + return; + } + + if (cond < 0x0e) { /* not always */ + TCGLabel *label_match = gen_new_label(); + label_continue = gen_new_label(); + arm_gen_test_cc(cond, label_match); + /* nomatch: */ + tcg_flags = tcg_const_i64(nzcv << 28); + gen_set_nzcv(tcg_flags); + tcg_temp_free_i64(tcg_flags); + tcg_gen_br(label_continue); + gen_set_label(label_match); + } + + handle_fp_compare(s, type, rn, rm, false, op); + + if (cond < 0x0e) { + gen_set_label(label_continue); + } +} + +/* C3.6.24 Floating point conditional select + * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 + * +---+---+---+-----------+------+---+------+------+-----+------+------+ + * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd | + * +---+---+---+-----------+------+---+------+------+-----+------+------+ + */ +static void disas_fp_csel(DisasContext *s, uint32_t insn) +{ + unsigned int mos, type, rm, cond, rn, rd; + TCGv_i64 t_true, t_false, t_zero; + DisasCompare64 c; + + mos = extract32(insn, 29, 3); + type = extract32(insn, 22, 2); /* 0 = single, 1 = double */ + rm = extract32(insn, 16, 5); + cond = extract32(insn, 12, 4); + rn = extract32(insn, 5, 5); + rd = extract32(insn, 0, 5); + + if (mos || type > 1) { + unallocated_encoding(s); + return; + } + + if (!fp_access_check(s)) { + return; + } + + /* Zero extend sreg inputs to 64 bits now. */ + t_true = tcg_temp_new_i64(); + t_false = tcg_temp_new_i64(); + read_vec_element(s, t_true, rn, 0, type ? MO_64 : MO_32); + read_vec_element(s, t_false, rm, 0, type ? MO_64 : MO_32); + + a64_test_cc(&c, cond); + t_zero = tcg_const_i64(0); + tcg_gen_movcond_i64(c.cond, t_true, c.value, t_zero, t_true, t_false); + tcg_temp_free_i64(t_zero); + tcg_temp_free_i64(t_false); + a64_free_cc(&c); + + /* Note that sregs write back zeros to the high bits, + and we've already done the zero-extension. */ + write_fp_dreg(s, rd, t_true); + tcg_temp_free_i64(t_true); +} + +/* C3.6.25 Floating-point data-processing (1 source) - single precision */ +static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn) +{ + TCGv_ptr fpst; + TCGv_i32 tcg_op; + TCGv_i32 tcg_res; + + fpst = get_fpstatus_ptr(); + tcg_op = read_fp_sreg(s, rn); + tcg_res = tcg_temp_new_i32(); + + switch (opcode) { + case 0x0: /* FMOV */ + tcg_gen_mov_i32(tcg_res, tcg_op); + break; + case 0x1: /* FABS */ + gen_helper_vfp_abss(tcg_res, tcg_op); + break; + case 0x2: /* FNEG */ + gen_helper_vfp_negs(tcg_res, tcg_op); + break; + case 0x3: /* FSQRT */ + gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env); + break; + case 0x8: /* FRINTN */ + case 0x9: /* FRINTP */ + case 0xa: /* FRINTM */ + case 0xb: /* FRINTZ */ + case 0xc: /* FRINTA */ + { + TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7)); + + gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env); + gen_helper_rints(tcg_res, tcg_op, fpst); + + gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env); + tcg_temp_free_i32(tcg_rmode); + break; + } + case 0xe: /* FRINTX */ + gen_helper_rints_exact(tcg_res, tcg_op, fpst); + break; + case 0xf: /* FRINTI */ + gen_helper_rints(tcg_res, tcg_op, fpst); + break; + default: + abort(); + } + + write_fp_sreg(s, rd, tcg_res); + + tcg_temp_free_ptr(fpst); + tcg_temp_free_i32(tcg_op); + tcg_temp_free_i32(tcg_res); +} + +/* C3.6.25 Floating-point data-processing (1 source) - double precision */ +static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn) +{ + TCGv_ptr fpst; + TCGv_i64 tcg_op; + TCGv_i64 tcg_res; + + fpst = get_fpstatus_ptr(); + tcg_op = read_fp_dreg(s, rn); + tcg_res = tcg_temp_new_i64(); + + switch (opcode) { + case 0x0: /* FMOV */ + tcg_gen_mov_i64(tcg_res, tcg_op); + break; + case 0x1: /* FABS */ + gen_helper_vfp_absd(tcg_res, tcg_op); + break; + case 0x2: /* FNEG */ + gen_helper_vfp_negd(tcg_res, tcg_op); + break; + case 0x3: /* FSQRT */ + gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env); + break; + case 0x8: /* FRINTN */ + case 0x9: /* FRINTP */ + case 0xa: /* FRINTM */ + case 0xb: /* FRINTZ */ + case 0xc: /* FRINTA */ + { + TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7)); + + gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env); + gen_helper_rintd(tcg_res, tcg_op, fpst); + + gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env); + tcg_temp_free_i32(tcg_rmode); + break; + } + case 0xe: /* FRINTX */ + gen_helper_rintd_exact(tcg_res, tcg_op, fpst); + break; + case 0xf: /* FRINTI */ + gen_helper_rintd(tcg_res, tcg_op, fpst); + break; + default: + abort(); + } + + write_fp_dreg(s, rd, tcg_res); + + tcg_temp_free_ptr(fpst); + tcg_temp_free_i64(tcg_op); + tcg_temp_free_i64(tcg_res); +} + +static void handle_fp_fcvt(DisasContext *s, int opcode, + int rd, int rn, int dtype, int ntype) +{ + switch (ntype) { + case 0x0: + { + TCGv_i32 tcg_rn = read_fp_sreg(s, rn); + if (dtype == 1) { + /* Single to double */ + TCGv_i64 tcg_rd = tcg_temp_new_i64(); + gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env); + write_fp_dreg(s, rd, tcg_rd); + tcg_temp_free_i64(tcg_rd); + } else { + /* Single to half */ + TCGv_i32 tcg_rd = tcg_temp_new_i32(); + gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, cpu_env); + /* write_fp_sreg is OK here because top half of tcg_rd is zero */ + write_fp_sreg(s, rd, tcg_rd); + tcg_temp_free_i32(tcg_rd); + } + tcg_temp_free_i32(tcg_rn); + break; + } + case 0x1: + { + TCGv_i64 tcg_rn = read_fp_dreg(s, rn); + TCGv_i32 tcg_rd = tcg_temp_new_i32(); + if (dtype == 0) { + /* Double to single */ + gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env); + } else { + /* Double to half */ + gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, cpu_env); + /* write_fp_sreg is OK here because top half of tcg_rd is zero */ + } + write_fp_sreg(s, rd, tcg_rd); + tcg_temp_free_i32(tcg_rd); + tcg_temp_free_i64(tcg_rn); + break; + } + case 0x3: + { + TCGv_i32 tcg_rn = read_fp_sreg(s, rn); + tcg_gen_ext16u_i32(tcg_rn, tcg_rn); + if (dtype == 0) { + /* Half to single */ + TCGv_i32 tcg_rd = tcg_temp_new_i32(); + gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, cpu_env); + write_fp_sreg(s, rd, tcg_rd); + tcg_temp_free_i32(tcg_rd); + } else { + /* Half to double */ + TCGv_i64 tcg_rd = tcg_temp_new_i64(); + gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, cpu_env); + write_fp_dreg(s, rd, tcg_rd); + tcg_temp_free_i64(tcg_rd); + } + tcg_temp_free_i32(tcg_rn); + break; + } + default: + abort(); + } +} + +/* C3.6.25 Floating point data-processing (1 source) + * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0 + * +---+---+---+-----------+------+---+--------+-----------+------+------+ + * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd | + * +---+---+---+-----------+------+---+--------+-----------+------+------+ + */ +static void disas_fp_1src(DisasContext *s, uint32_t insn) +{ + int type = extract32(insn, 22, 2); + int opcode = extract32(insn, 15, 6); + int rn = extract32(insn, 5, 5); + int rd = extract32(insn, 0, 5); + + switch (opcode) { + case 0x4: case 0x5: case 0x7: + { + /* FCVT between half, single and double precision */ + int dtype = extract32(opcode, 0, 2); + if (type == 2 || dtype == type) { + unallocated_encoding(s); + return; + } + if (!fp_access_check(s)) { + return; + } + + handle_fp_fcvt(s, opcode, rd, rn, dtype, type); + break; + } + case 0x0 ... 0x3: + case 0x8 ... 0xc: + case 0xe ... 0xf: + /* 32-to-32 and 64-to-64 ops */ + switch (type) { + case 0: + if (!fp_access_check(s)) { + return; + } + + handle_fp_1src_single(s, opcode, rd, rn); + break; + case 1: + if (!fp_access_check(s)) { + return; + } + + handle_fp_1src_double(s, opcode, rd, rn); + break; + default: + unallocated_encoding(s); + } + break; + default: + unallocated_encoding(s); + break; + } +} + +/* C3.6.26 Floating-point data-processing (2 source) - single precision */ +static void handle_fp_2src_single(DisasContext *s, int opcode, + int rd, int rn, int rm) +{ + TCGv_i32 tcg_op1; + TCGv_i32 tcg_op2; + TCGv_i32 tcg_res; + TCGv_ptr fpst; + + tcg_res = tcg_temp_new_i32(); + fpst = get_fpstatus_ptr(); + tcg_op1 = read_fp_sreg(s, rn); + tcg_op2 = read_fp_sreg(s, rm); + + switch (opcode) { + case 0x0: /* FMUL */ + gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); + break; + case 0x1: /* FDIV */ + gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); + break; + case 0x2: /* FADD */ + gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); + break; + case 0x3: /* FSUB */ + gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); + break; + case 0x4: /* FMAX */ + gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); + break; + case 0x5: /* FMIN */ + gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); + break; + case 0x6: /* FMAXNM */ + gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); + break; + case 0x7: /* FMINNM */ + gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); + break; + case 0x8: /* FNMUL */ + gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); + gen_helper_vfp_negs(tcg_res, tcg_res); + break; + } + + write_fp_sreg(s, rd, tcg_res); + + tcg_temp_free_ptr(fpst); + tcg_temp_free_i32(tcg_op1); + tcg_temp_free_i32(tcg_op2); + tcg_temp_free_i32(tcg_res); +} + +/* C3.6.26 Floating-point data-processing (2 source) - double precision */ +static void handle_fp_2src_double(DisasContext *s, int opcode, + int rd, int rn, int rm) +{ + TCGv_i64 tcg_op1; + TCGv_i64 tcg_op2; + TCGv_i64 tcg_res; + TCGv_ptr fpst; + + tcg_res = tcg_temp_new_i64(); + fpst = get_fpstatus_ptr(); + tcg_op1 = read_fp_dreg(s, rn); + tcg_op2 = read_fp_dreg(s, rm); + + switch (opcode) { + case 0x0: /* FMUL */ + gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); + break; + case 0x1: /* FDIV */ + gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); + break; + case 0x2: /* FADD */ + gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); + break; + case 0x3: /* FSUB */ + gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); + break; + case 0x4: /* FMAX */ + gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); + break; + case 0x5: /* FMIN */ + gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); + break; + case 0x6: /* FMAXNM */ + gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); + break; + case 0x7: /* FMINNM */ + gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); + break; + case 0x8: /* FNMUL */ + gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); + gen_helper_vfp_negd(tcg_res, tcg_res); + break; + } + + write_fp_dreg(s, rd, tcg_res); + + tcg_temp_free_ptr(fpst); + tcg_temp_free_i64(tcg_op1); + tcg_temp_free_i64(tcg_op2); + tcg_temp_free_i64(tcg_res); +} + +/* C3.6.26 Floating point data-processing (2 source) + * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 + * +---+---+---+-----------+------+---+------+--------+-----+------+------+ + * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd | + * +---+---+---+-----------+------+---+------+--------+-----+------+------+ + */ +static void disas_fp_2src(DisasContext *s, uint32_t insn) +{ + int type = extract32(insn, 22, 2); + int rd = extract32(insn, 0, 5); + int rn = extract32(insn, 5, 5); + int rm = extract32(insn, 16, 5); + int opcode = extract32(insn, 12, 4); + + if (opcode > 8) { + unallocated_encoding(s); + return; + } + + switch (type) { + case 0: + if (!fp_access_check(s)) { + return; + } + handle_fp_2src_single(s, opcode, rd, rn, rm); + break; + case 1: + if (!fp_access_check(s)) { + return; + } + handle_fp_2src_double(s, opcode, rd, rn, rm); + break; + default: + unallocated_encoding(s); + } +} + +/* C3.6.27 Floating-point data-processing (3 source) - single precision */ +static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1, + int rd, int rn, int rm, int ra) +{ + TCGv_i32 tcg_op1, tcg_op2, tcg_op3; + TCGv_i32 tcg_res = tcg_temp_new_i32(); + TCGv_ptr fpst = get_fpstatus_ptr(); + + tcg_op1 = read_fp_sreg(s, rn); + tcg_op2 = read_fp_sreg(s, rm); + tcg_op3 = read_fp_sreg(s, ra); + + /* These are fused multiply-add, and must be done as one + * floating point operation with no rounding between the + * multiplication and addition steps. + * NB that doing the negations here as separate steps is + * correct : an input NaN should come out with its sign bit + * flipped if it is a negated-input. + */ + if (o1 == true) { + gen_helper_vfp_negs(tcg_op3, tcg_op3); + } + + if (o0 != o1) { + gen_helper_vfp_negs(tcg_op1, tcg_op1); + } + + gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); + + write_fp_sreg(s, rd, tcg_res); + + tcg_temp_free_ptr(fpst); + tcg_temp_free_i32(tcg_op1); + tcg_temp_free_i32(tcg_op2); + tcg_temp_free_i32(tcg_op3); + tcg_temp_free_i32(tcg_res); +} + +/* C3.6.27 Floating-point data-processing (3 source) - double precision */ +static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1, + int rd, int rn, int rm, int ra) +{ + TCGv_i64 tcg_op1, tcg_op2, tcg_op3; + TCGv_i64 tcg_res = tcg_temp_new_i64(); + TCGv_ptr fpst = get_fpstatus_ptr(); + + tcg_op1 = read_fp_dreg(s, rn); + tcg_op2 = read_fp_dreg(s, rm); + tcg_op3 = read_fp_dreg(s, ra); + + /* These are fused multiply-add, and must be done as one + * floating point operation with no rounding between the + * multiplication and addition steps. + * NB that doing the negations here as separate steps is + * correct : an input NaN should come out with its sign bit + * flipped if it is a negated-input. + */ + if (o1 == true) { + gen_helper_vfp_negd(tcg_op3, tcg_op3); + } + + if (o0 != o1) { + gen_helper_vfp_negd(tcg_op1, tcg_op1); + } + + gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); + + write_fp_dreg(s, rd, tcg_res); + + tcg_temp_free_ptr(fpst); + tcg_temp_free_i64(tcg_op1); + tcg_temp_free_i64(tcg_op2); + tcg_temp_free_i64(tcg_op3); + tcg_temp_free_i64(tcg_res); +} + +/* C3.6.27 Floating point data-processing (3 source) + * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0 + * +---+---+---+-----------+------+----+------+----+------+------+------+ + * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd | + * +---+---+---+-----------+------+----+------+----+------+------+------+ + */ +static void disas_fp_3src(DisasContext *s, uint32_t insn) +{ + int type = extract32(insn, 22, 2); + int rd = extract32(insn, 0, 5); + int rn = extract32(insn, 5, 5); + int ra = extract32(insn, 10, 5); + int rm = extract32(insn, 16, 5); + bool o0 = extract32(insn, 15, 1); + bool o1 = extract32(insn, 21, 1); + + switch (type) { + case 0: + if (!fp_access_check(s)) { + return; + } + handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra); + break; + case 1: + if (!fp_access_check(s)) { + return; + } + handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra); + break; + default: + unallocated_encoding(s); + } +} + +/* C3.6.28 Floating point immediate + * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0 + * +---+---+---+-----------+------+---+------------+-------+------+------+ + * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd | + * +---+---+---+-----------+------+---+------------+-------+------+------+ + */ +static void disas_fp_imm(DisasContext *s, uint32_t insn) +{ + int rd = extract32(insn, 0, 5); + int imm8 = extract32(insn, 13, 8); + int is_double = extract32(insn, 22, 2); + uint64_t imm; + TCGv_i64 tcg_res; + + if (is_double > 1) { + unallocated_encoding(s); + return; + } + + if (!fp_access_check(s)) { + return; + } + + /* The imm8 encodes the sign bit, enough bits to represent + * an exponent in the range 01....1xx to 10....0xx, + * and the most significant 4 bits of the mantissa; see + * VFPExpandImm() in the v8 ARM ARM. + */ + if (is_double) { + imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) | + (extract32(imm8, 6, 1) ? 0x3fc0 : 0x4000) | + extract32(imm8, 0, 6); + imm <<= 48; + } else { + imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) | + (extract32(imm8, 6, 1) ? 0x3e00 : 0x4000) | + (extract32(imm8, 0, 6) << 3); + imm <<= 16; + } + + tcg_res = tcg_const_i64(imm); + write_fp_dreg(s, rd, tcg_res); + tcg_temp_free_i64(tcg_res); +} + +/* Handle floating point <=> fixed point conversions. Note that we can + * also deal with fp <=> integer conversions as a special case (scale == 64) + * OPTME: consider handling that special case specially or at least skipping + * the call to scalbn in the helpers for zero shifts. + */ +static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode, + bool itof, int rmode, int scale, int sf, int type) +{ + bool is_signed = !(opcode & 1); + bool is_double = type; + TCGv_ptr tcg_fpstatus; + TCGv_i32 tcg_shift; + + tcg_fpstatus = get_fpstatus_ptr(); + + tcg_shift = tcg_const_i32(64 - scale); + + if (itof) { + TCGv_i64 tcg_int = cpu_reg(s, rn); + if (!sf) { + TCGv_i64 tcg_extend = new_tmp_a64(s); + + if (is_signed) { + tcg_gen_ext32s_i64(tcg_extend, tcg_int); + } else { + tcg_gen_ext32u_i64(tcg_extend, tcg_int); + } + + tcg_int = tcg_extend; + } + + if (is_double) { + TCGv_i64 tcg_double = tcg_temp_new_i64(); + if (is_signed) { + gen_helper_vfp_sqtod(tcg_double, tcg_int, + tcg_shift, tcg_fpstatus); + } else { + gen_helper_vfp_uqtod(tcg_double, tcg_int, + tcg_shift, tcg_fpstatus); + } + write_fp_dreg(s, rd, tcg_double); + tcg_temp_free_i64(tcg_double); + } else { + TCGv_i32 tcg_single = tcg_temp_new_i32(); + if (is_signed) { + gen_helper_vfp_sqtos(tcg_single, tcg_int, + tcg_shift, tcg_fpstatus); + } else { + gen_helper_vfp_uqtos(tcg_single, tcg_int, + tcg_shift, tcg_fpstatus); + } + write_fp_sreg(s, rd, tcg_single); + tcg_temp_free_i32(tcg_single); + } + } else { + TCGv_i64 tcg_int = cpu_reg(s, rd); + TCGv_i32 tcg_rmode; + + if (extract32(opcode, 2, 1)) { + /* There are too many rounding modes to all fit into rmode, + * so FCVTA[US] is a special case. + */ + rmode = FPROUNDING_TIEAWAY; + } + + tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode)); + + gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env); + + if (is_double) { + TCGv_i64 tcg_double = read_fp_dreg(s, rn); + if (is_signed) { + if (!sf) { + gen_helper_vfp_tosld(tcg_int, tcg_double, + tcg_shift, tcg_fpstatus); + } else { + gen_helper_vfp_tosqd(tcg_int, tcg_double, + tcg_shift, tcg_fpstatus); + } + } else { + if (!sf) { + gen_helper_vfp_tould(tcg_int, tcg_double, + tcg_shift, tcg_fpstatus); + } else { + gen_helper_vfp_touqd(tcg_int, tcg_double, + tcg_shift, tcg_fpstatus); + } + } + tcg_temp_free_i64(tcg_double); + } else { + TCGv_i32 tcg_single = read_fp_sreg(s, rn); + if (sf) { + if (is_signed) { + gen_helper_vfp_tosqs(tcg_int, tcg_single, + tcg_shift, tcg_fpstatus); + } else { + gen_helper_vfp_touqs(tcg_int, tcg_single, + tcg_shift, tcg_fpstatus); + } + } else { + TCGv_i32 tcg_dest = tcg_temp_new_i32(); + if (is_signed) { + gen_helper_vfp_tosls(tcg_dest, tcg_single, + tcg_shift, tcg_fpstatus); + } else { + gen_helper_vfp_touls(tcg_dest, tcg_single, + tcg_shift, tcg_fpstatus); + } + tcg_gen_extu_i32_i64(tcg_int, tcg_dest); + tcg_temp_free_i32(tcg_dest); + } + tcg_temp_free_i32(tcg_single); + } + + gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env); + tcg_temp_free_i32(tcg_rmode); + + if (!sf) { + tcg_gen_ext32u_i64(tcg_int, tcg_int); + } + } + + tcg_temp_free_ptr(tcg_fpstatus); + tcg_temp_free_i32(tcg_shift); +} + +/* C3.6.29 Floating point <-> fixed point conversions + * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 + * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ + * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd | + * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ + */ +static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn) +{ + int rd = extract32(insn, 0, 5); + int rn = extract32(insn, 5, 5); + int scale = extract32(insn, 10, 6); + int opcode = extract32(insn, 16, 3); + int rmode = extract32(insn, 19, 2); + int type = extract32(insn, 22, 2); + bool sbit = extract32(insn, 29, 1); + bool sf = extract32(insn, 31, 1); + bool itof; + + if (sbit || (type > 1) + || (!sf && scale < 32)) { + unallocated_encoding(s); + return; + } + + switch ((rmode << 3) | opcode) { + case 0x2: /* SCVTF */ + case 0x3: /* UCVTF */ + itof = true; + break; + case 0x18: /* FCVTZS */ + case 0x19: /* FCVTZU */ + itof = false; + break; + default: + unallocated_encoding(s); + return; + } + + if (!fp_access_check(s)) { + return; + } + + handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type); +} + +static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof) +{ + /* FMOV: gpr to or from float, double, or top half of quad fp reg, + * without conversion. + */ + + if (itof) { + TCGv_i64 tcg_rn = cpu_reg(s, rn); + + switch (type) { + case 0: + { + /* 32 bit */ + TCGv_i64 tmp = tcg_temp_new_i64(); + tcg_gen_ext32u_i64(tmp, tcg_rn); + tcg_gen_st_i64(tmp, cpu_env, fp_reg_offset(s, rd, MO_64)); + tcg_gen_movi_i64(tmp, 0); + tcg_gen_st_i64(tmp, cpu_env, fp_reg_hi_offset(s, rd)); + tcg_temp_free_i64(tmp); + break; + } + case 1: + { + /* 64 bit */ + TCGv_i64 tmp = tcg_const_i64(0); + tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_offset(s, rd, MO_64)); + tcg_gen_st_i64(tmp, cpu_env, fp_reg_hi_offset(s, rd)); + tcg_temp_free_i64(tmp); + break; + } + case 2: + /* 64 bit to top half. */ + tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd)); + break; + } + } else { + TCGv_i64 tcg_rd = cpu_reg(s, rd); + + switch (type) { + case 0: + /* 32 bit */ + tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32)); + break; + case 1: + /* 64 bit */ + tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64)); + break; + case 2: + /* 64 bits from top half */ + tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn)); + break; + } + } +} + +/* C3.6.30 Floating point <-> integer conversions + * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 + * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ + * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd | + * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ + */ +static void disas_fp_int_conv(DisasContext *s, uint32_t insn) +{ + int rd = extract32(insn, 0, 5); + int rn = extract32(insn, 5, 5); + int opcode = extract32(insn, 16, 3); + int rmode = extract32(insn, 19, 2); + int type = extract32(insn, 22, 2); + bool sbit = extract32(insn, 29, 1); + bool sf = extract32(insn, 31, 1); + + if (sbit) { + unallocated_encoding(s); + return; + } + + if (opcode > 5) { + /* FMOV */ + bool itof = opcode & 1; + + if (rmode >= 2) { + unallocated_encoding(s); + return; + } + + switch (sf << 3 | type << 1 | rmode) { + case 0x0: /* 32 bit */ + case 0xa: /* 64 bit */ + case 0xd: /* 64 bit to top half of quad */ + break; + default: + /* all other sf/type/rmode combinations are invalid */ + unallocated_encoding(s); + break; + } + + if (!fp_access_check(s)) { + return; + } + handle_fmov(s, rd, rn, type, itof); + } else { + /* actual FP conversions */ + bool itof = extract32(opcode, 1, 1); + + if (type > 1 || (rmode != 0 && opcode > 1)) { + unallocated_encoding(s); + return; + } + + if (!fp_access_check(s)) { + return; + } + handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type); + } +} + +/* FP-specific subcases of table C3-6 (SIMD and FP data processing) + * 31 30 29 28 25 24 0 + * +---+---+---+---------+-----------------------------+ + * | | 0 | | 1 1 1 1 | | + * +---+---+---+---------+-----------------------------+ + */ +static void disas_data_proc_fp(DisasContext *s, uint32_t insn) +{ + if (extract32(insn, 24, 1)) { + /* Floating point data-processing (3 source) */ + disas_fp_3src(s, insn); + } else if (extract32(insn, 21, 1) == 0) { + /* Floating point to fixed point conversions */ + disas_fp_fixed_conv(s, insn); + } else { + switch (extract32(insn, 10, 2)) { + case 1: + /* Floating point conditional compare */ + disas_fp_ccomp(s, insn); + break; + case 2: + /* Floating point data-processing (2 source) */ + disas_fp_2src(s, insn); + break; + case 3: + /* Floating point conditional select */ + disas_fp_csel(s, insn); + break; + case 0: + switch (ctz32(extract32(insn, 12, 4))) { + case 0: /* [15:12] == xxx1 */ + /* Floating point immediate */ + disas_fp_imm(s, insn); + break; + case 1: /* [15:12] == xx10 */ + /* Floating point compare */ + disas_fp_compare(s, insn); + break; + case 2: /* [15:12] == x100 */ + /* Floating point data-processing (1 source) */ + disas_fp_1src(s, insn); + break; + case 3: /* [15:12] == 1000 */ + unallocated_encoding(s); + break; + default: /* [15:12] == 0000 */ + /* Floating point <-> integer conversions */ + disas_fp_int_conv(s, insn); + break; + } + break; + } + } +} + +static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right, + int pos) +{ + /* Extract 64 bits from the middle of two concatenated 64 bit + * vector register slices left:right. The extracted bits start + * at 'pos' bits into the right (least significant) side. + * We return the result in tcg_right, and guarantee not to + * trash tcg_left. + */ + TCGv_i64 tcg_tmp = tcg_temp_new_i64(); + assert(pos > 0 && pos < 64); + + tcg_gen_shri_i64(tcg_right, tcg_right, pos); + tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos); + tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp); + + tcg_temp_free_i64(tcg_tmp); +} + +/* C3.6.1 EXT + * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0 + * +---+---+-------------+-----+---+------+---+------+---+------+------+ + * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd | + * +---+---+-------------+-----+---+------+---+------+---+------+------+ + */ +static void disas_simd_ext(DisasContext *s, uint32_t insn) +{ + int is_q = extract32(insn, 30, 1); + int op2 = extract32(insn, 22, 2); + int imm4 = extract32(insn, 11, 4); + int rm = extract32(insn, 16, 5); + int rn = extract32(insn, 5, 5); + int rd = extract32(insn, 0, 5); + int pos = imm4 << 3; + TCGv_i64 tcg_resl, tcg_resh; + + if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) { + unallocated_encoding(s); + return; + } + + if (!fp_access_check(s)) { + return; + } + + tcg_resh = tcg_temp_new_i64(); + tcg_resl = tcg_temp_new_i64(); + + /* Vd gets bits starting at pos bits into Vm:Vn. This is + * either extracting 128 bits from a 128:128 concatenation, or + * extracting 64 bits from a 64:64 concatenation. + */ + if (!is_q) { + read_vec_element(s, tcg_resl, rn, 0, MO_64); + if (pos != 0) { + read_vec_element(s, tcg_resh, rm, 0, MO_64); + do_ext64(s, tcg_resh, tcg_resl, pos); + } + tcg_gen_movi_i64(tcg_resh, 0); + } else { + TCGv_i64 tcg_hh; + typedef struct { + int reg; + int elt; + } EltPosns; + EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} }; + EltPosns *elt = eltposns; + + if (pos >= 64) { + elt++; + pos -= 64; + } + + read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64); + elt++; + read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64); + elt++; + if (pos != 0) { + do_ext64(s, tcg_resh, tcg_resl, pos); + tcg_hh = tcg_temp_new_i64(); + read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64); + do_ext64(s, tcg_hh, tcg_resh, pos); + tcg_temp_free_i64(tcg_hh); + } + } + + write_vec_element(s, tcg_resl, rd, 0, MO_64); + tcg_temp_free_i64(tcg_resl); + write_vec_element(s, tcg_resh, rd, 1, MO_64); + tcg_temp_free_i64(tcg_resh); +} + +/* C3.6.2 TBL/TBX + * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0 + * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ + * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd | + * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ + */ +static void disas_simd_tb(DisasContext *s, uint32_t insn) +{ + int op2 = extract32(insn, 22, 2); + int is_q = extract32(insn, 30, 1); + int rm = extract32(insn, 16, 5); + int rn = extract32(insn, 5, 5); + int rd = extract32(insn, 0, 5); + int is_tblx = extract32(insn, 12, 1); + int len = extract32(insn, 13, 2); + TCGv_i64 tcg_resl, tcg_resh, tcg_idx; + TCGv_i32 tcg_regno, tcg_numregs; + + if (op2 != 0) { + unallocated_encoding(s); + return; + } + + if (!fp_access_check(s)) { + return; + } + + /* This does a table lookup: for every byte element in the input + * we index into a table formed from up to four vector registers, + * and then the output is the result of the lookups. Our helper + * function does the lookup operation for a single 64 bit part of + * the input. + */ + tcg_resl = tcg_temp_new_i64(); + tcg_resh = tcg_temp_new_i64(); + + if (is_tblx) { + read_vec_element(s, tcg_resl, rd, 0, MO_64); + } else { + tcg_gen_movi_i64(tcg_resl, 0); + } + if (is_tblx && is_q) { + read_vec_element(s, tcg_resh, rd, 1, MO_64); + } else { + tcg_gen_movi_i64(tcg_resh, 0); + } + + tcg_idx = tcg_temp_new_i64(); + tcg_regno = tcg_const_i32(rn); + tcg_numregs = tcg_const_i32(len + 1); + read_vec_element(s, tcg_idx, rm, 0, MO_64); + gen_helper_simd_tbl(tcg_resl, cpu_env, tcg_resl, tcg_idx, + tcg_regno, tcg_numregs); + if (is_q) { + read_vec_element(s, tcg_idx, rm, 1, MO_64); + gen_helper_simd_tbl(tcg_resh, cpu_env, tcg_resh, tcg_idx, + tcg_regno, tcg_numregs); + } + tcg_temp_free_i64(tcg_idx); + tcg_temp_free_i32(tcg_regno); + tcg_temp_free_i32(tcg_numregs); + + write_vec_element(s, tcg_resl, rd, 0, MO_64); + tcg_temp_free_i64(tcg_resl); + write_vec_element(s, tcg_resh, rd, 1, MO_64); + tcg_temp_free_i64(tcg_resh); +} + +/* C3.6.3 ZIP/UZP/TRN + * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 + * +---+---+-------------+------+---+------+---+------------------+------+ + * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd | + * +---+---+-------------+------+---+------+---+------------------+------+ + */ +static void disas_simd_zip_trn(DisasContext *s, uint32_t insn) +{ + int rd = extract32(insn, 0, 5); + int rn = extract32(insn, 5, 5); + int rm = extract32(insn, 16, 5); + int size = extract32(insn, 22, 2); + /* opc field bits [1:0] indicate ZIP/UZP/TRN; + * bit 2 indicates 1 vs 2 variant of the insn. + */ + int opcode = extract32(insn, 12, 2); + bool part = extract32(insn, 14, 1); + bool is_q = extract32(insn, 30, 1); + int esize = 8 << size; + int i, ofs; + int datasize = is_q ? 128 : 64; + int elements = datasize / esize; + TCGv_i64 tcg_res, tcg_resl, tcg_resh; + + if (opcode == 0 || (size == 3 && !is_q)) { + unallocated_encoding(s); + return; + } + + if (!fp_access_check(s)) { + return; + } + + tcg_resl = tcg_const_i64(0); + tcg_resh = tcg_const_i64(0); + tcg_res = tcg_temp_new_i64(); + + for (i = 0; i < elements; i++) { + switch (opcode) { + case 1: /* UZP1/2 */ + { + int midpoint = elements / 2; + if (i < midpoint) { + read_vec_element(s, tcg_res, rn, 2 * i + part, size); + } else { + read_vec_element(s, tcg_res, rm, + 2 * (i - midpoint) + part, size); + } + break; + } + case 2: /* TRN1/2 */ + if (i & 1) { + read_vec_element(s, tcg_res, rm, (i & ~1) + part, size); + } else { + read_vec_element(s, tcg_res, rn, (i & ~1) + part, size); + } + break; + case 3: /* ZIP1/2 */ + { + int base = part * elements / 2; + if (i & 1) { + read_vec_element(s, tcg_res, rm, base + (i >> 1), size); + } else { + read_vec_element(s, tcg_res, rn, base + (i >> 1), size); + } + break; + } + default: + g_assert_not_reached(); + } + + ofs = i * esize; + if (ofs < 64) { + tcg_gen_shli_i64(tcg_res, tcg_res, ofs); + tcg_gen_or_i64(tcg_resl, tcg_resl, tcg_res); + } else { + tcg_gen_shli_i64(tcg_res, tcg_res, ofs - 64); + tcg_gen_or_i64(tcg_resh, tcg_resh, tcg_res); + } + } + + tcg_temp_free_i64(tcg_res); + + write_vec_element(s, tcg_resl, rd, 0, MO_64); + tcg_temp_free_i64(tcg_resl); + write_vec_element(s, tcg_resh, rd, 1, MO_64); + tcg_temp_free_i64(tcg_resh); +} + +static void do_minmaxop(DisasContext *s, TCGv_i32 tcg_elt1, TCGv_i32 tcg_elt2, + int opc, bool is_min, TCGv_ptr fpst) +{ + /* Helper function for disas_simd_across_lanes: do a single precision + * min/max operation on the specified two inputs, + * and return the result in tcg_elt1. + */ + if (opc == 0xc) { + if (is_min) { + gen_helper_vfp_minnums(tcg_elt1, tcg_elt1, tcg_elt2, fpst); + } else { + gen_helper_vfp_maxnums(tcg_elt1, tcg_elt1, tcg_elt2, fpst); + } + } else { + assert(opc == 0xf); + if (is_min) { + gen_helper_vfp_mins(tcg_elt1, tcg_elt1, tcg_elt2, fpst); + } else { + gen_helper_vfp_maxs(tcg_elt1, tcg_elt1, tcg_elt2, fpst); + } + } +} + +/* C3.6.4 AdvSIMD across lanes + * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 + * +---+---+---+-----------+------+-----------+--------+-----+------+------+ + * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | + * +---+---+---+-----------+------+-----------+--------+-----+------+------+ + */ +static void disas_simd_across_lanes(DisasContext *s, uint32_t insn) +{ + int rd = extract32(insn, 0, 5); + int rn = extract32(insn, 5, 5); + int size = extract32(insn, 22, 2); + int opcode = extract32(insn, 12, 5); + bool is_q = extract32(insn, 30, 1); + bool is_u = extract32(insn, 29, 1); + bool is_fp = false; + bool is_min = false; + int esize; + int elements; + int i; + TCGv_i64 tcg_res, tcg_elt; + + switch (opcode) { + case 0x1b: /* ADDV */ + if (is_u) { + unallocated_encoding(s); + return; + } + /* fall through */ + case 0x3: /* SADDLV, UADDLV */ + case 0xa: /* SMAXV, UMAXV */ + case 0x1a: /* SMINV, UMINV */ + if (size == 3 || (size == 2 && !is_q)) { + unallocated_encoding(s); + return; + } + break; + case 0xc: /* FMAXNMV, FMINNMV */ + case 0xf: /* FMAXV, FMINV */ + if (!is_u || !is_q || extract32(size, 0, 1)) { + unallocated_encoding(s); + return; + } + /* Bit 1 of size field encodes min vs max, and actual size is always + * 32 bits: adjust the size variable so following code can rely on it + */ + is_min = extract32(size, 1, 1); + is_fp = true; + size = 2; + break; + default: + unallocated_encoding(s); + return; + } + + if (!fp_access_check(s)) { + return; + } + + esize = 8 << size; + elements = (is_q ? 128 : 64) / esize; + + tcg_res = tcg_temp_new_i64(); + tcg_elt = tcg_temp_new_i64(); + + /* These instructions operate across all lanes of a vector + * to produce a single result. We can guarantee that a 64 + * bit intermediate is sufficient: + * + for [US]ADDLV the maximum element size is 32 bits, and + * the result type is 64 bits + * + for FMAX*V, FMIN*V, ADDV the intermediate type is the + * same as the element size, which is 32 bits at most + * For the integer operations we can choose to work at 64 + * or 32 bits and truncate at the end; for simplicity + * we use 64 bits always. The floating point + * ops do require 32 bit intermediates, though. + */ + if (!is_fp) { + read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN)); + + for (i = 1; i < elements; i++) { + read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN)); + + switch (opcode) { + case 0x03: /* SADDLV / UADDLV */ + case 0x1b: /* ADDV */ + tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt); + break; + case 0x0a: /* SMAXV / UMAXV */ + tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE, + tcg_res, + tcg_res, tcg_elt, tcg_res, tcg_elt); + break; + case 0x1a: /* SMINV / UMINV */ + tcg_gen_movcond_i64(is_u ? TCG_COND_LEU : TCG_COND_LE, + tcg_res, + tcg_res, tcg_elt, tcg_res, tcg_elt); + break; + break; + default: + g_assert_not_reached(); + } + + } + } else { + /* Floating point ops which work on 32 bit (single) intermediates. + * Note that correct NaN propagation requires that we do these + * operations in exactly the order specified by the pseudocode. + */ + TCGv_i32 tcg_elt1 = tcg_temp_new_i32(); + TCGv_i32 tcg_elt2 = tcg_temp_new_i32(); + TCGv_i32 tcg_elt3 = tcg_temp_new_i32(); + TCGv_ptr fpst = get_fpstatus_ptr(); + + assert(esize == 32); + assert(elements == 4); + + read_vec_element(s, tcg_elt, rn, 0, MO_32); + tcg_gen_extrl_i64_i32(tcg_elt1, tcg_elt); + read_vec_element(s, tcg_elt, rn, 1, MO_32); + tcg_gen_extrl_i64_i32(tcg_elt2, tcg_elt); + + do_minmaxop(s, tcg_elt1, tcg_elt2, opcode, is_min, fpst); + + read_vec_element(s, tcg_elt, rn, 2, MO_32); + tcg_gen_extrl_i64_i32(tcg_elt2, tcg_elt); + read_vec_element(s, tcg_elt, rn, 3, MO_32); + tcg_gen_extrl_i64_i32(tcg_elt3, tcg_elt); + + do_minmaxop(s, tcg_elt2, tcg_elt3, opcode, is_min, fpst); + + do_minmaxop(s, tcg_elt1, tcg_elt2, opcode, is_min, fpst); + + tcg_gen_extu_i32_i64(tcg_res, tcg_elt1); + tcg_temp_free_i32(tcg_elt1); + tcg_temp_free_i32(tcg_elt2); + tcg_temp_free_i32(tcg_elt3); + tcg_temp_free_ptr(fpst); + } + + tcg_temp_free_i64(tcg_elt); + + /* Now truncate the result to the width required for the final output */ + if (opcode == 0x03) { + /* SADDLV, UADDLV: result is 2*esize */ + size++; + } + + switch (size) { + case 0: + tcg_gen_ext8u_i64(tcg_res, tcg_res); + break; + case 1: + tcg_gen_ext16u_i64(tcg_res, tcg_res); + break; + case 2: + tcg_gen_ext32u_i64(tcg_res, tcg_res); + break; + case 3: + break; + default: + g_assert_not_reached(); + } + + write_fp_dreg(s, rd, tcg_res); + tcg_temp_free_i64(tcg_res); +} + +/* C6.3.31 DUP (Element, Vector) + * + * 31 30 29 21 20 16 15 10 9 5 4 0 + * +---+---+-------------------+--------+-------------+------+------+ + * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | + * +---+---+-------------------+--------+-------------+------+------+ + * + * size: encoded in imm5 (see ARM ARM LowestSetBit()) + */ +static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn, + int imm5) +{ + int size = ctz32(imm5); + int esize = 8 << size; + int elements = (is_q ? 128 : 64) / esize; + int index, i; + TCGv_i64 tmp; + + if (size > 3 || (size == 3 && !is_q)) { + unallocated_encoding(s); + return; + } + + if (!fp_access_check(s)) { + return; + } + + index = imm5 >> (size + 1); + + tmp = tcg_temp_new_i64(); + read_vec_element(s, tmp, rn, index, size); + + for (i = 0; i < elements; i++) { + write_vec_element(s, tmp, rd, i, size); + } + + if (!is_q) { + clear_vec_high(s, rd); + } + + tcg_temp_free_i64(tmp); +} + +/* C6.3.31 DUP (element, scalar) + * 31 21 20 16 15 10 9 5 4 0 + * +-----------------------+--------+-------------+------+------+ + * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | + * +-----------------------+--------+-------------+------+------+ + */ +static void handle_simd_dupes(DisasContext *s, int rd, int rn, + int imm5) +{ + int size = ctz32(imm5); + int index; + TCGv_i64 tmp; + + if (size > 3) { + unallocated_encoding(s); + return; + } + + if (!fp_access_check(s)) { + return; + } + + index = imm5 >> (size + 1); + + /* This instruction just extracts the specified element and + * zero-extends it into the bottom of the destination register. + */ + tmp = tcg_temp_new_i64(); + read_vec_element(s, tmp, rn, index, size); + write_fp_dreg(s, rd, tmp); + tcg_temp_free_i64(tmp); +} + +/* C6.3.32 DUP (General) + * + * 31 30 29 21 20 16 15 10 9 5 4 0 + * +---+---+-------------------+--------+-------------+------+------+ + * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd | + * +---+---+-------------------+--------+-------------+------+------+ + * + * size: encoded in imm5 (see ARM ARM LowestSetBit()) + */ +static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn, + int imm5) +{ + int size = ctz32(imm5); + int esize = 8 << size; + int elements = (is_q ? 128 : 64)/esize; + int i = 0; + + if (size > 3 || ((size == 3) && !is_q)) { + unallocated_encoding(s); + return; + } + + if (!fp_access_check(s)) { + return; + } + + for (i = 0; i < elements; i++) { + write_vec_element(s, cpu_reg(s, rn), rd, i, size); + } + if (!is_q) { + clear_vec_high(s, rd); + } +} + +/* C6.3.150 INS (Element) + * + * 31 21 20 16 15 14 11 10 9 5 4 0 + * +-----------------------+--------+------------+---+------+------+ + * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | + * +-----------------------+--------+------------+---+------+------+ + * + * size: encoded in imm5 (see ARM ARM LowestSetBit()) + * index: encoded in imm5<4:size+1> + */ +static void handle_simd_inse(DisasContext *s, int rd, int rn, + int imm4, int imm5) +{ + int size = ctz32(imm5); + int src_index, dst_index; + TCGv_i64 tmp; + + if (size > 3) { + unallocated_encoding(s); + return; + } + + if (!fp_access_check(s)) { + return; + } + + dst_index = extract32(imm5, 1+size, 5); + src_index = extract32(imm4, size, 4); + + tmp = tcg_temp_new_i64(); + + read_vec_element(s, tmp, rn, src_index, size); + write_vec_element(s, tmp, rd, dst_index, size); + + tcg_temp_free_i64(tmp); +} + + +/* C6.3.151 INS (General) + * + * 31 21 20 16 15 10 9 5 4 0 + * +-----------------------+--------+-------------+------+------+ + * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd | + * +-----------------------+--------+-------------+------+------+ + * + * size: encoded in imm5 (see ARM ARM LowestSetBit()) + * index: encoded in imm5<4:size+1> + */ +static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5) +{ + int size = ctz32(imm5); + int idx; + + if (size > 3) { + unallocated_encoding(s); + return; + } + + if (!fp_access_check(s)) { + return; + } + + idx = extract32(imm5, 1 + size, 4 - size); + write_vec_element(s, cpu_reg(s, rn), rd, idx, size); +} + +/* + * C6.3.321 UMOV (General) + * C6.3.237 SMOV (General) + * + * 31 30 29 21 20 16 15 12 10 9 5 4 0 + * +---+---+-------------------+--------+-------------+------+------+ + * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd | + * +---+---+-------------------+--------+-------------+------+------+ + * + * U: unsigned when set + * size: encoded in imm5 (see ARM ARM LowestSetBit()) + */ +static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed, + int rn, int rd, int imm5) +{ + int size = ctz32(imm5); + int element; + TCGv_i64 tcg_rd; + + /* Check for UnallocatedEncodings */ + if (is_signed) { + if (size > 2 || (size == 2 && !is_q)) { + unallocated_encoding(s); + return; + } + } else { + if (size > 3 + || (size < 3 && is_q) + || (size == 3 && !is_q)) { + unallocated_encoding(s); + return; + } + } + + if (!fp_access_check(s)) { + return; + } + + element = extract32(imm5, 1+size, 4); + + tcg_rd = cpu_reg(s, rd); + read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0)); + if (is_signed && !is_q) { + tcg_gen_ext32u_i64(tcg_rd, tcg_rd); + } +} + +/* C3.6.5 AdvSIMD copy + * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 + * +---+---+----+-----------------+------+---+------+---+------+------+ + * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | + * +---+---+----+-----------------+------+---+------+---+------+------+ + */ +static void disas_simd_copy(DisasContext *s, uint32_t insn) +{ + int rd = extract32(insn, 0, 5); + int rn = extract32(insn, 5, 5); + int imm4 = extract32(insn, 11, 4); + int op = extract32(insn, 29, 1); + int is_q = extract32(insn, 30, 1); + int imm5 = extract32(insn, 16, 5); + + if (op) { + if (is_q) { + /* INS (element) */ + handle_simd_inse(s, rd, rn, imm4, imm5); + } else { + unallocated_encoding(s); + } + } else { + switch (imm4) { + case 0: + /* DUP (element - vector) */ + handle_simd_dupe(s, is_q, rd, rn, imm5); + break; + case 1: + /* DUP (general) */ + handle_simd_dupg(s, is_q, rd, rn, imm5); + break; + case 3: + if (is_q) { + /* INS (general) */ + handle_simd_insg(s, rd, rn, imm5); + } else { + unallocated_encoding(s); + } + break; + case 5: + case 7: + /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */ + handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5); + break; + default: + unallocated_encoding(s); + break; + } + } +} + +/* C3.6.6 AdvSIMD modified immediate + * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0 + * +---+---+----+---------------------+-----+-------+----+---+-------+------+ + * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd | + * +---+---+----+---------------------+-----+-------+----+---+-------+------+ + * + * There are a number of operations that can be carried out here: + * MOVI - move (shifted) imm into register + * MVNI - move inverted (shifted) imm into register + * ORR - bitwise OR of (shifted) imm with register + * BIC - bitwise clear of (shifted) imm with register + */ +static void disas_simd_mod_imm(DisasContext *s, uint32_t insn) +{ + int rd = extract32(insn, 0, 5); + int cmode = extract32(insn, 12, 4); + int cmode_3_1 = extract32(cmode, 1, 3); + int cmode_0 = extract32(cmode, 0, 1); + int o2 = extract32(insn, 11, 1); + uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5); + bool is_neg = extract32(insn, 29, 1); + bool is_q = extract32(insn, 30, 1); + uint64_t imm = 0; + TCGv_i64 tcg_rd, tcg_imm; + int i; + + if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) { + unallocated_encoding(s); + return; + } + + if (!fp_access_check(s)) { + return; + } + + /* See AdvSIMDExpandImm() in ARM ARM */ + switch (cmode_3_1) { + case 0: /* Replicate(Zeros(24):imm8, 2) */ + case 1: /* Replicate(Zeros(16):imm8:Zeros(8), 2) */ + case 2: /* Replicate(Zeros(8):imm8:Zeros(16), 2) */ + case 3: /* Replicate(imm8:Zeros(24), 2) */ + { + int shift = cmode_3_1 * 8; + imm = bitfield_replicate(abcdefgh << shift, 32); + break; + } + case 4: /* Replicate(Zeros(8):imm8, 4) */ + case 5: /* Replicate(imm8:Zeros(8), 4) */ + { + int shift = (cmode_3_1 & 0x1) * 8; + imm = bitfield_replicate(abcdefgh << shift, 16); + break; + } + case 6: + if (cmode_0) { + /* Replicate(Zeros(8):imm8:Ones(16), 2) */ + imm = (abcdefgh << 16) | 0xffff; + } else { + /* Replicate(Zeros(16):imm8:Ones(8), 2) */ + imm = (abcdefgh << 8) | 0xff; + } + imm = bitfield_replicate(imm, 32); + break; + case 7: + if (!cmode_0 && !is_neg) { + imm = bitfield_replicate(abcdefgh, 8); + } else if (!cmode_0 && is_neg) { + int i; + imm = 0; + for (i = 0; i < 8; i++) { + if ((abcdefgh) & (1 << i)) { + imm |= 0xffULL << (i * 8); + } + } + } else if (cmode_0) { + if (is_neg) { + imm = (abcdefgh & 0x3f) << 48; + if (abcdefgh & 0x80) { + imm |= 0x8000000000000000ULL; + } + if (abcdefgh & 0x40) { + imm |= 0x3fc0000000000000ULL; + } else { + imm |= 0x4000000000000000ULL; + } + } else { + imm = (abcdefgh & 0x3f) << 19; + if (abcdefgh & 0x80) { + imm |= 0x80000000; + } + if (abcdefgh & 0x40) { + imm |= 0x3e000000; + } else { + imm |= 0x40000000; + } + imm |= (imm << 32); + } + } + break; + } + + if (cmode_3_1 != 7 && is_neg) { + imm = ~imm; + } + + tcg_imm = tcg_const_i64(imm); + tcg_rd = new_tmp_a64(s); + + for (i = 0; i < 2; i++) { + int foffs = i ? fp_reg_hi_offset(s, rd) : fp_reg_offset(s, rd, MO_64); + + if (i == 1 && !is_q) { + /* non-quad ops clear high half of vector */ + tcg_gen_movi_i64(tcg_rd, 0); + } else if ((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9) { + tcg_gen_ld_i64(tcg_rd, cpu_env, foffs); + if (is_neg) { + /* AND (BIC) */ + tcg_gen_and_i64(tcg_rd, tcg_rd, tcg_imm); + } else { + /* ORR */ + tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_imm); + } + } else { + /* MOVI */ + tcg_gen_mov_i64(tcg_rd, tcg_imm); + } + tcg_gen_st_i64(tcg_rd, cpu_env, foffs); + } + + tcg_temp_free_i64(tcg_imm); +} + +/* C3.6.7 AdvSIMD scalar copy + * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 + * +-----+----+-----------------+------+---+------+---+------+------+ + * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | + * +-----+----+-----------------+------+---+------+---+------+------+ + */ +static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn) +{ + int rd = extract32(insn, 0, 5); + int rn = extract32(insn, 5, 5); + int imm4 = extract32(insn, 11, 4); + int imm5 = extract32(insn, 16, 5); + int op = extract32(insn, 29, 1); + + if (op != 0 || imm4 != 0) { + unallocated_encoding(s); + return; + } + + /* DUP (element, scalar) */ + handle_simd_dupes(s, rd, rn, imm5); +} + +/* C3.6.8 AdvSIMD scalar pairwise + * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 + * +-----+---+-----------+------+-----------+--------+-----+------+------+ + * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | + * +-----+---+-----------+------+-----------+--------+-----+------+------+ + */ +static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn) +{ + int u = extract32(insn, 29, 1); + int size = extract32(insn, 22, 2); + int opcode = extract32(insn, 12, 5); + int rn = extract32(insn, 5, 5); + int rd = extract32(insn, 0, 5); + TCGv_ptr fpst; + + /* For some ops (the FP ones), size[1] is part of the encoding. + * For ADDP strictly it is not but size[1] is always 1 for valid + * encodings. + */ + opcode |= (extract32(size, 1, 1) << 5); + + switch (opcode) { + case 0x3b: /* ADDP */ + if (u || size != 3) { + unallocated_encoding(s); + return; + } + if (!fp_access_check(s)) { + return; + } + + TCGV_UNUSED_PTR(fpst); + break; + case 0xc: /* FMAXNMP */ + case 0xd: /* FADDP */ + case 0xf: /* FMAXP */ + case 0x2c: /* FMINNMP */ + case 0x2f: /* FMINP */ + /* FP op, size[0] is 32 or 64 bit */ + if (!u) { + unallocated_encoding(s); + return; + } + if (!fp_access_check(s)) { + return; + } + + size = extract32(size, 0, 1) ? 3 : 2; + fpst = get_fpstatus_ptr(); + break; + default: + unallocated_encoding(s); + return; + } + + if (size == 3) { + TCGv_i64 tcg_op1 = tcg_temp_new_i64(); + TCGv_i64 tcg_op2 = tcg_temp_new_i64(); + TCGv_i64 tcg_res = tcg_temp_new_i64(); + + read_vec_element(s, tcg_op1, rn, 0, MO_64); + read_vec_element(s, tcg_op2, rn, 1, MO_64); + + switch (opcode) { + case 0x3b: /* ADDP */ + tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2); + break; + case 0xc: /* FMAXNMP */ + gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); + break; + case 0xd: /* FADDP */ + gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); + break; + case 0xf: /* FMAXP */ + gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); + break; + case 0x2c: /* FMINNMP */ + gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); + break; + case 0x2f: /* FMINP */ + gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); + break; + default: + g_assert_not_reached(); + } + + write_fp_dreg(s, rd, tcg_res); + + tcg_temp_free_i64(tcg_op1); + tcg_temp_free_i64(tcg_op2); + tcg_temp_free_i64(tcg_res); + } else { + TCGv_i32 tcg_op1 = tcg_temp_new_i32(); + TCGv_i32 tcg_op2 = tcg_temp_new_i32(); + TCGv_i32 tcg_res = tcg_temp_new_i32(); + + read_vec_element_i32(s, tcg_op1, rn, 0, MO_32); + read_vec_element_i32(s, tcg_op2, rn, 1, MO_32); + + switch (opcode) { + case 0xc: /* FMAXNMP */ + gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); + break; + case 0xd: /* FADDP */ + gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); + break; + case 0xf: /* FMAXP */ + gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); + break; + case 0x2c: /* FMINNMP */ + gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); + break; + case 0x2f: /* FMINP */ + gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); + break; + default: + g_assert_not_reached(); + } + + write_fp_sreg(s, rd, tcg_res); + + tcg_temp_free_i32(tcg_op1); + tcg_temp_free_i32(tcg_op2); + tcg_temp_free_i32(tcg_res); + } + + if (!TCGV_IS_UNUSED_PTR(fpst)) { + tcg_temp_free_ptr(fpst); + } +} + +/* + * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate) + * + * This code is handles the common shifting code and is used by both + * the vector and scalar code. + */ +static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src, + TCGv_i64 tcg_rnd, bool accumulate, + bool is_u, int size, int shift) +{ + bool extended_result = false; + bool round = !TCGV_IS_UNUSED_I64(tcg_rnd); + int ext_lshift = 0; + TCGv_i64 tcg_src_hi; + + if (round && size == 3) { + extended_result = true; + ext_lshift = 64 - shift; + tcg_src_hi = tcg_temp_new_i64(); + } else if (shift == 64) { + if (!accumulate && is_u) { + /* result is zero */ + tcg_gen_movi_i64(tcg_res, 0); + return; + } + } + + /* Deal with the rounding step */ + if (round) { + if (extended_result) { + TCGv_i64 tcg_zero = tcg_const_i64(0); + if (!is_u) { + /* take care of sign extending tcg_res */ + tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63); + tcg_gen_add2_i64(tcg_src, tcg_src_hi, + tcg_src, tcg_src_hi, + tcg_rnd, tcg_zero); + } else { + tcg_gen_add2_i64(tcg_src, tcg_src_hi, + tcg_src, tcg_zero, + tcg_rnd, tcg_zero); + } + tcg_temp_free_i64(tcg_zero); + } else { + tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd); + } + } + + /* Now do the shift right */ + if (round && extended_result) { + /* extended case, >64 bit precision required */ + if (ext_lshift == 0) { + /* special case, only high bits matter */ + tcg_gen_mov_i64(tcg_src, tcg_src_hi); + } else { + tcg_gen_shri_i64(tcg_src, tcg_src, shift); + tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift); + tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi); + } + } else { + if (is_u) { + if (shift == 64) { + /* essentially shifting in 64 zeros */ + tcg_gen_movi_i64(tcg_src, 0); + } else { + tcg_gen_shri_i64(tcg_src, tcg_src, shift); + } + } else { + if (shift == 64) { + /* effectively extending the sign-bit */ + tcg_gen_sari_i64(tcg_src, tcg_src, 63); + } else { + tcg_gen_sari_i64(tcg_src, tcg_src, shift); + } + } + } + + if (accumulate) { + tcg_gen_add_i64(tcg_res, tcg_res, tcg_src); + } else { + tcg_gen_mov_i64(tcg_res, tcg_src); + } + + if (extended_result) { + tcg_temp_free_i64(tcg_src_hi); + } +} + +/* Common SHL/SLI - Shift left with an optional insert */ +static void handle_shli_with_ins(TCGv_i64 tcg_res, TCGv_i64 tcg_src, + bool insert, int shift) +{ + if (insert) { /* SLI */ + tcg_gen_deposit_i64(tcg_res, tcg_res, tcg_src, shift, 64 - shift); + } else { /* SHL */ + tcg_gen_shli_i64(tcg_res, tcg_src, shift); + } +} + +/* SRI: shift right with insert */ +static void handle_shri_with_ins(TCGv_i64 tcg_res, TCGv_i64 tcg_src, + int size, int shift) +{ + int esize = 8 << size; + + /* shift count same as element size is valid but does nothing; + * special case to avoid potential shift by 64. + */ + if (shift != esize) { + tcg_gen_shri_i64(tcg_src, tcg_src, shift); + tcg_gen_deposit_i64(tcg_res, tcg_res, tcg_src, 0, esize - shift); + } +} + +/* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */ +static void handle_scalar_simd_shri(DisasContext *s, + bool is_u, int immh, int immb, + int opcode, int rn, int rd) +{ + const int size = 3; + int immhb = immh << 3 | immb; + int shift = 2 * (8 << size) - immhb; + bool accumulate = false; + bool round = false; + bool insert = false; + TCGv_i64 tcg_rn; + TCGv_i64 tcg_rd; + TCGv_i64 tcg_round; + + if (!extract32(immh, 3, 1)) { + unallocated_encoding(s); + return; + } + + if (!fp_access_check(s)) { + return; + } + + switch (opcode) { + case 0x02: /* SSRA / USRA (accumulate) */ + accumulate = true; + break; + case 0x04: /* SRSHR / URSHR (rounding) */ + round = true; + break; + case 0x06: /* SRSRA / URSRA (accum + rounding) */ + accumulate = round = true; + break; + case 0x08: /* SRI */ + insert = true; + break; + } + + if (round) { + uint64_t round_const = 1ULL << (shift - 1); + tcg_round = tcg_const_i64(round_const); + } else { + TCGV_UNUSED_I64(tcg_round); + } + + tcg_rn = read_fp_dreg(s, rn); + tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); + + if (insert) { + handle_shri_with_ins(tcg_rd, tcg_rn, size, shift); + } else { + handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, + accumulate, is_u, size, shift); + } + + write_fp_dreg(s, rd, tcg_rd); + + tcg_temp_free_i64(tcg_rn); + tcg_temp_free_i64(tcg_rd); + if (round) { + tcg_temp_free_i64(tcg_round); + } +} + +/* SHL/SLI - Scalar shift left */ +static void handle_scalar_simd_shli(DisasContext *s, bool insert, + int immh, int immb, int opcode, + int rn, int rd) +{ + int size = 32 - clz32(immh) - 1; + int immhb = immh << 3 | immb; + int shift = immhb - (8 << size); + TCGv_i64 tcg_rn = new_tmp_a64(s); + TCGv_i64 tcg_rd = new_tmp_a64(s); + + if (!extract32(immh, 3, 1)) { + unallocated_encoding(s); + return; + } + + if (!fp_access_check(s)) { + return; + } + + tcg_rn = read_fp_dreg(s, rn); + tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); + + handle_shli_with_ins(tcg_rd, tcg_rn, insert, shift); + + write_fp_dreg(s, rd, tcg_rd); + + tcg_temp_free_i64(tcg_rn); + tcg_temp_free_i64(tcg_rd); +} + +/* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with + * (signed/unsigned) narrowing */ +static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q, + bool is_u_shift, bool is_u_narrow, + int immh, int immb, int opcode, + int rn, int rd) +{ + int immhb = immh << 3 | immb; + int size = 32 - clz32(immh) - 1; + int esize = 8 << size; + int shift = (2 * esize) - immhb; + int elements = is_scalar ? 1 : (64 / esize); + bool round = extract32(opcode, 0, 1); + TCGMemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN); + TCGv_i64 tcg_rn, tcg_rd, tcg_round; + TCGv_i32 tcg_rd_narrowed; + TCGv_i64 tcg_final; + + static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = { + { gen_helper_neon_narrow_sat_s8, + gen_helper_neon_unarrow_sat8 }, + { gen_helper_neon_narrow_sat_s16, + gen_helper_neon_unarrow_sat16 }, + { gen_helper_neon_narrow_sat_s32, + gen_helper_neon_unarrow_sat32 }, + { NULL, NULL }, + }; + static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = { + gen_helper_neon_narrow_sat_u8, + gen_helper_neon_narrow_sat_u16, + gen_helper_neon_narrow_sat_u32, + NULL + }; + NeonGenNarrowEnvFn *narrowfn; + + int i; + + assert(size < 4); + + if (extract32(immh, 3, 1)) { + unallocated_encoding(s); + return; + } + + if (!fp_access_check(s)) { + return; + } + + if (is_u_shift) { + narrowfn = unsigned_narrow_fns[size]; + } else { + narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0]; + } + + tcg_rn = tcg_temp_new_i64(); + tcg_rd = tcg_temp_new_i64(); + tcg_rd_narrowed = tcg_temp_new_i32(); + tcg_final = tcg_const_i64(0); + + if (round) { + uint64_t round_const = 1ULL << (shift - 1); + tcg_round = tcg_const_i64(round_const); + } else { + TCGV_UNUSED_I64(tcg_round); + } + + for (i = 0; i < elements; i++) { + read_vec_element(s, tcg_rn, rn, i, ldop); + handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, + false, is_u_shift, size+1, shift); + narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd); + tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed); + tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); + } + + if (!is_q) { + clear_vec_high(s, rd); + write_vec_element(s, tcg_final, rd, 0, MO_64); + } else { + write_vec_element(s, tcg_final, rd, 1, MO_64); + } + + if (round) { + tcg_temp_free_i64(tcg_round); + } + tcg_temp_free_i64(tcg_rn); + tcg_temp_free_i64(tcg_rd); + tcg_temp_free_i32(tcg_rd_narrowed); + tcg_temp_free_i64(tcg_final); + return; +} + +/* SQSHLU, UQSHL, SQSHL: saturating left shifts */ +static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q, + bool src_unsigned, bool dst_unsigned, + int immh, int immb, int rn, int rd) +{ + int immhb = immh << 3 | immb; + int size = 32 - clz32(immh) - 1; + int shift = immhb - (8 << size); + int pass; + + assert(immh != 0); + assert(!(scalar && is_q)); + + if (!scalar) { + if (!is_q && extract32(immh, 3, 1)) { + unallocated_encoding(s); + return; + } + + /* Since we use the variable-shift helpers we must + * replicate the shift count into each element of + * the tcg_shift value. + */ + switch (size) { + case 0: + shift |= shift << 8; + /* fall through */ + case 1: + shift |= shift << 16; + break; + case 2: + case 3: + break; + default: + g_assert_not_reached(); + } + } + + if (!fp_access_check(s)) { + return; + } + + if (size == 3) { + TCGv_i64 tcg_shift = tcg_const_i64(shift); + static NeonGenTwo64OpEnvFn * const fns[2][2] = { + { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 }, + { NULL, gen_helper_neon_qshl_u64 }, + }; + NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned]; + int maxpass = is_q ? 2 : 1; + + for (pass = 0; pass < maxpass; pass++) { + TCGv_i64 tcg_op = tcg_temp_new_i64(); + + read_vec_element(s, tcg_op, rn, pass, MO_64); + genfn(tcg_op, cpu_env, tcg_op, tcg_shift); + write_vec_element(s, tcg_op, rd, pass, MO_64); + + tcg_temp_free_i64(tcg_op); + } + tcg_temp_free_i64(tcg_shift); + + if (!is_q) { + clear_vec_high(s, rd); + } + } else { + TCGv_i32 tcg_shift = tcg_const_i32(shift); + static NeonGenTwoOpEnvFn * const fns[2][2][3] = { + { + { gen_helper_neon_qshl_s8, + gen_helper_neon_qshl_s16, + gen_helper_neon_qshl_s32 }, + { gen_helper_neon_qshlu_s8, + gen_helper_neon_qshlu_s16, + gen_helper_neon_qshlu_s32 } + }, { + { NULL, NULL, NULL }, + { gen_helper_neon_qshl_u8, + gen_helper_neon_qshl_u16, + gen_helper_neon_qshl_u32 } + } + }; + NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size]; + TCGMemOp memop = scalar ? size : MO_32; + int maxpass = scalar ? 1 : is_q ? 4 : 2; + + for (pass = 0; pass < maxpass; pass++) { + TCGv_i32 tcg_op = tcg_temp_new_i32(); + + read_vec_element_i32(s, tcg_op, rn, pass, memop); + genfn(tcg_op, cpu_env, tcg_op, tcg_shift); + if (scalar) { + switch (size) { + case 0: + tcg_gen_ext8u_i32(tcg_op, tcg_op); + break; + case 1: + tcg_gen_ext16u_i32(tcg_op, tcg_op); + break; + case 2: + break; + default: + g_assert_not_reached(); + } + write_fp_sreg(s, rd, tcg_op); + } else { + write_vec_element_i32(s, tcg_op, rd, pass, MO_32); + } + + tcg_temp_free_i32(tcg_op); + } + tcg_temp_free_i32(tcg_shift); + + if (!is_q && !scalar) { + clear_vec_high(s, rd); + } + } +} + +/* Common vector code for handling integer to FP conversion */ +static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn, + int elements, int is_signed, + int fracbits, int size) +{ + bool is_double = size == 3 ? true : false; + TCGv_ptr tcg_fpst = get_fpstatus_ptr(); + TCGv_i32 tcg_shift = tcg_const_i32(fracbits); + TCGv_i64 tcg_int = tcg_temp_new_i64(); + TCGMemOp mop = size | (is_signed ? MO_SIGN : 0); + int pass; + + for (pass = 0; pass < elements; pass++) { + read_vec_element(s, tcg_int, rn, pass, mop); + + if (is_double) { + TCGv_i64 tcg_double = tcg_temp_new_i64(); + if (is_signed) { + gen_helper_vfp_sqtod(tcg_double, tcg_int, + tcg_shift, tcg_fpst); + } else { + gen_helper_vfp_uqtod(tcg_double, tcg_int, + tcg_shift, tcg_fpst); + } + if (elements == 1) { + write_fp_dreg(s, rd, tcg_double); + } else { + write_vec_element(s, tcg_double, rd, pass, MO_64); + } + tcg_temp_free_i64(tcg_double); + } else { + TCGv_i32 tcg_single = tcg_temp_new_i32(); + if (is_signed) { + gen_helper_vfp_sqtos(tcg_single, tcg_int, + tcg_shift, tcg_fpst); + } else { + gen_helper_vfp_uqtos(tcg_single, tcg_int, + tcg_shift, tcg_fpst); + } + if (elements == 1) { + write_fp_sreg(s, rd, tcg_single); + } else { + write_vec_element_i32(s, tcg_single, rd, pass, MO_32); + } + tcg_temp_free_i32(tcg_single); + } + } + + if (!is_double && elements == 2) { + clear_vec_high(s, rd); + } + + tcg_temp_free_i64(tcg_int); + tcg_temp_free_ptr(tcg_fpst); + tcg_temp_free_i32(tcg_shift); +} + +/* UCVTF/SCVTF - Integer to FP conversion */ +static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar, + bool is_q, bool is_u, + int immh, int immb, int opcode, + int rn, int rd) +{ + bool is_double = extract32(immh, 3, 1); + int size = is_double ? MO_64 : MO_32; + int elements; + int immhb = immh << 3 | immb; + int fracbits = (is_double ? 128 : 64) - immhb; + + if (!extract32(immh, 2, 2)) { + unallocated_encoding(s); + return; + } + + if (is_scalar) { + elements = 1; + } else { + elements = is_double ? 2 : is_q ? 4 : 2; + if (is_double && !is_q) { + unallocated_encoding(s); + return; + } + } + + if (!fp_access_check(s)) { + return; + } + + /* immh == 0 would be a failure of the decode logic */ + g_assert(immh); + + handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size); +} + +/* FCVTZS, FVCVTZU - FP to fixedpoint conversion */ +static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar, + bool is_q, bool is_u, + int immh, int immb, int rn, int rd) +{ + bool is_double = extract32(immh, 3, 1); + int immhb = immh << 3 | immb; + int fracbits = (is_double ? 128 : 64) - immhb; + int pass; + TCGv_ptr tcg_fpstatus; + TCGv_i32 tcg_rmode, tcg_shift; + + if (!extract32(immh, 2, 2)) { + unallocated_encoding(s); + return; + } + + if (!is_scalar && !is_q && is_double) { + unallocated_encoding(s); + return; + } + + if (!fp_access_check(s)) { + return; + } + + assert(!(is_scalar && is_q)); + + tcg_rmode = tcg_const_i32(arm_rmode_to_sf(FPROUNDING_ZERO)); + gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env); + tcg_fpstatus = get_fpstatus_ptr(); + tcg_shift = tcg_const_i32(fracbits); + + if (is_double) { + int maxpass = is_scalar ? 1 : 2; + + for (pass = 0; pass < maxpass; pass++) { + TCGv_i64 tcg_op = tcg_temp_new_i64(); + + read_vec_element(s, tcg_op, rn, pass, MO_64); + if (is_u) { + gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); + } else { + gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); + } + write_vec_element(s, tcg_op, rd, pass, MO_64); + tcg_temp_free_i64(tcg_op); + } + if (!is_q) { + clear_vec_high(s, rd); + } + } else { + int maxpass = is_scalar ? 1 : is_q ? 4 : 2; + for (pass = 0; pass < maxpass; pass++) { + TCGv_i32 tcg_op = tcg_temp_new_i32(); + + read_vec_element_i32(s, tcg_op, rn, pass, MO_32); + if (is_u) { + gen_helper_vfp_touls(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); + } else { + gen_helper_vfp_tosls(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); + } + if (is_scalar) { + write_fp_sreg(s, rd, tcg_op); + } else { + write_vec_element_i32(s, tcg_op, rd, pass, MO_32); + } + tcg_temp_free_i32(tcg_op); + } + if (!is_q && !is_scalar) { + clear_vec_high(s, rd); + } + } + + tcg_temp_free_ptr(tcg_fpstatus); + tcg_temp_free_i32(tcg_shift); + gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env); + tcg_temp_free_i32(tcg_rmode); +} + +/* C3.6.9 AdvSIMD scalar shift by immediate + * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 + * +-----+---+-------------+------+------+--------+---+------+------+ + * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | + * +-----+---+-------------+------+------+--------+---+------+------+ + * + * This is the scalar version so it works on a fixed sized registers + */ +static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn) +{ + int rd = extract32(insn, 0, 5); + int rn = extract32(insn, 5, 5); + int opcode = extract32(insn, 11, 5); + int immb = extract32(insn, 16, 3); + int immh = extract32(insn, 19, 4); + bool is_u = extract32(insn, 29, 1); + + if (immh == 0) { + unallocated_encoding(s); + return; + } + + switch (opcode) { + case 0x08: /* SRI */ + if (!is_u) { + unallocated_encoding(s); + return; + } + /* fall through */ + case 0x00: /* SSHR / USHR */ + case 0x02: /* SSRA / USRA */ + case 0x04: /* SRSHR / URSHR */ + case 0x06: /* SRSRA / URSRA */ + handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd); + break; + case 0x0a: /* SHL / SLI */ + handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd); + break; + case 0x1c: /* SCVTF, UCVTF */ + handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb, + opcode, rn, rd); + break; + case 0x10: /* SQSHRUN, SQSHRUN2 */ + case 0x11: /* SQRSHRUN, SQRSHRUN2 */ + if (!is_u) { + unallocated_encoding(s); + return; + } + handle_vec_simd_sqshrn(s, true, false, false, true, + immh, immb, opcode, rn, rd); + break; + case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */ + case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */ + handle_vec_simd_sqshrn(s, true, false, is_u, is_u, + immh, immb, opcode, rn, rd); + break; + case 0xc: /* SQSHLU */ + if (!is_u) { + unallocated_encoding(s); + return; + } + handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd); + break; + case 0xe: /* SQSHL, UQSHL */ + handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd); + break; + case 0x1f: /* FCVTZS, FCVTZU */ + handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd); + break; + default: + unallocated_encoding(s); + break; + } +} + +/* C3.6.10 AdvSIMD scalar three different + * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 + * +-----+---+-----------+------+---+------+--------+-----+------+------+ + * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | + * +-----+---+-----------+------+---+------+--------+-----+------+------+ + */ +static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn) +{ + bool is_u = extract32(insn, 29, 1); + int size = extract32(insn, 22, 2); + int opcode = extract32(insn, 12, 4); + int rm = extract32(insn, 16, 5); + int rn = extract32(insn, 5, 5); + int rd = extract32(insn, 0, 5); + + if (is_u) { + unallocated_encoding(s); + return; + } + + switch (opcode) { + case 0x9: /* SQDMLAL, SQDMLAL2 */ + case 0xb: /* SQDMLSL, SQDMLSL2 */ + case 0xd: /* SQDMULL, SQDMULL2 */ + if (size == 0 || size == 3) { + unallocated_encoding(s); + return; + } + break; + default: + unallocated_encoding(s); + return; + } + + if (!fp_access_check(s)) { + return; + } + + if (size == 2) { + TCGv_i64 tcg_op1 = tcg_temp_new_i64(); + TCGv_i64 tcg_op2 = tcg_temp_new_i64(); + TCGv_i64 tcg_res = tcg_temp_new_i64(); + + read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN); + read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN); + + tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2); + gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res); + + switch (opcode) { + case 0xd: /* SQDMULL, SQDMULL2 */ + break; + case 0xb: /* SQDMLSL, SQDMLSL2 */ + tcg_gen_neg_i64(tcg_res, tcg_res); + /* fall through */ + case 0x9: /* SQDMLAL, SQDMLAL2 */ + read_vec_element(s, tcg_op1, rd, 0, MO_64); + gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, + tcg_res, tcg_op1); + break; + default: + g_assert_not_reached(); + } + + write_fp_dreg(s, rd, tcg_res); + + tcg_temp_free_i64(tcg_op1); + tcg_temp_free_i64(tcg_op2); + tcg_temp_free_i64(tcg_res); + } else { + TCGv_i32 tcg_op1 = tcg_temp_new_i32(); + TCGv_i32 tcg_op2 = tcg_temp_new_i32(); + TCGv_i64 tcg_res = tcg_temp_new_i64(); + + read_vec_element_i32(s, tcg_op1, rn, 0, MO_16); + read_vec_element_i32(s, tcg_op2, rm, 0, MO_16); + + gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2); + gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res); + + switch (opcode) { + case 0xd: /* SQDMULL, SQDMULL2 */ + break; + case 0xb: /* SQDMLSL, SQDMLSL2 */ + gen_helper_neon_negl_u32(tcg_res, tcg_res); + /* fall through */ + case 0x9: /* SQDMLAL, SQDMLAL2 */ + { + TCGv_i64 tcg_op3 = tcg_temp_new_i64(); + read_vec_element(s, tcg_op3, rd, 0, MO_32); + gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, + tcg_res, tcg_op3); + tcg_temp_free_i64(tcg_op3); + break; + } + default: + g_assert_not_reached(); + } + + tcg_gen_ext32u_i64(tcg_res, tcg_res); + write_fp_dreg(s, rd, tcg_res); + + tcg_temp_free_i32(tcg_op1); + tcg_temp_free_i32(tcg_op2); + tcg_temp_free_i64(tcg_res); + } +} + +static void handle_3same_64(DisasContext *s, int opcode, bool u, + TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm) +{ + /* Handle 64x64->64 opcodes which are shared between the scalar + * and vector 3-same groups. We cover every opcode where size == 3 + * is valid in either the three-reg-same (integer, not pairwise) + * or scalar-three-reg-same groups. (Some opcodes are not yet + * implemented.) + */ + TCGCond cond; + + switch (opcode) { + case 0x1: /* SQADD */ + if (u) { + gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); + } else { + gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); + } + break; + case 0x5: /* SQSUB */ + if (u) { + gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); + } else { + gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); + } + break; + case 0x6: /* CMGT, CMHI */ + /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0. + * We implement this using setcond (test) and then negating. + */ + cond = u ? TCG_COND_GTU : TCG_COND_GT; + do_cmop: + tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm); + tcg_gen_neg_i64(tcg_rd, tcg_rd); + break; + case 0x7: /* CMGE, CMHS */ + cond = u ? TCG_COND_GEU : TCG_COND_GE; + goto do_cmop; + case 0x11: /* CMTST, CMEQ */ + if (u) { + cond = TCG_COND_EQ; + goto do_cmop; + } + /* CMTST : test is "if (X & Y != 0)". */ + tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm); + tcg_gen_setcondi_i64(TCG_COND_NE, tcg_rd, tcg_rd, 0); + tcg_gen_neg_i64(tcg_rd, tcg_rd); + break; + case 0x8: /* SSHL, USHL */ + if (u) { + gen_helper_neon_shl_u64(tcg_rd, tcg_rn, tcg_rm); + } else { + gen_helper_neon_shl_s64(tcg_rd, tcg_rn, tcg_rm); + } + break; + case 0x9: /* SQSHL, UQSHL */ + if (u) { + gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); + } else { + gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); + } + break; + case 0xa: /* SRSHL, URSHL */ + if (u) { + gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm); + } else { + gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm); + } + break; + case 0xb: /* SQRSHL, UQRSHL */ + if (u) { + gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); + } else { + gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); + } + break; + case 0x10: /* ADD, SUB */ + if (u) { + tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm); + } else { + tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm); + } + break; + default: + g_assert_not_reached(); + } +} + +/* Handle the 3-same-operands float operations; shared by the scalar + * and vector encodings. The caller must filter out any encodings + * not allocated for the encoding it is dealing with. + */ +static void handle_3same_float(DisasContext *s, int size, int elements, + int fpopcode, int rd, int rn, int rm) +{ + int pass; + TCGv_ptr fpst = get_fpstatus_ptr(); + + for (pass = 0; pass < elements; pass++) { + if (size) { + /* Double */ + TCGv_i64 tcg_op1 = tcg_temp_new_i64(); + TCGv_i64 tcg_op2 = tcg_temp_new_i64(); + TCGv_i64 tcg_res = tcg_temp_new_i64(); + + read_vec_element(s, tcg_op1, rn, pass, MO_64); + read_vec_element(s, tcg_op2, rm, pass, MO_64); + + switch (fpopcode) { + case 0x39: /* FMLS */ + /* As usual for ARM, separate negation for fused multiply-add */ + gen_helper_vfp_negd(tcg_op1, tcg_op1); + /* fall through */ + case 0x19: /* FMLA */ + read_vec_element(s, tcg_res, rd, pass, MO_64); + gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, + tcg_res, fpst); + break; + case 0x18: /* FMAXNM */ + gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); + break; + case 0x1a: /* FADD */ + gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); + break; + case 0x1b: /* FMULX */ + gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst); + break; + case 0x1c: /* FCMEQ */ + gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst); + break; + case 0x1e: /* FMAX */ + gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); + break; + case 0x1f: /* FRECPS */ + gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); + break; + case 0x38: /* FMINNM */ + gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); + break; + case 0x3a: /* FSUB */ + gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); + break; + case 0x3e: /* FMIN */ + gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); + break; + case 0x3f: /* FRSQRTS */ + gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); + break; + case 0x5b: /* FMUL */ + gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); + break; + case 0x5c: /* FCMGE */ + gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst); + break; + case 0x5d: /* FACGE */ + gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst); + break; + case 0x5f: /* FDIV */ + gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); + break; + case 0x7a: /* FABD */ + gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); + gen_helper_vfp_absd(tcg_res, tcg_res); + break; + case 0x7c: /* FCMGT */ + gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); + break; + case 0x7d: /* FACGT */ + gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); + break; + default: + g_assert_not_reached(); + } + + write_vec_element(s, tcg_res, rd, pass, MO_64); + + tcg_temp_free_i64(tcg_res); + tcg_temp_free_i64(tcg_op1); + tcg_temp_free_i64(tcg_op2); + } else { + /* Single */ + TCGv_i32 tcg_op1 = tcg_temp_new_i32(); + TCGv_i32 tcg_op2 = tcg_temp_new_i32(); + TCGv_i32 tcg_res = tcg_temp_new_i32(); + + read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); + read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); + + switch (fpopcode) { + case 0x39: /* FMLS */ + /* As usual for ARM, separate negation for fused multiply-add */ + gen_helper_vfp_negs(tcg_op1, tcg_op1); + /* fall through */ + case 0x19: /* FMLA */ + read_vec_element_i32(s, tcg_res, rd, pass, MO_32); + gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, + tcg_res, fpst); + break; + case 0x1a: /* FADD */ + gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); + break; + case 0x1b: /* FMULX */ + gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst); + break; + case 0x1c: /* FCMEQ */ + gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst); + break; + case 0x1e: /* FMAX */ + gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); + break; + case 0x1f: /* FRECPS */ + gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); + break; + case 0x18: /* FMAXNM */ + gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); + break; + case 0x38: /* FMINNM */ + gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); + break; + case 0x3a: /* FSUB */ + gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); + break; + case 0x3e: /* FMIN */ + gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); + break; + case 0x3f: /* FRSQRTS */ + gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); + break; + case 0x5b: /* FMUL */ + gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); + break; + case 0x5c: /* FCMGE */ + gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst); + break; + case 0x5d: /* FACGE */ + gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst); + break; + case 0x5f: /* FDIV */ + gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); + break; + case 0x7a: /* FABD */ + gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); + gen_helper_vfp_abss(tcg_res, tcg_res); + break; + case 0x7c: /* FCMGT */ + gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); + break; + case 0x7d: /* FACGT */ + gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); + break; + default: + g_assert_not_reached(); + } + + if (elements == 1) { + /* scalar single so clear high part */ + TCGv_i64 tcg_tmp = tcg_temp_new_i64(); + + tcg_gen_extu_i32_i64(tcg_tmp, tcg_res); + write_vec_element(s, tcg_tmp, rd, pass, MO_64); + tcg_temp_free_i64(tcg_tmp); + } else { + write_vec_element_i32(s, tcg_res, rd, pass, MO_32); + } + + tcg_temp_free_i32(tcg_res); + tcg_temp_free_i32(tcg_op1); + tcg_temp_free_i32(tcg_op2); + } + } + + tcg_temp_free_ptr(fpst); + + if ((elements << size) < 4) { + /* scalar, or non-quad vector op */ + clear_vec_high(s, rd); + } +} + +/* C3.6.11 AdvSIMD scalar three same + * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 + * +-----+---+-----------+------+---+------+--------+---+------+------+ + * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | + * +-----+---+-----------+------+---+------+--------+---+------+------+ + */ +static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn) +{ + int rd = extract32(insn, 0, 5); + int rn = extract32(insn, 5, 5); + int opcode = extract32(insn, 11, 5); + int rm = extract32(insn, 16, 5); + int size = extract32(insn, 22, 2); + bool u = extract32(insn, 29, 1); + TCGv_i64 tcg_rd; + + if (opcode >= 0x18) { + /* Floating point: U, size[1] and opcode indicate operation */ + int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6); + switch (fpopcode) { + case 0x1b: /* FMULX */ + case 0x1f: /* FRECPS */ + case 0x3f: /* FRSQRTS */ + case 0x5d: /* FACGE */ + case 0x7d: /* FACGT */ + case 0x1c: /* FCMEQ */ + case 0x5c: /* FCMGE */ + case 0x7c: /* FCMGT */ + case 0x7a: /* FABD */ + break; + default: + unallocated_encoding(s); + return; + } + + if (!fp_access_check(s)) { + return; + } + + handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm); + return; + } + + switch (opcode) { + case 0x1: /* SQADD, UQADD */ + case 0x5: /* SQSUB, UQSUB */ + case 0x9: /* SQSHL, UQSHL */ + case 0xb: /* SQRSHL, UQRSHL */ + break; + case 0x8: /* SSHL, USHL */ + case 0xa: /* SRSHL, URSHL */ + case 0x6: /* CMGT, CMHI */ + case 0x7: /* CMGE, CMHS */ + case 0x11: /* CMTST, CMEQ */ + case 0x10: /* ADD, SUB (vector) */ + if (size != 3) { + unallocated_encoding(s); + return; + } + break; + case 0x16: /* SQDMULH, SQRDMULH (vector) */ + if (size != 1 && size != 2) { + unallocated_encoding(s); + return; + } + break; + default: + unallocated_encoding(s); + return; + } + + if (!fp_access_check(s)) { + return; + } + + tcg_rd = tcg_temp_new_i64(); + + if (size == 3) { + TCGv_i64 tcg_rn = read_fp_dreg(s, rn); + TCGv_i64 tcg_rm = read_fp_dreg(s, rm); + + handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm); + tcg_temp_free_i64(tcg_rn); + tcg_temp_free_i64(tcg_rm); + } else { + /* Do a single operation on the lowest element in the vector. + * We use the standard Neon helpers and rely on 0 OP 0 == 0 with + * no side effects for all these operations. + * OPTME: special-purpose helpers would avoid doing some + * unnecessary work in the helper for the 8 and 16 bit cases. + */ + NeonGenTwoOpEnvFn *genenvfn; + TCGv_i32 tcg_rn = tcg_temp_new_i32(); + TCGv_i32 tcg_rm = tcg_temp_new_i32(); + TCGv_i32 tcg_rd32 = tcg_temp_new_i32(); + + read_vec_element_i32(s, tcg_rn, rn, 0, size); + read_vec_element_i32(s, tcg_rm, rm, 0, size); + + switch (opcode) { + case 0x1: /* SQADD, UQADD */ + { + static NeonGenTwoOpEnvFn * const fns[3][2] = { + { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 }, + { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 }, + { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 }, + }; + genenvfn = fns[size][u]; + break; + } + case 0x5: /* SQSUB, UQSUB */ + { + static NeonGenTwoOpEnvFn * const fns[3][2] = { + { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 }, + { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 }, + { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 }, + }; + genenvfn = fns[size][u]; + break; + } + case 0x9: /* SQSHL, UQSHL */ + { + static NeonGenTwoOpEnvFn * const fns[3][2] = { + { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, + { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, + { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, + }; + genenvfn = fns[size][u]; + break; + } + case 0xb: /* SQRSHL, UQRSHL */ + { + static NeonGenTwoOpEnvFn * const fns[3][2] = { + { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, + { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, + { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, + }; + genenvfn = fns[size][u]; + break; + } + case 0x16: /* SQDMULH, SQRDMULH */ + { + static NeonGenTwoOpEnvFn * const fns[2][2] = { + { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 }, + { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 }, + }; + assert(size == 1 || size == 2); + genenvfn = fns[size - 1][u]; + break; + } + default: + g_assert_not_reached(); + } + + genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm); + tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32); + tcg_temp_free_i32(tcg_rd32); + tcg_temp_free_i32(tcg_rn); + tcg_temp_free_i32(tcg_rm); + } + + write_fp_dreg(s, rd, tcg_rd); + + tcg_temp_free_i64(tcg_rd); +} + +static void handle_2misc_64(DisasContext *s, int opcode, bool u, + TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, + TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus) +{ + /* Handle 64->64 opcodes which are shared between the scalar and + * vector 2-reg-misc groups. We cover every integer opcode where size == 3 + * is valid in either group and also the double-precision fp ops. + * The caller only need provide tcg_rmode and tcg_fpstatus if the op + * requires them. + */ + TCGCond cond; + + switch (opcode) { + case 0x4: /* CLS, CLZ */ + if (u) { + gen_helper_clz64(tcg_rd, tcg_rn); + } else { + gen_helper_cls64(tcg_rd, tcg_rn); + } + break; + case 0x5: /* NOT */ + /* This opcode is shared with CNT and RBIT but we have earlier + * enforced that size == 3 if and only if this is the NOT insn. + */ + tcg_gen_not_i64(tcg_rd, tcg_rn); + break; + case 0x7: /* SQABS, SQNEG */ + if (u) { + gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn); + } else { + gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn); + } + break; + case 0xa: /* CMLT */ + /* 64 bit integer comparison against zero, result is + * test ? (2^64 - 1) : 0. We implement via setcond(!test) and + * subtracting 1. + */ + cond = TCG_COND_LT; + do_cmop: + tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0); + tcg_gen_neg_i64(tcg_rd, tcg_rd); + break; + case 0x8: /* CMGT, CMGE */ + cond = u ? TCG_COND_GE : TCG_COND_GT; + goto do_cmop; + case 0x9: /* CMEQ, CMLE */ + cond = u ? TCG_COND_LE : TCG_COND_EQ; + goto do_cmop; + case 0xb: /* ABS, NEG */ + if (u) { + tcg_gen_neg_i64(tcg_rd, tcg_rn); + } else { + TCGv_i64 tcg_zero = tcg_const_i64(0); + tcg_gen_neg_i64(tcg_rd, tcg_rn); + tcg_gen_movcond_i64(TCG_COND_GT, tcg_rd, tcg_rn, tcg_zero, + tcg_rn, tcg_rd); + tcg_temp_free_i64(tcg_zero); + } + break; + case 0x2f: /* FABS */ + gen_helper_vfp_absd(tcg_rd, tcg_rn); + break; + case 0x6f: /* FNEG */ + gen_helper_vfp_negd(tcg_rd, tcg_rn); + break; + case 0x7f: /* FSQRT */ + gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env); + break; + case 0x1a: /* FCVTNS */ + case 0x1b: /* FCVTMS */ + case 0x1c: /* FCVTAS */ + case 0x3a: /* FCVTPS */ + case 0x3b: /* FCVTZS */ + { + TCGv_i32 tcg_shift = tcg_const_i32(0); + gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus); + tcg_temp_free_i32(tcg_shift); + break; + } + case 0x5a: /* FCVTNU */ + case 0x5b: /* FCVTMU */ + case 0x5c: /* FCVTAU */ + case 0x7a: /* FCVTPU */ + case 0x7b: /* FCVTZU */ + { + TCGv_i32 tcg_shift = tcg_const_i32(0); + gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus); + tcg_temp_free_i32(tcg_shift); + break; + } + case 0x18: /* FRINTN */ + case 0x19: /* FRINTM */ + case 0x38: /* FRINTP */ + case 0x39: /* FRINTZ */ + case 0x58: /* FRINTA */ + case 0x79: /* FRINTI */ + gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus); + break; + case 0x59: /* FRINTX */ + gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus); + break; + default: + g_assert_not_reached(); + } +} + +static void handle_2misc_fcmp_zero(DisasContext *s, int opcode, + bool is_scalar, bool is_u, bool is_q, + int size, int rn, int rd) +{ + bool is_double = (size == 3); + TCGv_ptr fpst; + + if (!fp_access_check(s)) { + return; + } + + fpst = get_fpstatus_ptr(); + + if (is_double) { + TCGv_i64 tcg_op = tcg_temp_new_i64(); + TCGv_i64 tcg_zero = tcg_const_i64(0); + TCGv_i64 tcg_res = tcg_temp_new_i64(); + NeonGenTwoDoubleOPFn *genfn; + bool swap = false; + int pass; + + switch (opcode) { + case 0x2e: /* FCMLT (zero) */ + swap = true; + /* fallthrough */ + case 0x2c: /* FCMGT (zero) */ + genfn = gen_helper_neon_cgt_f64; + break; + case 0x2d: /* FCMEQ (zero) */ + genfn = gen_helper_neon_ceq_f64; + break; + case 0x6d: /* FCMLE (zero) */ + swap = true; + /* fall through */ + case 0x6c: /* FCMGE (zero) */ + genfn = gen_helper_neon_cge_f64; + break; + default: + g_assert_not_reached(); + } + + for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { + read_vec_element(s, tcg_op, rn, pass, MO_64); + if (swap) { + genfn(tcg_res, tcg_zero, tcg_op, fpst); + } else { + genfn(tcg_res, tcg_op, tcg_zero, fpst); + } + write_vec_element(s, tcg_res, rd, pass, MO_64); + } + if (is_scalar) { + clear_vec_high(s, rd); + } + + tcg_temp_free_i64(tcg_res); + tcg_temp_free_i64(tcg_zero); + tcg_temp_free_i64(tcg_op); + } else { + TCGv_i32 tcg_op = tcg_temp_new_i32(); + TCGv_i32 tcg_zero = tcg_const_i32(0); + TCGv_i32 tcg_res = tcg_temp_new_i32(); + NeonGenTwoSingleOPFn *genfn; + bool swap = false; + int pass, maxpasses; + + switch (opcode) { + case 0x2e: /* FCMLT (zero) */ + swap = true; + /* fall through */ + case 0x2c: /* FCMGT (zero) */ + genfn = gen_helper_neon_cgt_f32; + break; + case 0x2d: /* FCMEQ (zero) */ + genfn = gen_helper_neon_ceq_f32; + break; + case 0x6d: /* FCMLE (zero) */ + swap = true; + /* fall through */ + case 0x6c: /* FCMGE (zero) */ + genfn = gen_helper_neon_cge_f32; + break; + default: + g_assert_not_reached(); + } + + if (is_scalar) { + maxpasses = 1; + } else { + maxpasses = is_q ? 4 : 2; + } + + for (pass = 0; pass < maxpasses; pass++) { + read_vec_element_i32(s, tcg_op, rn, pass, MO_32); + if (swap) { + genfn(tcg_res, tcg_zero, tcg_op, fpst); + } else { + genfn(tcg_res, tcg_op, tcg_zero, fpst); + } + if (is_scalar) { + write_fp_sreg(s, rd, tcg_res); + } else { + write_vec_element_i32(s, tcg_res, rd, pass, MO_32); + } + } + tcg_temp_free_i32(tcg_res); + tcg_temp_free_i32(tcg_zero); + tcg_temp_free_i32(tcg_op); + if (!is_q && !is_scalar) { + clear_vec_high(s, rd); + } + } + + tcg_temp_free_ptr(fpst); +} + +static void handle_2misc_reciprocal(DisasContext *s, int opcode, + bool is_scalar, bool is_u, bool is_q, + int size, int rn, int rd) +{ + bool is_double = (size == 3); + TCGv_ptr fpst = get_fpstatus_ptr(); + + if (is_double) { + TCGv_i64 tcg_op = tcg_temp_new_i64(); + TCGv_i64 tcg_res = tcg_temp_new_i64(); + int pass; + + for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { + read_vec_element(s, tcg_op, rn, pass, MO_64); + switch (opcode) { + case 0x3d: /* FRECPE */ + gen_helper_recpe_f64(tcg_res, tcg_op, fpst); + break; + case 0x3f: /* FRECPX */ + gen_helper_frecpx_f64(tcg_res, tcg_op, fpst); + break; + case 0x7d: /* FRSQRTE */ + gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst); + break; + default: + g_assert_not_reached(); + } + write_vec_element(s, tcg_res, rd, pass, MO_64); + } + if (is_scalar) { + clear_vec_high(s, rd); + } + + tcg_temp_free_i64(tcg_res); + tcg_temp_free_i64(tcg_op); + } else { + TCGv_i32 tcg_op = tcg_temp_new_i32(); + TCGv_i32 tcg_res = tcg_temp_new_i32(); + int pass, maxpasses; + + if (is_scalar) { + maxpasses = 1; + } else { + maxpasses = is_q ? 4 : 2; + } + + for (pass = 0; pass < maxpasses; pass++) { + read_vec_element_i32(s, tcg_op, rn, pass, MO_32); + + switch (opcode) { + case 0x3c: /* URECPE */ + gen_helper_recpe_u32(tcg_res, tcg_op, fpst); + break; + case 0x3d: /* FRECPE */ + gen_helper_recpe_f32(tcg_res, tcg_op, fpst); + break; + case 0x3f: /* FRECPX */ + gen_helper_frecpx_f32(tcg_res, tcg_op, fpst); + break; + case 0x7d: /* FRSQRTE */ + gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst); + break; + default: + g_assert_not_reached(); + } + + if (is_scalar) { + write_fp_sreg(s, rd, tcg_res); + } else { + write_vec_element_i32(s, tcg_res, rd, pass, MO_32); + } + } + tcg_temp_free_i32(tcg_res); + tcg_temp_free_i32(tcg_op); + if (!is_q && !is_scalar) { + clear_vec_high(s, rd); + } + } + tcg_temp_free_ptr(fpst); +} + +static void handle_2misc_narrow(DisasContext *s, bool scalar, + int opcode, bool u, bool is_q, + int size, int rn, int rd) +{ + /* Handle 2-reg-misc ops which are narrowing (so each 2*size element + * in the source becomes a size element in the destination). + */ + int pass; + TCGv_i32 tcg_res[2]; + int destelt = is_q ? 2 : 0; + int passes = scalar ? 1 : 2; + + if (scalar) { + tcg_res[1] = tcg_const_i32(0); + } + + for (pass = 0; pass < passes; pass++) { + TCGv_i64 tcg_op = tcg_temp_new_i64(); + NeonGenNarrowFn *genfn = NULL; + NeonGenNarrowEnvFn *genenvfn = NULL; + + if (scalar) { + read_vec_element(s, tcg_op, rn, pass, size + 1); + } else { + read_vec_element(s, tcg_op, rn, pass, MO_64); + } + tcg_res[pass] = tcg_temp_new_i32(); + + switch (opcode) { + case 0x12: /* XTN, SQXTUN */ + { + static NeonGenNarrowFn * const xtnfns[3] = { + gen_helper_neon_narrow_u8, + gen_helper_neon_narrow_u16, + tcg_gen_extrl_i64_i32, + }; + static NeonGenNarrowEnvFn * const sqxtunfns[3] = { + gen_helper_neon_unarrow_sat8, + gen_helper_neon_unarrow_sat16, + gen_helper_neon_unarrow_sat32, + }; + if (u) { + genenvfn = sqxtunfns[size]; + } else { + genfn = xtnfns[size]; + } + break; + } + case 0x14: /* SQXTN, UQXTN */ + { + static NeonGenNarrowEnvFn * const fns[3][2] = { + { gen_helper_neon_narrow_sat_s8, + gen_helper_neon_narrow_sat_u8 }, + { gen_helper_neon_narrow_sat_s16, + gen_helper_neon_narrow_sat_u16 }, + { gen_helper_neon_narrow_sat_s32, + gen_helper_neon_narrow_sat_u32 }, + }; + genenvfn = fns[size][u]; + break; + } + case 0x16: /* FCVTN, FCVTN2 */ + /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */ + if (size == 2) { + gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env); + } else { + TCGv_i32 tcg_lo = tcg_temp_new_i32(); + TCGv_i32 tcg_hi = tcg_temp_new_i32(); + tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op); + gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, cpu_env); + gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, cpu_env); + tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16); + tcg_temp_free_i32(tcg_lo); + tcg_temp_free_i32(tcg_hi); + } + break; + case 0x56: /* FCVTXN, FCVTXN2 */ + /* 64 bit to 32 bit float conversion + * with von Neumann rounding (round to odd) + */ + assert(size == 2); + gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env); + break; + default: + g_assert_not_reached(); + } + + if (genfn) { + genfn(tcg_res[pass], tcg_op); + } else if (genenvfn) { + genenvfn(tcg_res[pass], cpu_env, tcg_op); + } + + tcg_temp_free_i64(tcg_op); + } + + for (pass = 0; pass < 2; pass++) { + write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32); + tcg_temp_free_i32(tcg_res[pass]); + } + if (!is_q) { + clear_vec_high(s, rd); + } +} + +/* Remaining saturating accumulating ops */ +static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u, + bool is_q, int size, int rn, int rd) +{ + bool is_double = (size == 3); + + if (is_double) { + TCGv_i64 tcg_rn = tcg_temp_new_i64(); + TCGv_i64 tcg_rd = tcg_temp_new_i64(); + int pass; + + for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { + read_vec_element(s, tcg_rn, rn, pass, MO_64); + read_vec_element(s, tcg_rd, rd, pass, MO_64); + + if (is_u) { /* USQADD */ + gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd); + } else { /* SUQADD */ + gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd); + } + write_vec_element(s, tcg_rd, rd, pass, MO_64); + } + if (is_scalar) { + clear_vec_high(s, rd); + } + + tcg_temp_free_i64(tcg_rd); + tcg_temp_free_i64(tcg_rn); + } else { + TCGv_i32 tcg_rn = tcg_temp_new_i32(); + TCGv_i32 tcg_rd = tcg_temp_new_i32(); + int pass, maxpasses; + + if (is_scalar) { + maxpasses = 1; + } else { + maxpasses = is_q ? 4 : 2; + } + + for (pass = 0; pass < maxpasses; pass++) { + if (is_scalar) { + read_vec_element_i32(s, tcg_rn, rn, pass, size); + read_vec_element_i32(s, tcg_rd, rd, pass, size); + } else { + read_vec_element_i32(s, tcg_rn, rn, pass, MO_32); + read_vec_element_i32(s, tcg_rd, rd, pass, MO_32); + } + + if (is_u) { /* USQADD */ + switch (size) { + case 0: + gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd); + break; + case 1: + gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd); + break; + case 2: + gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd); + break; + default: + g_assert_not_reached(); + } + } else { /* SUQADD */ + switch (size) { + case 0: + gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd); + break; + case 1: + gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd); + break; + case 2: + gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd); + break; + default: + g_assert_not_reached(); + } + } + + if (is_scalar) { + TCGv_i64 tcg_zero = tcg_const_i64(0); + write_vec_element(s, tcg_zero, rd, 0, MO_64); + tcg_temp_free_i64(tcg_zero); + } + write_vec_element_i32(s, tcg_rd, rd, pass, MO_32); + } + + if (!is_q) { + clear_vec_high(s, rd); + } + + tcg_temp_free_i32(tcg_rd); + tcg_temp_free_i32(tcg_rn); + } +} + +/* C3.6.12 AdvSIMD scalar two reg misc + * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 + * +-----+---+-----------+------+-----------+--------+-----+------+------+ + * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | + * +-----+---+-----------+------+-----------+--------+-----+------+------+ + */ +static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn) +{ + int rd = extract32(insn, 0, 5); + int rn = extract32(insn, 5, 5); + int opcode = extract32(insn, 12, 5); + int size = extract32(insn, 22, 2); + bool u = extract32(insn, 29, 1); + bool is_fcvt = false; + int rmode; + TCGv_i32 tcg_rmode; + TCGv_ptr tcg_fpstatus; + + switch (opcode) { + case 0x3: /* USQADD / SUQADD*/ + if (!fp_access_check(s)) { + return; + } + handle_2misc_satacc(s, true, u, false, size, rn, rd); + return; + case 0x7: /* SQABS / SQNEG */ + break; + case 0xa: /* CMLT */ + if (u) { + unallocated_encoding(s); + return; + } + /* fall through */ + case 0x8: /* CMGT, CMGE */ + case 0x9: /* CMEQ, CMLE */ + case 0xb: /* ABS, NEG */ + if (size != 3) { + unallocated_encoding(s); + return; + } + break; + case 0x12: /* SQXTUN */ + if (!u) { + unallocated_encoding(s); + return; + } + /* fall through */ + case 0x14: /* SQXTN, UQXTN */ + if (size == 3) { + unallocated_encoding(s); + return; + } + if (!fp_access_check(s)) { + return; + } + handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd); + return; + case 0xc ... 0xf: + case 0x16 ... 0x1d: + case 0x1f: + /* Floating point: U, size[1] and opcode indicate operation; + * size[0] indicates single or double precision. + */ + opcode |= (extract32(size, 1, 1) << 5) | (u << 6); + size = extract32(size, 0, 1) ? 3 : 2; + switch (opcode) { + case 0x2c: /* FCMGT (zero) */ + case 0x2d: /* FCMEQ (zero) */ + case 0x2e: /* FCMLT (zero) */ + case 0x6c: /* FCMGE (zero) */ + case 0x6d: /* FCMLE (zero) */ + handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd); + return; + case 0x1d: /* SCVTF */ + case 0x5d: /* UCVTF */ + { + bool is_signed = (opcode == 0x1d); + if (!fp_access_check(s)) { + return; + } + handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size); + return; + } + case 0x3d: /* FRECPE */ + case 0x3f: /* FRECPX */ + case 0x7d: /* FRSQRTE */ + if (!fp_access_check(s)) { + return; + } + handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd); + return; + case 0x1a: /* FCVTNS */ + case 0x1b: /* FCVTMS */ + case 0x3a: /* FCVTPS */ + case 0x3b: /* FCVTZS */ + case 0x5a: /* FCVTNU */ + case 0x5b: /* FCVTMU */ + case 0x7a: /* FCVTPU */ + case 0x7b: /* FCVTZU */ + is_fcvt = true; + rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); + break; + case 0x1c: /* FCVTAS */ + case 0x5c: /* FCVTAU */ + /* TIEAWAY doesn't fit in the usual rounding mode encoding */ + is_fcvt = true; + rmode = FPROUNDING_TIEAWAY; + break; + case 0x56: /* FCVTXN, FCVTXN2 */ + if (size == 2) { + unallocated_encoding(s); + return; + } + if (!fp_access_check(s)) { + return; + } + handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd); + return; + default: + unallocated_encoding(s); + return; + } + break; + default: + unallocated_encoding(s); + return; + } + + if (!fp_access_check(s)) { + return; + } + + if (is_fcvt) { + tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode)); + gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env); + tcg_fpstatus = get_fpstatus_ptr(); + } else { + TCGV_UNUSED_I32(tcg_rmode); + TCGV_UNUSED_PTR(tcg_fpstatus); + } + + if (size == 3) { + TCGv_i64 tcg_rn = read_fp_dreg(s, rn); + TCGv_i64 tcg_rd = tcg_temp_new_i64(); + + handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus); + write_fp_dreg(s, rd, tcg_rd); + tcg_temp_free_i64(tcg_rd); + tcg_temp_free_i64(tcg_rn); + } else { + TCGv_i32 tcg_rn = tcg_temp_new_i32(); + TCGv_i32 tcg_rd = tcg_temp_new_i32(); + + read_vec_element_i32(s, tcg_rn, rn, 0, size); + + switch (opcode) { + case 0x7: /* SQABS, SQNEG */ + { + NeonGenOneOpEnvFn *genfn; + static NeonGenOneOpEnvFn * const fns[3][2] = { + { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, + { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, + { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 }, + }; + genfn = fns[size][u]; + genfn(tcg_rd, cpu_env, tcg_rn); + break; + } + case 0x1a: /* FCVTNS */ + case 0x1b: /* FCVTMS */ + case 0x1c: /* FCVTAS */ + case 0x3a: /* FCVTPS */ + case 0x3b: /* FCVTZS */ + { + TCGv_i32 tcg_shift = tcg_const_i32(0); + gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus); + tcg_temp_free_i32(tcg_shift); + break; + } + case 0x5a: /* FCVTNU */ + case 0x5b: /* FCVTMU */ + case 0x5c: /* FCVTAU */ + case 0x7a: /* FCVTPU */ + case 0x7b: /* FCVTZU */ + { + TCGv_i32 tcg_shift = tcg_const_i32(0); + gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus); + tcg_temp_free_i32(tcg_shift); + break; + } + default: + g_assert_not_reached(); + } + + write_fp_sreg(s, rd, tcg_rd); + tcg_temp_free_i32(tcg_rd); + tcg_temp_free_i32(tcg_rn); + } + + if (is_fcvt) { + gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env); + tcg_temp_free_i32(tcg_rmode); + tcg_temp_free_ptr(tcg_fpstatus); + } +} + +/* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */ +static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u, + int immh, int immb, int opcode, int rn, int rd) +{ + int size = 32 - clz32(immh) - 1; + int immhb = immh << 3 | immb; + int shift = 2 * (8 << size) - immhb; + bool accumulate = false; + bool round = false; + bool insert = false; + int dsize = is_q ? 128 : 64; + int esize = 8 << size; + int elements = dsize/esize; + TCGMemOp memop = size | (is_u ? 0 : MO_SIGN); + TCGv_i64 tcg_rn = new_tmp_a64(s); + TCGv_i64 tcg_rd = new_tmp_a64(s); + TCGv_i64 tcg_round; + int i; + + if (extract32(immh, 3, 1) && !is_q) { + unallocated_encoding(s); + return; + } + + if (size > 3 && !is_q) { + unallocated_encoding(s); + return; + } + + if (!fp_access_check(s)) { + return; + } + + switch (opcode) { + case 0x02: /* SSRA / USRA (accumulate) */ + accumulate = true; + break; + case 0x04: /* SRSHR / URSHR (rounding) */ + round = true; + break; + case 0x06: /* SRSRA / URSRA (accum + rounding) */ + accumulate = round = true; + break; + case 0x08: /* SRI */ + insert = true; + break; + } + + if (round) { + uint64_t round_const = 1ULL << (shift - 1); + tcg_round = tcg_const_i64(round_const); + } else { + TCGV_UNUSED_I64(tcg_round); + } + + for (i = 0; i < elements; i++) { + read_vec_element(s, tcg_rn, rn, i, memop); + if (accumulate || insert) { + read_vec_element(s, tcg_rd, rd, i, memop); + } + + if (insert) { + handle_shri_with_ins(tcg_rd, tcg_rn, size, shift); + } else { + handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, + accumulate, is_u, size, shift); + } + + write_vec_element(s, tcg_rd, rd, i, size); + } + + if (!is_q) { + clear_vec_high(s, rd); + } + + if (round) { + tcg_temp_free_i64(tcg_round); + } +} + +/* SHL/SLI - Vector shift left */ +static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert, + int immh, int immb, int opcode, int rn, int rd) +{ + int size = 32 - clz32(immh) - 1; + int immhb = immh << 3 | immb; + int shift = immhb - (8 << size); + int dsize = is_q ? 128 : 64; + int esize = 8 << size; + int elements = dsize/esize; + TCGv_i64 tcg_rn = new_tmp_a64(s); + TCGv_i64 tcg_rd = new_tmp_a64(s); + int i; + + if (extract32(immh, 3, 1) && !is_q) { + unallocated_encoding(s); + return; + } + + if (size > 3 && !is_q) { + unallocated_encoding(s); + return; + } + + if (!fp_access_check(s)) { + return; + } + + for (i = 0; i < elements; i++) { + read_vec_element(s, tcg_rn, rn, i, size); + if (insert) { + read_vec_element(s, tcg_rd, rd, i, size); + } + + handle_shli_with_ins(tcg_rd, tcg_rn, insert, shift); + + write_vec_element(s, tcg_rd, rd, i, size); + } + + if (!is_q) { + clear_vec_high(s, rd); + } +} + +/* USHLL/SHLL - Vector shift left with widening */ +static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u, + int immh, int immb, int opcode, int rn, int rd) +{ + int size = 32 - clz32(immh) - 1; + int immhb = immh << 3 | immb; + int shift = immhb - (8 << size); + int dsize = 64; + int esize = 8 << size; + int elements = dsize/esize; + TCGv_i64 tcg_rn = new_tmp_a64(s); + TCGv_i64 tcg_rd = new_tmp_a64(s); + int i; + + if (size >= 3) { + unallocated_encoding(s); + return; + } + + if (!fp_access_check(s)) { + return; + } + + /* For the LL variants the store is larger than the load, + * so if rd == rn we would overwrite parts of our input. + * So load everything right now and use shifts in the main loop. + */ + read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64); + + for (i = 0; i < elements; i++) { + tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize); + ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0); + tcg_gen_shli_i64(tcg_rd, tcg_rd, shift); + write_vec_element(s, tcg_rd, rd, i, size + 1); + } +} + +/* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */ +static void handle_vec_simd_shrn(DisasContext *s, bool is_q, + int immh, int immb, int opcode, int rn, int rd) +{ + int immhb = immh << 3 | immb; + int size = 32 - clz32(immh) - 1; + int dsize = 64; + int esize = 8 << size; + int elements = dsize/esize; + int shift = (2 * esize) - immhb; + bool round = extract32(opcode, 0, 1); + TCGv_i64 tcg_rn, tcg_rd, tcg_final; + TCGv_i64 tcg_round; + int i; + + if (extract32(immh, 3, 1)) { + unallocated_encoding(s); + return; + } + + if (!fp_access_check(s)) { + return; + } + + tcg_rn = tcg_temp_new_i64(); + tcg_rd = tcg_temp_new_i64(); + tcg_final = tcg_temp_new_i64(); + read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64); + + if (round) { + uint64_t round_const = 1ULL << (shift - 1); + tcg_round = tcg_const_i64(round_const); + } else { + TCGV_UNUSED_I64(tcg_round); + } + + for (i = 0; i < elements; i++) { + read_vec_element(s, tcg_rn, rn, i, size+1); + handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, + false, true, size+1, shift); + + tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); + } + + if (!is_q) { + clear_vec_high(s, rd); + write_vec_element(s, tcg_final, rd, 0, MO_64); + } else { + write_vec_element(s, tcg_final, rd, 1, MO_64); + } + + if (round) { + tcg_temp_free_i64(tcg_round); + } + tcg_temp_free_i64(tcg_rn); + tcg_temp_free_i64(tcg_rd); + tcg_temp_free_i64(tcg_final); + return; +} + + +/* C3.6.14 AdvSIMD shift by immediate + * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 + * +---+---+---+-------------+------+------+--------+---+------+------+ + * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | + * +---+---+---+-------------+------+------+--------+---+------+------+ + */ +static void disas_simd_shift_imm(DisasContext *s, uint32_t insn) +{ + int rd = extract32(insn, 0, 5); + int rn = extract32(insn, 5, 5); + int opcode = extract32(insn, 11, 5); + int immb = extract32(insn, 16, 3); + int immh = extract32(insn, 19, 4); + bool is_u = extract32(insn, 29, 1); + bool is_q = extract32(insn, 30, 1); + + switch (opcode) { + case 0x08: /* SRI */ + if (!is_u) { + unallocated_encoding(s); + return; + } + /* fall through */ + case 0x00: /* SSHR / USHR */ + case 0x02: /* SSRA / USRA (accumulate) */ + case 0x04: /* SRSHR / URSHR (rounding) */ + case 0x06: /* SRSRA / URSRA (accum + rounding) */ + handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd); + break; + case 0x0a: /* SHL / SLI */ + handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd); + break; + case 0x10: /* SHRN */ + case 0x11: /* RSHRN / SQRSHRUN */ + if (is_u) { + handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb, + opcode, rn, rd); + } else { + handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd); + } + break; + case 0x12: /* SQSHRN / UQSHRN */ + case 0x13: /* SQRSHRN / UQRSHRN */ + handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb, + opcode, rn, rd); + break; + case 0x14: /* SSHLL / USHLL */ + handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd); + break; + case 0x1c: /* SCVTF / UCVTF */ + handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb, + opcode, rn, rd); + break; + case 0xc: /* SQSHLU */ + if (!is_u) { + unallocated_encoding(s); + return; + } + handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd); + break; + case 0xe: /* SQSHL, UQSHL */ + handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd); + break; + case 0x1f: /* FCVTZS/ FCVTZU */ + handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd); + return; + default: + unallocated_encoding(s); + return; + } +} + +/* Generate code to do a "long" addition or subtraction, ie one done in + * TCGv_i64 on vector lanes twice the width specified by size. + */ +static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res, + TCGv_i64 tcg_op1, TCGv_i64 tcg_op2) +{ + static NeonGenTwo64OpFn * const fns[3][2] = { + { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 }, + { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 }, + { tcg_gen_add_i64, tcg_gen_sub_i64 }, + }; + NeonGenTwo64OpFn *genfn; + assert(size < 3); + + genfn = fns[size][is_sub]; + genfn(tcg_res, tcg_op1, tcg_op2); +} + +static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size, + int opcode, int rd, int rn, int rm) +{ + /* 3-reg-different widening insns: 64 x 64 -> 128 */ + TCGv_i64 tcg_res[2]; + int pass, accop; + + tcg_res[0] = tcg_temp_new_i64(); + tcg_res[1] = tcg_temp_new_i64(); + + /* Does this op do an adding accumulate, a subtracting accumulate, + * or no accumulate at all? + */ + switch (opcode) { + case 5: + case 8: + case 9: + accop = 1; + break; + case 10: + case 11: + accop = -1; + break; + default: + accop = 0; + break; + } + + if (accop != 0) { + read_vec_element(s, tcg_res[0], rd, 0, MO_64); + read_vec_element(s, tcg_res[1], rd, 1, MO_64); + } + + /* size == 2 means two 32x32->64 operations; this is worth special + * casing because we can generally handle it inline. + */ + if (size == 2) { + for (pass = 0; pass < 2; pass++) { + TCGv_i64 tcg_op1 = tcg_temp_new_i64(); + TCGv_i64 tcg_op2 = tcg_temp_new_i64(); + TCGv_i64 tcg_passres; + TCGMemOp memop = MO_32 | (is_u ? 0 : MO_SIGN); + + int elt = pass + is_q * 2; + + read_vec_element(s, tcg_op1, rn, elt, memop); + read_vec_element(s, tcg_op2, rm, elt, memop); + + if (accop == 0) { + tcg_passres = tcg_res[pass]; + } else { + tcg_passres = tcg_temp_new_i64(); + } + + switch (opcode) { + case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ + tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2); + break; + case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ + tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2); + break; + case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ + case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ + { + TCGv_i64 tcg_tmp1 = tcg_temp_new_i64(); + TCGv_i64 tcg_tmp2 = tcg_temp_new_i64(); + + tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2); + tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1); + tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE, + tcg_passres, + tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2); + tcg_temp_free_i64(tcg_tmp1); + tcg_temp_free_i64(tcg_tmp2); + break; + } + case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ + case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ + case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ + tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); + break; + case 9: /* SQDMLAL, SQDMLAL2 */ + case 11: /* SQDMLSL, SQDMLSL2 */ + case 13: /* SQDMULL, SQDMULL2 */ + tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); + gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env, + tcg_passres, tcg_passres); + break; + default: + g_assert_not_reached(); + } + + if (opcode == 9 || opcode == 11) { + /* saturating accumulate ops */ + if (accop < 0) { + tcg_gen_neg_i64(tcg_passres, tcg_passres); + } + gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env, + tcg_res[pass], tcg_passres); + } else if (accop > 0) { + tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); + } else if (accop < 0) { + tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); + } + + if (accop != 0) { + tcg_temp_free_i64(tcg_passres); + } + + tcg_temp_free_i64(tcg_op1); + tcg_temp_free_i64(tcg_op2); + } + } else { + /* size 0 or 1, generally helper functions */ + for (pass = 0; pass < 2; pass++) { + TCGv_i32 tcg_op1 = tcg_temp_new_i32(); + TCGv_i32 tcg_op2 = tcg_temp_new_i32(); + TCGv_i64 tcg_passres; + int elt = pass + is_q * 2; + + read_vec_element_i32(s, tcg_op1, rn, elt, MO_32); + read_vec_element_i32(s, tcg_op2, rm, elt, MO_32); + + if (accop == 0) { + tcg_passres = tcg_res[pass]; + } else { + tcg_passres = tcg_temp_new_i64(); + } + + switch (opcode) { + case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ + case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ + { + TCGv_i64 tcg_op2_64 = tcg_temp_new_i64(); + static NeonGenWidenFn * const widenfns[2][2] = { + { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, + { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, + }; + NeonGenWidenFn *widenfn = widenfns[size][is_u]; + + widenfn(tcg_op2_64, tcg_op2); + widenfn(tcg_passres, tcg_op1); + gen_neon_addl(size, (opcode == 2), tcg_passres, + tcg_passres, tcg_op2_64); + tcg_temp_free_i64(tcg_op2_64); + break; + } + case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ + case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ + if (size == 0) { + if (is_u) { + gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2); + } else { + gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2); + } + } else { + if (is_u) { + gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2); + } else { + gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2); + } + } + break; + case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ + case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ + case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ + if (size == 0) { + if (is_u) { + gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2); + } else { + gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2); + } + } else { + if (is_u) { + gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2); + } else { + gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); + } + } + break; + case 9: /* SQDMLAL, SQDMLAL2 */ + case 11: /* SQDMLSL, SQDMLSL2 */ + case 13: /* SQDMULL, SQDMULL2 */ + assert(size == 1); + gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); + gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env, + tcg_passres, tcg_passres); + break; + case 14: /* PMULL */ + assert(size == 0); + gen_helper_neon_mull_p8(tcg_passres, tcg_op1, tcg_op2); + break; + default: + g_assert_not_reached(); + } + tcg_temp_free_i32(tcg_op1); + tcg_temp_free_i32(tcg_op2); + + if (accop != 0) { + if (opcode == 9 || opcode == 11) { + /* saturating accumulate ops */ + if (accop < 0) { + gen_helper_neon_negl_u32(tcg_passres, tcg_passres); + } + gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env, + tcg_res[pass], + tcg_passres); + } else { + gen_neon_addl(size, (accop < 0), tcg_res[pass], + tcg_res[pass], tcg_passres); + } + tcg_temp_free_i64(tcg_passres); + } + } + } + + write_vec_element(s, tcg_res[0], rd, 0, MO_64); + write_vec_element(s, tcg_res[1], rd, 1, MO_64); + tcg_temp_free_i64(tcg_res[0]); + tcg_temp_free_i64(tcg_res[1]); +} + +static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size, + int opcode, int rd, int rn, int rm) +{ + TCGv_i64 tcg_res[2]; + int part = is_q ? 2 : 0; + int pass; + + for (pass = 0; pass < 2; pass++) { + TCGv_i64 tcg_op1 = tcg_temp_new_i64(); + TCGv_i32 tcg_op2 = tcg_temp_new_i32(); + TCGv_i64 tcg_op2_wide = tcg_temp_new_i64(); + static NeonGenWidenFn * const widenfns[3][2] = { + { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, + { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, + { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 }, + }; + NeonGenWidenFn *widenfn = widenfns[size][is_u]; + + read_vec_element(s, tcg_op1, rn, pass, MO_64); + read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32); + widenfn(tcg_op2_wide, tcg_op2); + tcg_temp_free_i32(tcg_op2); + tcg_res[pass] = tcg_temp_new_i64(); + gen_neon_addl(size, (opcode == 3), + tcg_res[pass], tcg_op1, tcg_op2_wide); + tcg_temp_free_i64(tcg_op1); + tcg_temp_free_i64(tcg_op2_wide); + } + + for (pass = 0; pass < 2; pass++) { + write_vec_element(s, tcg_res[pass], rd, pass, MO_64); + tcg_temp_free_i64(tcg_res[pass]); + } +} + +static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in) +{ + tcg_gen_addi_i64(in, in, 1U << 31); + tcg_gen_extrh_i64_i32(res, in); +} + +static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size, + int opcode, int rd, int rn, int rm) +{ + TCGv_i32 tcg_res[2]; + int part = is_q ? 2 : 0; + int pass; + + for (pass = 0; pass < 2; pass++) { + TCGv_i64 tcg_op1 = tcg_temp_new_i64(); + TCGv_i64 tcg_op2 = tcg_temp_new_i64(); + TCGv_i64 tcg_wideres = tcg_temp_new_i64(); + static NeonGenNarrowFn * const narrowfns[3][2] = { + { gen_helper_neon_narrow_high_u8, + gen_helper_neon_narrow_round_high_u8 }, + { gen_helper_neon_narrow_high_u16, + gen_helper_neon_narrow_round_high_u16 }, + { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 }, + }; + NeonGenNarrowFn *gennarrow = narrowfns[size][is_u]; + + read_vec_element(s, tcg_op1, rn, pass, MO_64); + read_vec_element(s, tcg_op2, rm, pass, MO_64); + + gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2); + + tcg_temp_free_i64(tcg_op1); + tcg_temp_free_i64(tcg_op2); + + tcg_res[pass] = tcg_temp_new_i32(); + gennarrow(tcg_res[pass], tcg_wideres); + tcg_temp_free_i64(tcg_wideres); + } + + for (pass = 0; pass < 2; pass++) { + write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32); + tcg_temp_free_i32(tcg_res[pass]); + } + if (!is_q) { + clear_vec_high(s, rd); + } +} + +static void handle_pmull_64(DisasContext *s, int is_q, int rd, int rn, int rm) +{ + /* PMULL of 64 x 64 -> 128 is an odd special case because it + * is the only three-reg-diff instruction which produces a + * 128-bit wide result from a single operation. However since + * it's possible to calculate the two halves more or less + * separately we just use two helper calls. + */ + TCGv_i64 tcg_op1 = tcg_temp_new_i64(); + TCGv_i64 tcg_op2 = tcg_temp_new_i64(); + TCGv_i64 tcg_res = tcg_temp_new_i64(); + + read_vec_element(s, tcg_op1, rn, is_q, MO_64); + read_vec_element(s, tcg_op2, rm, is_q, MO_64); + gen_helper_neon_pmull_64_lo(tcg_res, tcg_op1, tcg_op2); + write_vec_element(s, tcg_res, rd, 0, MO_64); + gen_helper_neon_pmull_64_hi(tcg_res, tcg_op1, tcg_op2); + write_vec_element(s, tcg_res, rd, 1, MO_64); + + tcg_temp_free_i64(tcg_op1); + tcg_temp_free_i64(tcg_op2); + tcg_temp_free_i64(tcg_res); +} + +/* C3.6.15 AdvSIMD three different + * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 + * +---+---+---+-----------+------+---+------+--------+-----+------+------+ + * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | + * +---+---+---+-----------+------+---+------+--------+-----+------+------+ + */ +static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn) +{ + /* Instructions in this group fall into three basic classes + * (in each case with the operation working on each element in + * the input vectors): + * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra + * 128 bit input) + * (2) wide 64 x 128 -> 128 + * (3) narrowing 128 x 128 -> 64 + * Here we do initial decode, catch unallocated cases and + * dispatch to separate functions for each class. + */ + int is_q = extract32(insn, 30, 1); + int is_u = extract32(insn, 29, 1); + int size = extract32(insn, 22, 2); + int opcode = extract32(insn, 12, 4); + int rm = extract32(insn, 16, 5); + int rn = extract32(insn, 5, 5); + int rd = extract32(insn, 0, 5); + + switch (opcode) { + case 1: /* SADDW, SADDW2, UADDW, UADDW2 */ + case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */ + /* 64 x 128 -> 128 */ + if (size == 3) { + unallocated_encoding(s); + return; + } + if (!fp_access_check(s)) { + return; + } + handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm); + break; + case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */ + case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */ + /* 128 x 128 -> 64 */ + if (size == 3) { + unallocated_encoding(s); + return; + } + if (!fp_access_check(s)) { + return; + } + handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm); + break; + case 14: /* PMULL, PMULL2 */ + if (is_u || size == 1 || size == 2) { + unallocated_encoding(s); + return; + } + if (size == 3) { + if (!arm_dc_feature(s, ARM_FEATURE_V8_PMULL)) { + unallocated_encoding(s); + return; + } + if (!fp_access_check(s)) { + return; + } + handle_pmull_64(s, is_q, rd, rn, rm); + return; + } + goto is_widening; + case 9: /* SQDMLAL, SQDMLAL2 */ + case 11: /* SQDMLSL, SQDMLSL2 */ + case 13: /* SQDMULL, SQDMULL2 */ + if (is_u || size == 0) { + unallocated_encoding(s); + return; + } + /* fall through */ + case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ + case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ + case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ + case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ + case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ + case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ + case 12: /* SMULL, SMULL2, UMULL, UMULL2 */ + /* 64 x 64 -> 128 */ + if (size == 3) { + unallocated_encoding(s); + return; + } + is_widening: + if (!fp_access_check(s)) { + return; + } + + handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm); + break; + default: + /* opcode 15 not allocated */ + unallocated_encoding(s); + break; + } +} + +/* Logic op (opcode == 3) subgroup of C3.6.16. */ +static void disas_simd_3same_logic(DisasContext *s, uint32_t insn) +{ + int rd = extract32(insn, 0, 5); + int rn = extract32(insn, 5, 5); + int rm = extract32(insn, 16, 5); + int size = extract32(insn, 22, 2); + bool is_u = extract32(insn, 29, 1); + bool is_q = extract32(insn, 30, 1); + TCGv_i64 tcg_op1, tcg_op2, tcg_res[2]; + int pass; + + if (!fp_access_check(s)) { + return; + } + + tcg_op1 = tcg_temp_new_i64(); + tcg_op2 = tcg_temp_new_i64(); + tcg_res[0] = tcg_temp_new_i64(); + tcg_res[1] = tcg_temp_new_i64(); + + for (pass = 0; pass < (is_q ? 2 : 1); pass++) { + read_vec_element(s, tcg_op1, rn, pass, MO_64); + read_vec_element(s, tcg_op2, rm, pass, MO_64); + + if (!is_u) { + switch (size) { + case 0: /* AND */ + tcg_gen_and_i64(tcg_res[pass], tcg_op1, tcg_op2); + break; + case 1: /* BIC */ + tcg_gen_andc_i64(tcg_res[pass], tcg_op1, tcg_op2); + break; + case 2: /* ORR */ + tcg_gen_or_i64(tcg_res[pass], tcg_op1, tcg_op2); + break; + case 3: /* ORN */ + tcg_gen_orc_i64(tcg_res[pass], tcg_op1, tcg_op2); + break; + } + } else { + if (size != 0) { + /* B* ops need res loaded to operate on */ + read_vec_element(s, tcg_res[pass], rd, pass, MO_64); + } + + switch (size) { + case 0: /* EOR */ + tcg_gen_xor_i64(tcg_res[pass], tcg_op1, tcg_op2); + break; + case 1: /* BSL bitwise select */ + tcg_gen_xor_i64(tcg_op1, tcg_op1, tcg_op2); + tcg_gen_and_i64(tcg_op1, tcg_op1, tcg_res[pass]); + tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op1); + break; + case 2: /* BIT, bitwise insert if true */ + tcg_gen_xor_i64(tcg_op1, tcg_op1, tcg_res[pass]); + tcg_gen_and_i64(tcg_op1, tcg_op1, tcg_op2); + tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1); + break; + case 3: /* BIF, bitwise insert if false */ + tcg_gen_xor_i64(tcg_op1, tcg_op1, tcg_res[pass]); + tcg_gen_andc_i64(tcg_op1, tcg_op1, tcg_op2); + tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1); + break; + } + } + } + + write_vec_element(s, tcg_res[0], rd, 0, MO_64); + if (!is_q) { + tcg_gen_movi_i64(tcg_res[1], 0); + } + write_vec_element(s, tcg_res[1], rd, 1, MO_64); + + tcg_temp_free_i64(tcg_op1); + tcg_temp_free_i64(tcg_op2); + tcg_temp_free_i64(tcg_res[0]); + tcg_temp_free_i64(tcg_res[1]); +} + +/* Helper functions for 32 bit comparisons */ +static void gen_max_s32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2) +{ + tcg_gen_movcond_i32(TCG_COND_GE, res, op1, op2, op1, op2); +} + +static void gen_max_u32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2) +{ + tcg_gen_movcond_i32(TCG_COND_GEU, res, op1, op2, op1, op2); +} + +static void gen_min_s32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2) +{ + tcg_gen_movcond_i32(TCG_COND_LE, res, op1, op2, op1, op2); +} + +static void gen_min_u32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2) +{ + tcg_gen_movcond_i32(TCG_COND_LEU, res, op1, op2, op1, op2); +} + +/* Pairwise op subgroup of C3.6.16. + * + * This is called directly or via the handle_3same_float for float pairwise + * operations where the opcode and size are calculated differently. + */ +static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode, + int size, int rn, int rm, int rd) +{ + TCGv_ptr fpst; + int pass; + + /* Floating point operations need fpst */ + if (opcode >= 0x58) { + fpst = get_fpstatus_ptr(); + } else { + TCGV_UNUSED_PTR(fpst); + } + + if (!fp_access_check(s)) { + return; + } + + /* These operations work on the concatenated rm:rn, with each pair of + * adjacent elements being operated on to produce an element in the result. + */ + if (size == 3) { + TCGv_i64 tcg_res[2]; + + for (pass = 0; pass < 2; pass++) { + TCGv_i64 tcg_op1 = tcg_temp_new_i64(); + TCGv_i64 tcg_op2 = tcg_temp_new_i64(); + int passreg = (pass == 0) ? rn : rm; + + read_vec_element(s, tcg_op1, passreg, 0, MO_64); + read_vec_element(s, tcg_op2, passreg, 1, MO_64); + tcg_res[pass] = tcg_temp_new_i64(); + + switch (opcode) { + case 0x17: /* ADDP */ + tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); + break; + case 0x58: /* FMAXNMP */ + gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); + break; + case 0x5a: /* FADDP */ + gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst); + break; + case 0x5e: /* FMAXP */ + gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst); + break; + case 0x78: /* FMINNMP */ + gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); + break; + case 0x7e: /* FMINP */ + gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst); + break; + default: + g_assert_not_reached(); + } + + tcg_temp_free_i64(tcg_op1); + tcg_temp_free_i64(tcg_op2); + } + + for (pass = 0; pass < 2; pass++) { + write_vec_element(s, tcg_res[pass], rd, pass, MO_64); + tcg_temp_free_i64(tcg_res[pass]); + } + } else { + int maxpass = is_q ? 4 : 2; + TCGv_i32 tcg_res[4]; + + for (pass = 0; pass < maxpass; pass++) { + TCGv_i32 tcg_op1 = tcg_temp_new_i32(); + TCGv_i32 tcg_op2 = tcg_temp_new_i32(); + NeonGenTwoOpFn *genfn = NULL; + int passreg = pass < (maxpass / 2) ? rn : rm; + int passelt = (is_q && (pass & 1)) ? 2 : 0; + + read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32); + read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32); + tcg_res[pass] = tcg_temp_new_i32(); + + switch (opcode) { + case 0x17: /* ADDP */ + { + static NeonGenTwoOpFn * const fns[3] = { + gen_helper_neon_padd_u8, + gen_helper_neon_padd_u16, + tcg_gen_add_i32, + }; + genfn = fns[size]; + break; + } + case 0x14: /* SMAXP, UMAXP */ + { + static NeonGenTwoOpFn * const fns[3][2] = { + { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 }, + { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 }, + { gen_max_s32, gen_max_u32 }, + }; + genfn = fns[size][u]; + break; + } + case 0x15: /* SMINP, UMINP */ + { + static NeonGenTwoOpFn * const fns[3][2] = { + { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 }, + { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 }, + { gen_min_s32, gen_min_u32 }, + }; + genfn = fns[size][u]; + break; + } + /* The FP operations are all on single floats (32 bit) */ + case 0x58: /* FMAXNMP */ + gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); + break; + case 0x5a: /* FADDP */ + gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst); + break; + case 0x5e: /* FMAXP */ + gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst); + break; + case 0x78: /* FMINNMP */ + gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); + break; + case 0x7e: /* FMINP */ + gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst); + break; + default: + g_assert_not_reached(); + } + + /* FP ops called directly, otherwise call now */ + if (genfn) { + genfn(tcg_res[pass], tcg_op1, tcg_op2); + } + + tcg_temp_free_i32(tcg_op1); + tcg_temp_free_i32(tcg_op2); + } + + for (pass = 0; pass < maxpass; pass++) { + write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); + tcg_temp_free_i32(tcg_res[pass]); + } + if (!is_q) { + clear_vec_high(s, rd); + } + } + + if (!TCGV_IS_UNUSED_PTR(fpst)) { + tcg_temp_free_ptr(fpst); + } +} + +/* Floating point op subgroup of C3.6.16. */ +static void disas_simd_3same_float(DisasContext *s, uint32_t insn) +{ + /* For floating point ops, the U, size[1] and opcode bits + * together indicate the operation. size[0] indicates single + * or double. + */ + int fpopcode = extract32(insn, 11, 5) + | (extract32(insn, 23, 1) << 5) + | (extract32(insn, 29, 1) << 6); + int is_q = extract32(insn, 30, 1); + int size = extract32(insn, 22, 1); + int rm = extract32(insn, 16, 5); + int rn = extract32(insn, 5, 5); + int rd = extract32(insn, 0, 5); + + int datasize = is_q ? 128 : 64; + int esize = 32 << size; + int elements = datasize / esize; + + if (size == 1 && !is_q) { + unallocated_encoding(s); + return; + } + + switch (fpopcode) { + case 0x58: /* FMAXNMP */ + case 0x5a: /* FADDP */ + case 0x5e: /* FMAXP */ + case 0x78: /* FMINNMP */ + case 0x7e: /* FMINP */ + if (size && !is_q) { + unallocated_encoding(s); + return; + } + handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32, + rn, rm, rd); + return; + case 0x1b: /* FMULX */ + case 0x1f: /* FRECPS */ + case 0x3f: /* FRSQRTS */ + case 0x5d: /* FACGE */ + case 0x7d: /* FACGT */ + case 0x19: /* FMLA */ + case 0x39: /* FMLS */ + case 0x18: /* FMAXNM */ + case 0x1a: /* FADD */ + case 0x1c: /* FCMEQ */ + case 0x1e: /* FMAX */ + case 0x38: /* FMINNM */ + case 0x3a: /* FSUB */ + case 0x3e: /* FMIN */ + case 0x5b: /* FMUL */ + case 0x5c: /* FCMGE */ + case 0x5f: /* FDIV */ + case 0x7a: /* FABD */ + case 0x7c: /* FCMGT */ + if (!fp_access_check(s)) { + return; + } + + handle_3same_float(s, size, elements, fpopcode, rd, rn, rm); + return; + default: + unallocated_encoding(s); + return; + } +} + +/* Integer op subgroup of C3.6.16. */ +static void disas_simd_3same_int(DisasContext *s, uint32_t insn) +{ + int is_q = extract32(insn, 30, 1); + int u = extract32(insn, 29, 1); + int size = extract32(insn, 22, 2); + int opcode = extract32(insn, 11, 5); + int rm = extract32(insn, 16, 5); + int rn = extract32(insn, 5, 5); + int rd = extract32(insn, 0, 5); + int pass; + + switch (opcode) { + case 0x13: /* MUL, PMUL */ + if (u && size != 0) { + unallocated_encoding(s); + return; + } + /* fall through */ + case 0x0: /* SHADD, UHADD */ + case 0x2: /* SRHADD, URHADD */ + case 0x4: /* SHSUB, UHSUB */ + case 0xc: /* SMAX, UMAX */ + case 0xd: /* SMIN, UMIN */ + case 0xe: /* SABD, UABD */ + case 0xf: /* SABA, UABA */ + case 0x12: /* MLA, MLS */ + if (size == 3) { + unallocated_encoding(s); + return; + } + break; + case 0x16: /* SQDMULH, SQRDMULH */ + if (size == 0 || size == 3) { + unallocated_encoding(s); + return; + } + break; + default: + if (size == 3 && !is_q) { + unallocated_encoding(s); + return; + } + break; + } + + if (!fp_access_check(s)) { + return; + } + + if (size == 3) { + assert(is_q); + for (pass = 0; pass < 2; pass++) { + TCGv_i64 tcg_op1 = tcg_temp_new_i64(); + TCGv_i64 tcg_op2 = tcg_temp_new_i64(); + TCGv_i64 tcg_res = tcg_temp_new_i64(); + + read_vec_element(s, tcg_op1, rn, pass, MO_64); + read_vec_element(s, tcg_op2, rm, pass, MO_64); + + handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2); + + write_vec_element(s, tcg_res, rd, pass, MO_64); + + tcg_temp_free_i64(tcg_res); + tcg_temp_free_i64(tcg_op1); + tcg_temp_free_i64(tcg_op2); + } + } else { + for (pass = 0; pass < (is_q ? 4 : 2); pass++) { + TCGv_i32 tcg_op1 = tcg_temp_new_i32(); + TCGv_i32 tcg_op2 = tcg_temp_new_i32(); + TCGv_i32 tcg_res = tcg_temp_new_i32(); + NeonGenTwoOpFn *genfn = NULL; + NeonGenTwoOpEnvFn *genenvfn = NULL; + + read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); + read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); + + switch (opcode) { + case 0x0: /* SHADD, UHADD */ + { + static NeonGenTwoOpFn * const fns[3][2] = { + { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 }, + { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 }, + { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 }, + }; + genfn = fns[size][u]; + break; + } + case 0x1: /* SQADD, UQADD */ + { + static NeonGenTwoOpEnvFn * const fns[3][2] = { + { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 }, + { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 }, + { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 }, + }; + genenvfn = fns[size][u]; + break; + } + case 0x2: /* SRHADD, URHADD */ + { + static NeonGenTwoOpFn * const fns[3][2] = { + { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 }, + { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 }, + { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 }, + }; + genfn = fns[size][u]; + break; + } + case 0x4: /* SHSUB, UHSUB */ + { + static NeonGenTwoOpFn * const fns[3][2] = { + { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 }, + { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 }, + { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 }, + }; + genfn = fns[size][u]; + break; + } + case 0x5: /* SQSUB, UQSUB */ + { + static NeonGenTwoOpEnvFn * const fns[3][2] = { + { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 }, + { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 }, + { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 }, + }; + genenvfn = fns[size][u]; + break; + } + case 0x6: /* CMGT, CMHI */ + { + static NeonGenTwoOpFn * const fns[3][2] = { + { gen_helper_neon_cgt_s8, gen_helper_neon_cgt_u8 }, + { gen_helper_neon_cgt_s16, gen_helper_neon_cgt_u16 }, + { gen_helper_neon_cgt_s32, gen_helper_neon_cgt_u32 }, + }; + genfn = fns[size][u]; + break; + } + case 0x7: /* CMGE, CMHS */ + { + static NeonGenTwoOpFn * const fns[3][2] = { + { gen_helper_neon_cge_s8, gen_helper_neon_cge_u8 }, + { gen_helper_neon_cge_s16, gen_helper_neon_cge_u16 }, + { gen_helper_neon_cge_s32, gen_helper_neon_cge_u32 }, + }; + genfn = fns[size][u]; + break; + } + case 0x8: /* SSHL, USHL */ + { + static NeonGenTwoOpFn * const fns[3][2] = { + { gen_helper_neon_shl_s8, gen_helper_neon_shl_u8 }, + { gen_helper_neon_shl_s16, gen_helper_neon_shl_u16 }, + { gen_helper_neon_shl_s32, gen_helper_neon_shl_u32 }, + }; + genfn = fns[size][u]; + break; + } + case 0x9: /* SQSHL, UQSHL */ + { + static NeonGenTwoOpEnvFn * const fns[3][2] = { + { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, + { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, + { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, + }; + genenvfn = fns[size][u]; + break; + } + case 0xa: /* SRSHL, URSHL */ + { + static NeonGenTwoOpFn * const fns[3][2] = { + { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 }, + { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 }, + { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 }, + }; + genfn = fns[size][u]; + break; + } + case 0xb: /* SQRSHL, UQRSHL */ + { + static NeonGenTwoOpEnvFn * const fns[3][2] = { + { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, + { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, + { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, + }; + genenvfn = fns[size][u]; + break; + } + case 0xc: /* SMAX, UMAX */ + { + static NeonGenTwoOpFn * const fns[3][2] = { + { gen_helper_neon_max_s8, gen_helper_neon_max_u8 }, + { gen_helper_neon_max_s16, gen_helper_neon_max_u16 }, + { gen_max_s32, gen_max_u32 }, + }; + genfn = fns[size][u]; + break; + } + + case 0xd: /* SMIN, UMIN */ + { + static NeonGenTwoOpFn * const fns[3][2] = { + { gen_helper_neon_min_s8, gen_helper_neon_min_u8 }, + { gen_helper_neon_min_s16, gen_helper_neon_min_u16 }, + { gen_min_s32, gen_min_u32 }, + }; + genfn = fns[size][u]; + break; + } + case 0xe: /* SABD, UABD */ + case 0xf: /* SABA, UABA */ + { + static NeonGenTwoOpFn * const fns[3][2] = { + { gen_helper_neon_abd_s8, gen_helper_neon_abd_u8 }, + { gen_helper_neon_abd_s16, gen_helper_neon_abd_u16 }, + { gen_helper_neon_abd_s32, gen_helper_neon_abd_u32 }, + }; + genfn = fns[size][u]; + break; + } + case 0x10: /* ADD, SUB */ + { + static NeonGenTwoOpFn * const fns[3][2] = { + { gen_helper_neon_add_u8, gen_helper_neon_sub_u8 }, + { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 }, + { tcg_gen_add_i32, tcg_gen_sub_i32 }, + }; + genfn = fns[size][u]; + break; + } + case 0x11: /* CMTST, CMEQ */ + { + static NeonGenTwoOpFn * const fns[3][2] = { + { gen_helper_neon_tst_u8, gen_helper_neon_ceq_u8 }, + { gen_helper_neon_tst_u16, gen_helper_neon_ceq_u16 }, + { gen_helper_neon_tst_u32, gen_helper_neon_ceq_u32 }, + }; + genfn = fns[size][u]; + break; + } + case 0x13: /* MUL, PMUL */ + if (u) { + /* PMUL */ + assert(size == 0); + genfn = gen_helper_neon_mul_p8; + break; + } + /* fall through : MUL */ + case 0x12: /* MLA, MLS */ + { + static NeonGenTwoOpFn * const fns[3] = { + gen_helper_neon_mul_u8, + gen_helper_neon_mul_u16, + tcg_gen_mul_i32, + }; + genfn = fns[size]; + break; + } + case 0x16: /* SQDMULH, SQRDMULH */ + { + static NeonGenTwoOpEnvFn * const fns[2][2] = { + { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 }, + { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 }, + }; + assert(size == 1 || size == 2); + genenvfn = fns[size - 1][u]; + break; + } + default: + g_assert_not_reached(); + } + + if (genenvfn) { + genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2); + } else { + genfn(tcg_res, tcg_op1, tcg_op2); + } + + if (opcode == 0xf || opcode == 0x12) { + /* SABA, UABA, MLA, MLS: accumulating ops */ + static NeonGenTwoOpFn * const fns[3][2] = { + { gen_helper_neon_add_u8, gen_helper_neon_sub_u8 }, + { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 }, + { tcg_gen_add_i32, tcg_gen_sub_i32 }, + }; + bool is_sub = (opcode == 0x12 && u); /* MLS */ + + genfn = fns[size][is_sub]; + read_vec_element_i32(s, tcg_op1, rd, pass, MO_32); + genfn(tcg_res, tcg_op1, tcg_res); + } + + write_vec_element_i32(s, tcg_res, rd, pass, MO_32); + + tcg_temp_free_i32(tcg_res); + tcg_temp_free_i32(tcg_op1); + tcg_temp_free_i32(tcg_op2); + } + } + + if (!is_q) { + clear_vec_high(s, rd); + } +} + +/* C3.6.16 AdvSIMD three same + * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 + * +---+---+---+-----------+------+---+------+--------+---+------+------+ + * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | + * +---+---+---+-----------+------+---+------+--------+---+------+------+ + */ +static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn) +{ + int opcode = extract32(insn, 11, 5); + + switch (opcode) { + case 0x3: /* logic ops */ + disas_simd_3same_logic(s, insn); + break; + case 0x17: /* ADDP */ + case 0x14: /* SMAXP, UMAXP */ + case 0x15: /* SMINP, UMINP */ + { + /* Pairwise operations */ + int is_q = extract32(insn, 30, 1); + int u = extract32(insn, 29, 1); + int size = extract32(insn, 22, 2); + int rm = extract32(insn, 16, 5); + int rn = extract32(insn, 5, 5); + int rd = extract32(insn, 0, 5); + if (opcode == 0x17) { + if (u || (size == 3 && !is_q)) { + unallocated_encoding(s); + return; + } + } else { + if (size == 3) { + unallocated_encoding(s); + return; + } + } + handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd); + break; + } + case 0x18 ... 0x31: + /* floating point ops, sz[1] and U are part of opcode */ + disas_simd_3same_float(s, insn); + break; + default: + disas_simd_3same_int(s, insn); + break; + } +} + +static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q, + int size, int rn, int rd) +{ + /* Handle 2-reg-misc ops which are widening (so each size element + * in the source becomes a 2*size element in the destination. + * The only instruction like this is FCVTL. + */ + int pass; + + if (size == 3) { + /* 32 -> 64 bit fp conversion */ + TCGv_i64 tcg_res[2]; + int srcelt = is_q ? 2 : 0; + + for (pass = 0; pass < 2; pass++) { + TCGv_i32 tcg_op = tcg_temp_new_i32(); + tcg_res[pass] = tcg_temp_new_i64(); + + read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32); + gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env); + tcg_temp_free_i32(tcg_op); + } + for (pass = 0; pass < 2; pass++) { + write_vec_element(s, tcg_res[pass], rd, pass, MO_64); + tcg_temp_free_i64(tcg_res[pass]); + } + } else { + /* 16 -> 32 bit fp conversion */ + int srcelt = is_q ? 4 : 0; + TCGv_i32 tcg_res[4]; + + for (pass = 0; pass < 4; pass++) { + tcg_res[pass] = tcg_temp_new_i32(); + + read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16); + gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass], + cpu_env); + } + for (pass = 0; pass < 4; pass++) { + write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); + tcg_temp_free_i32(tcg_res[pass]); + } + } +} + +static void handle_rev(DisasContext *s, int opcode, bool u, + bool is_q, int size, int rn, int rd) +{ + int op = (opcode << 1) | u; + int opsz = op + size; + int grp_size = 3 - opsz; + int dsize = is_q ? 128 : 64; + int i; + + if (opsz >= 3) { + unallocated_encoding(s); + return; + } + + if (!fp_access_check(s)) { + return; + } + + if (size == 0) { + /* Special case bytes, use bswap op on each group of elements */ + int groups = dsize / (8 << grp_size); + + for (i = 0; i < groups; i++) { + TCGv_i64 tcg_tmp = tcg_temp_new_i64(); + + read_vec_element(s, tcg_tmp, rn, i, grp_size); + switch (grp_size) { + case MO_16: + tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp); + break; + case MO_32: + tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp); + break; + case MO_64: + tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp); + break; + default: + g_assert_not_reached(); + } + write_vec_element(s, tcg_tmp, rd, i, grp_size); + tcg_temp_free_i64(tcg_tmp); + } + if (!is_q) { + clear_vec_high(s, rd); + } + } else { + int revmask = (1 << grp_size) - 1; + int esize = 8 << size; + int elements = dsize / esize; + TCGv_i64 tcg_rn = tcg_temp_new_i64(); + TCGv_i64 tcg_rd = tcg_const_i64(0); + TCGv_i64 tcg_rd_hi = tcg_const_i64(0); + + for (i = 0; i < elements; i++) { + int e_rev = (i & 0xf) ^ revmask; + int off = e_rev * esize; + read_vec_element(s, tcg_rn, rn, i, size); + if (off >= 64) { + tcg_gen_deposit_i64(tcg_rd_hi, tcg_rd_hi, + tcg_rn, off - 64, esize); + } else { + tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, off, esize); + } + } + write_vec_element(s, tcg_rd, rd, 0, MO_64); + write_vec_element(s, tcg_rd_hi, rd, 1, MO_64); + + tcg_temp_free_i64(tcg_rd_hi); + tcg_temp_free_i64(tcg_rd); + tcg_temp_free_i64(tcg_rn); + } +} + +static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u, + bool is_q, int size, int rn, int rd) +{ + /* Implement the pairwise operations from 2-misc: + * SADDLP, UADDLP, SADALP, UADALP. + * These all add pairs of elements in the input to produce a + * double-width result element in the output (possibly accumulating). + */ + bool accum = (opcode == 0x6); + int maxpass = is_q ? 2 : 1; + int pass; + TCGv_i64 tcg_res[2]; + + if (size == 2) { + /* 32 + 32 -> 64 op */ + TCGMemOp memop = size + (u ? 0 : MO_SIGN); + + for (pass = 0; pass < maxpass; pass++) { + TCGv_i64 tcg_op1 = tcg_temp_new_i64(); + TCGv_i64 tcg_op2 = tcg_temp_new_i64(); + + tcg_res[pass] = tcg_temp_new_i64(); + + read_vec_element(s, tcg_op1, rn, pass * 2, memop); + read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop); + tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); + if (accum) { + read_vec_element(s, tcg_op1, rd, pass, MO_64); + tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1); + } + + tcg_temp_free_i64(tcg_op1); + tcg_temp_free_i64(tcg_op2); + } + } else { + for (pass = 0; pass < maxpass; pass++) { + TCGv_i64 tcg_op = tcg_temp_new_i64(); + NeonGenOneOpFn *genfn; + static NeonGenOneOpFn * const fns[2][2] = { + { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 }, + { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 }, + }; + + genfn = fns[size][u]; + + tcg_res[pass] = tcg_temp_new_i64(); + + read_vec_element(s, tcg_op, rn, pass, MO_64); + genfn(tcg_res[pass], tcg_op); + + if (accum) { + read_vec_element(s, tcg_op, rd, pass, MO_64); + if (size == 0) { + gen_helper_neon_addl_u16(tcg_res[pass], + tcg_res[pass], tcg_op); + } else { + gen_helper_neon_addl_u32(tcg_res[pass], + tcg_res[pass], tcg_op); + } + } + tcg_temp_free_i64(tcg_op); + } + } + if (!is_q) { + tcg_res[1] = tcg_const_i64(0); + } + for (pass = 0; pass < 2; pass++) { + write_vec_element(s, tcg_res[pass], rd, pass, MO_64); + tcg_temp_free_i64(tcg_res[pass]); + } +} + +static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd) +{ + /* Implement SHLL and SHLL2 */ + int pass; + int part = is_q ? 2 : 0; + TCGv_i64 tcg_res[2]; + + for (pass = 0; pass < 2; pass++) { + static NeonGenWidenFn * const widenfns[3] = { + gen_helper_neon_widen_u8, + gen_helper_neon_widen_u16, + tcg_gen_extu_i32_i64, + }; + NeonGenWidenFn *widenfn = widenfns[size]; + TCGv_i32 tcg_op = tcg_temp_new_i32(); + + read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32); + tcg_res[pass] = tcg_temp_new_i64(); + widenfn(tcg_res[pass], tcg_op); + tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size); + + tcg_temp_free_i32(tcg_op); + } + + for (pass = 0; pass < 2; pass++) { + write_vec_element(s, tcg_res[pass], rd, pass, MO_64); + tcg_temp_free_i64(tcg_res[pass]); + } +} + +/* C3.6.17 AdvSIMD two reg misc + * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 + * +---+---+---+-----------+------+-----------+--------+-----+------+------+ + * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | + * +---+---+---+-----------+------+-----------+--------+-----+------+------+ + */ +static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn) +{ + int size = extract32(insn, 22, 2); + int opcode = extract32(insn, 12, 5); + bool u = extract32(insn, 29, 1); + bool is_q = extract32(insn, 30, 1); + int rn = extract32(insn, 5, 5); + int rd = extract32(insn, 0, 5); + bool need_fpstatus = false; + bool need_rmode = false; + int rmode = -1; + TCGv_i32 tcg_rmode; + TCGv_ptr tcg_fpstatus; + + switch (opcode) { + case 0x0: /* REV64, REV32 */ + case 0x1: /* REV16 */ + handle_rev(s, opcode, u, is_q, size, rn, rd); + return; + case 0x5: /* CNT, NOT, RBIT */ + if (u && size == 0) { + /* NOT: adjust size so we can use the 64-bits-at-a-time loop. */ + size = 3; + break; + } else if (u && size == 1) { + /* RBIT */ + break; + } else if (!u && size == 0) { + /* CNT */ + break; + } + unallocated_encoding(s); + return; + case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */ + case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */ + if (size == 3) { + unallocated_encoding(s); + return; + } + if (!fp_access_check(s)) { + return; + } + + handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd); + return; + case 0x4: /* CLS, CLZ */ + if (size == 3) { + unallocated_encoding(s); + return; + } + break; + case 0x2: /* SADDLP, UADDLP */ + case 0x6: /* SADALP, UADALP */ + if (size == 3) { + unallocated_encoding(s); + return; + } + if (!fp_access_check(s)) { + return; + } + handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd); + return; + case 0x13: /* SHLL, SHLL2 */ + if (u == 0 || size == 3) { + unallocated_encoding(s); + return; + } + if (!fp_access_check(s)) { + return; + } + handle_shll(s, is_q, size, rn, rd); + return; + case 0xa: /* CMLT */ + if (u == 1) { + unallocated_encoding(s); + return; + } + /* fall through */ + case 0x8: /* CMGT, CMGE */ + case 0x9: /* CMEQ, CMLE */ + case 0xb: /* ABS, NEG */ + if (size == 3 && !is_q) { + unallocated_encoding(s); + return; + } + break; + case 0x3: /* SUQADD, USQADD */ + if (size == 3 && !is_q) { + unallocated_encoding(s); + return; + } + if (!fp_access_check(s)) { + return; + } + handle_2misc_satacc(s, false, u, is_q, size, rn, rd); + return; + case 0x7: /* SQABS, SQNEG */ + if (size == 3 && !is_q) { + unallocated_encoding(s); + return; + } + break; + case 0xc ... 0xf: + case 0x16 ... 0x1d: + case 0x1f: + { + /* Floating point: U, size[1] and opcode indicate operation; + * size[0] indicates single or double precision. + */ + int is_double = extract32(size, 0, 1); + opcode |= (extract32(size, 1, 1) << 5) | (u << 6); + size = is_double ? 3 : 2; + switch (opcode) { + case 0x2f: /* FABS */ + case 0x6f: /* FNEG */ + if (size == 3 && !is_q) { + unallocated_encoding(s); + return; + } + break; + case 0x1d: /* SCVTF */ + case 0x5d: /* UCVTF */ + { + bool is_signed = (opcode == 0x1d) ? true : false; + int elements = is_double ? 2 : is_q ? 4 : 2; + if (is_double && !is_q) { + unallocated_encoding(s); + return; + } + if (!fp_access_check(s)) { + return; + } + handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size); + return; + } + case 0x2c: /* FCMGT (zero) */ + case 0x2d: /* FCMEQ (zero) */ + case 0x2e: /* FCMLT (zero) */ + case 0x6c: /* FCMGE (zero) */ + case 0x6d: /* FCMLE (zero) */ + if (size == 3 && !is_q) { + unallocated_encoding(s); + return; + } + handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd); + return; + case 0x7f: /* FSQRT */ + if (size == 3 && !is_q) { + unallocated_encoding(s); + return; + } + break; + case 0x1a: /* FCVTNS */ + case 0x1b: /* FCVTMS */ + case 0x3a: /* FCVTPS */ + case 0x3b: /* FCVTZS */ + case 0x5a: /* FCVTNU */ + case 0x5b: /* FCVTMU */ + case 0x7a: /* FCVTPU */ + case 0x7b: /* FCVTZU */ + need_fpstatus = true; + need_rmode = true; + rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); + if (size == 3 && !is_q) { + unallocated_encoding(s); + return; + } + break; + case 0x5c: /* FCVTAU */ + case 0x1c: /* FCVTAS */ + need_fpstatus = true; + need_rmode = true; + rmode = FPROUNDING_TIEAWAY; + if (size == 3 && !is_q) { + unallocated_encoding(s); + return; + } + break; + case 0x3c: /* URECPE */ + if (size == 3) { + unallocated_encoding(s); + return; + } + /* fall through */ + case 0x3d: /* FRECPE */ + case 0x7d: /* FRSQRTE */ + if (size == 3 && !is_q) { + unallocated_encoding(s); + return; + } + if (!fp_access_check(s)) { + return; + } + handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd); + return; + case 0x56: /* FCVTXN, FCVTXN2 */ + if (size == 2) { + unallocated_encoding(s); + return; + } + /* fall through */ + case 0x16: /* FCVTN, FCVTN2 */ + /* handle_2misc_narrow does a 2*size -> size operation, but these + * instructions encode the source size rather than dest size. + */ + if (!fp_access_check(s)) { + return; + } + handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); + return; + case 0x17: /* FCVTL, FCVTL2 */ + if (!fp_access_check(s)) { + return; + } + handle_2misc_widening(s, opcode, is_q, size, rn, rd); + return; + case 0x18: /* FRINTN */ + case 0x19: /* FRINTM */ + case 0x38: /* FRINTP */ + case 0x39: /* FRINTZ */ + need_rmode = true; + rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); + /* fall through */ + case 0x59: /* FRINTX */ + case 0x79: /* FRINTI */ + need_fpstatus = true; + if (size == 3 && !is_q) { + unallocated_encoding(s); + return; + } + break; + case 0x58: /* FRINTA */ + need_rmode = true; + rmode = FPROUNDING_TIEAWAY; + need_fpstatus = true; + if (size == 3 && !is_q) { + unallocated_encoding(s); + return; + } + break; + case 0x7c: /* URSQRTE */ + if (size == 3) { + unallocated_encoding(s); + return; + } + need_fpstatus = true; + break; + default: + unallocated_encoding(s); + return; + } + break; + } + default: + unallocated_encoding(s); + return; + } + + if (!fp_access_check(s)) { + return; + } + + if (need_fpstatus) { + tcg_fpstatus = get_fpstatus_ptr(); + } else { + TCGV_UNUSED_PTR(tcg_fpstatus); + } + if (need_rmode) { + tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode)); + gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env); + } else { + TCGV_UNUSED_I32(tcg_rmode); + } + + if (size == 3) { + /* All 64-bit element operations can be shared with scalar 2misc */ + int pass; + + for (pass = 0; pass < (is_q ? 2 : 1); pass++) { + TCGv_i64 tcg_op = tcg_temp_new_i64(); + TCGv_i64 tcg_res = tcg_temp_new_i64(); + + read_vec_element(s, tcg_op, rn, pass, MO_64); + + handle_2misc_64(s, opcode, u, tcg_res, tcg_op, + tcg_rmode, tcg_fpstatus); + + write_vec_element(s, tcg_res, rd, pass, MO_64); + + tcg_temp_free_i64(tcg_res); + tcg_temp_free_i64(tcg_op); + } + } else { + int pass; + + for (pass = 0; pass < (is_q ? 4 : 2); pass++) { + TCGv_i32 tcg_op = tcg_temp_new_i32(); + TCGv_i32 tcg_res = tcg_temp_new_i32(); + TCGCond cond; + + read_vec_element_i32(s, tcg_op, rn, pass, MO_32); + + if (size == 2) { + /* Special cases for 32 bit elements */ + switch (opcode) { + case 0xa: /* CMLT */ + /* 32 bit integer comparison against zero, result is + * test ? (2^32 - 1) : 0. We implement via setcond(test) + * and inverting. + */ + cond = TCG_COND_LT; + do_cmop: + tcg_gen_setcondi_i32(cond, tcg_res, tcg_op, 0); + tcg_gen_neg_i32(tcg_res, tcg_res); + break; + case 0x8: /* CMGT, CMGE */ + cond = u ? TCG_COND_GE : TCG_COND_GT; + goto do_cmop; + case 0x9: /* CMEQ, CMLE */ + cond = u ? TCG_COND_LE : TCG_COND_EQ; + goto do_cmop; + case 0x4: /* CLS */ + if (u) { + gen_helper_clz32(tcg_res, tcg_op); + } else { + gen_helper_cls32(tcg_res, tcg_op); + } + break; + case 0x7: /* SQABS, SQNEG */ + if (u) { + gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op); + } else { + gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op); + } + break; + case 0xb: /* ABS, NEG */ + if (u) { + tcg_gen_neg_i32(tcg_res, tcg_op); + } else { + TCGv_i32 tcg_zero = tcg_const_i32(0); + tcg_gen_neg_i32(tcg_res, tcg_op); + tcg_gen_movcond_i32(TCG_COND_GT, tcg_res, tcg_op, + tcg_zero, tcg_op, tcg_res); + tcg_temp_free_i32(tcg_zero); + } + break; + case 0x2f: /* FABS */ + gen_helper_vfp_abss(tcg_res, tcg_op); + break; + case 0x6f: /* FNEG */ + gen_helper_vfp_negs(tcg_res, tcg_op); + break; + case 0x7f: /* FSQRT */ + gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env); + break; + case 0x1a: /* FCVTNS */ + case 0x1b: /* FCVTMS */ + case 0x1c: /* FCVTAS */ + case 0x3a: /* FCVTPS */ + case 0x3b: /* FCVTZS */ + { + TCGv_i32 tcg_shift = tcg_const_i32(0); + gen_helper_vfp_tosls(tcg_res, tcg_op, + tcg_shift, tcg_fpstatus); + tcg_temp_free_i32(tcg_shift); + break; + } + case 0x5a: /* FCVTNU */ + case 0x5b: /* FCVTMU */ + case 0x5c: /* FCVTAU */ + case 0x7a: /* FCVTPU */ + case 0x7b: /* FCVTZU */ + { + TCGv_i32 tcg_shift = tcg_const_i32(0); + gen_helper_vfp_touls(tcg_res, tcg_op, + tcg_shift, tcg_fpstatus); + tcg_temp_free_i32(tcg_shift); + break; + } + case 0x18: /* FRINTN */ + case 0x19: /* FRINTM */ + case 0x38: /* FRINTP */ + case 0x39: /* FRINTZ */ + case 0x58: /* FRINTA */ + case 0x79: /* FRINTI */ + gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus); + break; + case 0x59: /* FRINTX */ + gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus); + break; + case 0x7c: /* URSQRTE */ + gen_helper_rsqrte_u32(tcg_res, tcg_op, tcg_fpstatus); + break; + default: + g_assert_not_reached(); + } + } else { + /* Use helpers for 8 and 16 bit elements */ + switch (opcode) { + case 0x5: /* CNT, RBIT */ + /* For these two insns size is part of the opcode specifier + * (handled earlier); they always operate on byte elements. + */ + if (u) { + gen_helper_neon_rbit_u8(tcg_res, tcg_op); + } else { + gen_helper_neon_cnt_u8(tcg_res, tcg_op); + } + break; + case 0x7: /* SQABS, SQNEG */ + { + NeonGenOneOpEnvFn *genfn; + static NeonGenOneOpEnvFn * const fns[2][2] = { + { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, + { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, + }; + genfn = fns[size][u]; + genfn(tcg_res, cpu_env, tcg_op); + break; + } + case 0x8: /* CMGT, CMGE */ + case 0x9: /* CMEQ, CMLE */ + case 0xa: /* CMLT */ + { + static NeonGenTwoOpFn * const fns[3][2] = { + { gen_helper_neon_cgt_s8, gen_helper_neon_cgt_s16 }, + { gen_helper_neon_cge_s8, gen_helper_neon_cge_s16 }, + { gen_helper_neon_ceq_u8, gen_helper_neon_ceq_u16 }, + }; + NeonGenTwoOpFn *genfn; + int comp; + bool reverse; + TCGv_i32 tcg_zero = tcg_const_i32(0); + + /* comp = index into [CMGT, CMGE, CMEQ, CMLE, CMLT] */ + comp = (opcode - 0x8) * 2 + u; + /* ...but LE, LT are implemented as reverse GE, GT */ + reverse = (comp > 2); + if (reverse) { + comp = 4 - comp; + } + genfn = fns[comp][size]; + if (reverse) { + genfn(tcg_res, tcg_zero, tcg_op); + } else { + genfn(tcg_res, tcg_op, tcg_zero); + } + tcg_temp_free_i32(tcg_zero); + break; + } + case 0xb: /* ABS, NEG */ + if (u) { + TCGv_i32 tcg_zero = tcg_const_i32(0); + if (size) { + gen_helper_neon_sub_u16(tcg_res, tcg_zero, tcg_op); + } else { + gen_helper_neon_sub_u8(tcg_res, tcg_zero, tcg_op); + } + tcg_temp_free_i32(tcg_zero); + } else { + if (size) { + gen_helper_neon_abs_s16(tcg_res, tcg_op); + } else { + gen_helper_neon_abs_s8(tcg_res, tcg_op); + } + } + break; + case 0x4: /* CLS, CLZ */ + if (u) { + if (size == 0) { + gen_helper_neon_clz_u8(tcg_res, tcg_op); + } else { + gen_helper_neon_clz_u16(tcg_res, tcg_op); + } + } else { + if (size == 0) { + gen_helper_neon_cls_s8(tcg_res, tcg_op); + } else { + gen_helper_neon_cls_s16(tcg_res, tcg_op); + } + } + break; + default: + g_assert_not_reached(); + } + } + + write_vec_element_i32(s, tcg_res, rd, pass, MO_32); + + tcg_temp_free_i32(tcg_res); + tcg_temp_free_i32(tcg_op); + } + } + if (!is_q) { + clear_vec_high(s, rd); + } + + if (need_rmode) { + gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env); + tcg_temp_free_i32(tcg_rmode); + } + if (need_fpstatus) { + tcg_temp_free_ptr(tcg_fpstatus); + } +} + +/* C3.6.13 AdvSIMD scalar x indexed element + * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 + * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ + * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | + * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ + * C3.6.18 AdvSIMD vector x indexed element + * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 + * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ + * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | + * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ + */ +static void disas_simd_indexed(DisasContext *s, uint32_t insn) +{ + /* This encoding has two kinds of instruction: + * normal, where we perform elt x idxelt => elt for each + * element in the vector + * long, where we perform elt x idxelt and generate a result of + * double the width of the input element + * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs). + */ + bool is_scalar = extract32(insn, 28, 1); + bool is_q = extract32(insn, 30, 1); + bool u = extract32(insn, 29, 1); + int size = extract32(insn, 22, 2); + int l = extract32(insn, 21, 1); + int m = extract32(insn, 20, 1); + /* Note that the Rm field here is only 4 bits, not 5 as it usually is */ + int rm = extract32(insn, 16, 4); + int opcode = extract32(insn, 12, 4); + int h = extract32(insn, 11, 1); + int rn = extract32(insn, 5, 5); + int rd = extract32(insn, 0, 5); + bool is_long = false; + bool is_fp = false; + int index; + TCGv_ptr fpst; + + switch (opcode) { + case 0x0: /* MLA */ + case 0x4: /* MLS */ + if (!u || is_scalar) { + unallocated_encoding(s); + return; + } + break; + case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ + case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ + case 0xa: /* SMULL, SMULL2, UMULL, UMULL2 */ + if (is_scalar) { + unallocated_encoding(s); + return; + } + is_long = true; + break; + case 0x3: /* SQDMLAL, SQDMLAL2 */ + case 0x7: /* SQDMLSL, SQDMLSL2 */ + case 0xb: /* SQDMULL, SQDMULL2 */ + is_long = true; + /* fall through */ + case 0xc: /* SQDMULH */ + case 0xd: /* SQRDMULH */ + if (u) { + unallocated_encoding(s); + return; + } + break; + case 0x8: /* MUL */ + if (u || is_scalar) { + unallocated_encoding(s); + return; + } + break; + case 0x1: /* FMLA */ + case 0x5: /* FMLS */ + if (u) { + unallocated_encoding(s); + return; + } + /* fall through */ + case 0x9: /* FMUL, FMULX */ + if (!extract32(size, 1, 1)) { + unallocated_encoding(s); + return; + } + is_fp = true; + break; + default: + unallocated_encoding(s); + return; + } + + if (is_fp) { + /* low bit of size indicates single/double */ + size = extract32(size, 0, 1) ? 3 : 2; + if (size == 2) { + index = h << 1 | l; + } else { + if (l || !is_q) { + unallocated_encoding(s); + return; + } + index = h; + } + rm |= (m << 4); + } else { + switch (size) { + case 1: + index = h << 2 | l << 1 | m; + break; + case 2: + index = h << 1 | l; + rm |= (m << 4); + break; + default: + unallocated_encoding(s); + return; + } + } + + if (!fp_access_check(s)) { + return; + } + + if (is_fp) { + fpst = get_fpstatus_ptr(); + } else { + TCGV_UNUSED_PTR(fpst); + } + + if (size == 3) { + TCGv_i64 tcg_idx = tcg_temp_new_i64(); + int pass; + + assert(is_fp && is_q && !is_long); + + read_vec_element(s, tcg_idx, rm, index, MO_64); + + for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { + TCGv_i64 tcg_op = tcg_temp_new_i64(); + TCGv_i64 tcg_res = tcg_temp_new_i64(); + + read_vec_element(s, tcg_op, rn, pass, MO_64); + + switch (opcode) { + case 0x5: /* FMLS */ + /* As usual for ARM, separate negation for fused multiply-add */ + gen_helper_vfp_negd(tcg_op, tcg_op); + /* fall through */ + case 0x1: /* FMLA */ + read_vec_element(s, tcg_res, rd, pass, MO_64); + gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst); + break; + case 0x9: /* FMUL, FMULX */ + if (u) { + gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst); + } else { + gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst); + } + break; + default: + g_assert_not_reached(); + } + + write_vec_element(s, tcg_res, rd, pass, MO_64); + tcg_temp_free_i64(tcg_op); + tcg_temp_free_i64(tcg_res); + } + + if (is_scalar) { + clear_vec_high(s, rd); + } + + tcg_temp_free_i64(tcg_idx); + } else if (!is_long) { + /* 32 bit floating point, or 16 or 32 bit integer. + * For the 16 bit scalar case we use the usual Neon helpers and + * rely on the fact that 0 op 0 == 0 with no side effects. + */ + TCGv_i32 tcg_idx = tcg_temp_new_i32(); + int pass, maxpasses; + + if (is_scalar) { + maxpasses = 1; + } else { + maxpasses = is_q ? 4 : 2; + } + + read_vec_element_i32(s, tcg_idx, rm, index, size); + + if (size == 1 && !is_scalar) { + /* The simplest way to handle the 16x16 indexed ops is to duplicate + * the index into both halves of the 32 bit tcg_idx and then use + * the usual Neon helpers. + */ + tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); + } + + for (pass = 0; pass < maxpasses; pass++) { + TCGv_i32 tcg_op = tcg_temp_new_i32(); + TCGv_i32 tcg_res = tcg_temp_new_i32(); + + read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32); + + switch (opcode) { + case 0x0: /* MLA */ + case 0x4: /* MLS */ + case 0x8: /* MUL */ + { + static NeonGenTwoOpFn * const fns[2][2] = { + { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 }, + { tcg_gen_add_i32, tcg_gen_sub_i32 }, + }; + NeonGenTwoOpFn *genfn; + bool is_sub = opcode == 0x4; + + if (size == 1) { + gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx); + } else { + tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx); + } + if (opcode == 0x8) { + break; + } + read_vec_element_i32(s, tcg_op, rd, pass, MO_32); + genfn = fns[size - 1][is_sub]; + genfn(tcg_res, tcg_op, tcg_res); + break; + } + case 0x5: /* FMLS */ + /* As usual for ARM, separate negation for fused multiply-add */ + gen_helper_vfp_negs(tcg_op, tcg_op); + /* fall through */ + case 0x1: /* FMLA */ + read_vec_element_i32(s, tcg_res, rd, pass, MO_32); + gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx, tcg_res, fpst); + break; + case 0x9: /* FMUL, FMULX */ + if (u) { + gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst); + } else { + gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst); + } + break; + case 0xc: /* SQDMULH */ + if (size == 1) { + gen_helper_neon_qdmulh_s16(tcg_res, cpu_env, + tcg_op, tcg_idx); + } else { + gen_helper_neon_qdmulh_s32(tcg_res, cpu_env, + tcg_op, tcg_idx); + } + break; + case 0xd: /* SQRDMULH */ + if (size == 1) { + gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env, + tcg_op, tcg_idx); + } else { + gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env, + tcg_op, tcg_idx); + } + break; + default: + g_assert_not_reached(); + } + + if (is_scalar) { + write_fp_sreg(s, rd, tcg_res); + } else { + write_vec_element_i32(s, tcg_res, rd, pass, MO_32); + } + + tcg_temp_free_i32(tcg_op); + tcg_temp_free_i32(tcg_res); + } + + tcg_temp_free_i32(tcg_idx); + + if (!is_q) { + clear_vec_high(s, rd); + } + } else { + /* long ops: 16x16->32 or 32x32->64 */ + TCGv_i64 tcg_res[2]; + int pass; + bool satop = extract32(opcode, 0, 1); + TCGMemOp memop = MO_32; + + if (satop || !u) { + memop |= MO_SIGN; + } + + if (size == 2) { + TCGv_i64 tcg_idx = tcg_temp_new_i64(); + + read_vec_element(s, tcg_idx, rm, index, memop); + + for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { + TCGv_i64 tcg_op = tcg_temp_new_i64(); + TCGv_i64 tcg_passres; + int passelt; + + if (is_scalar) { + passelt = 0; + } else { + passelt = pass + (is_q * 2); + } + + read_vec_element(s, tcg_op, rn, passelt, memop); + + tcg_res[pass] = tcg_temp_new_i64(); + + if (opcode == 0xa || opcode == 0xb) { + /* Non-accumulating ops */ + tcg_passres = tcg_res[pass]; + } else { + tcg_passres = tcg_temp_new_i64(); + } + + tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx); + tcg_temp_free_i64(tcg_op); + + if (satop) { + /* saturating, doubling */ + gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env, + tcg_passres, tcg_passres); + } + + if (opcode == 0xa || opcode == 0xb) { + continue; + } + + /* Accumulating op: handle accumulate step */ + read_vec_element(s, tcg_res[pass], rd, pass, MO_64); + + switch (opcode) { + case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ + tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); + break; + case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ + tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); + break; + case 0x7: /* SQDMLSL, SQDMLSL2 */ + tcg_gen_neg_i64(tcg_passres, tcg_passres); + /* fall through */ + case 0x3: /* SQDMLAL, SQDMLAL2 */ + gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env, + tcg_res[pass], + tcg_passres); + break; + default: + g_assert_not_reached(); + } + tcg_temp_free_i64(tcg_passres); + } + tcg_temp_free_i64(tcg_idx); + + if (is_scalar) { + clear_vec_high(s, rd); + } + } else { + TCGv_i32 tcg_idx = tcg_temp_new_i32(); + + assert(size == 1); + read_vec_element_i32(s, tcg_idx, rm, index, size); + + if (!is_scalar) { + /* The simplest way to handle the 16x16 indexed ops is to + * duplicate the index into both halves of the 32 bit tcg_idx + * and then use the usual Neon helpers. + */ + tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); + } + + for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { + TCGv_i32 tcg_op = tcg_temp_new_i32(); + TCGv_i64 tcg_passres; + + if (is_scalar) { + read_vec_element_i32(s, tcg_op, rn, pass, size); + } else { + read_vec_element_i32(s, tcg_op, rn, + pass + (is_q * 2), MO_32); + } + + tcg_res[pass] = tcg_temp_new_i64(); + + if (opcode == 0xa || opcode == 0xb) { + /* Non-accumulating ops */ + tcg_passres = tcg_res[pass]; + } else { + tcg_passres = tcg_temp_new_i64(); + } + + if (memop & MO_SIGN) { + gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx); + } else { + gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx); + } + if (satop) { + gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env, + tcg_passres, tcg_passres); + } + tcg_temp_free_i32(tcg_op); + + if (opcode == 0xa || opcode == 0xb) { + continue; + } + + /* Accumulating op: handle accumulate step */ + read_vec_element(s, tcg_res[pass], rd, pass, MO_64); + + switch (opcode) { + case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ + gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass], + tcg_passres); + break; + case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ + gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass], + tcg_passres); + break; + case 0x7: /* SQDMLSL, SQDMLSL2 */ + gen_helper_neon_negl_u32(tcg_passres, tcg_passres); + /* fall through */ + case 0x3: /* SQDMLAL, SQDMLAL2 */ + gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env, + tcg_res[pass], + tcg_passres); + break; + default: + g_assert_not_reached(); + } + tcg_temp_free_i64(tcg_passres); + } + tcg_temp_free_i32(tcg_idx); + + if (is_scalar) { + tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]); + } + } + + if (is_scalar) { + tcg_res[1] = tcg_const_i64(0); + } + + for (pass = 0; pass < 2; pass++) { + write_vec_element(s, tcg_res[pass], rd, pass, MO_64); + tcg_temp_free_i64(tcg_res[pass]); + } + } + + if (!TCGV_IS_UNUSED_PTR(fpst)) { + tcg_temp_free_ptr(fpst); + } +} + +/* C3.6.19 Crypto AES + * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 + * +-----------------+------+-----------+--------+-----+------+------+ + * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | + * +-----------------+------+-----------+--------+-----+------+------+ + */ +static void disas_crypto_aes(DisasContext *s, uint32_t insn) +{ + int size = extract32(insn, 22, 2); + int opcode = extract32(insn, 12, 5); + int rn = extract32(insn, 5, 5); + int rd = extract32(insn, 0, 5); + int decrypt; + TCGv_i32 tcg_rd_regno, tcg_rn_regno, tcg_decrypt; + CryptoThreeOpEnvFn *genfn; + + if (!arm_dc_feature(s, ARM_FEATURE_V8_AES) + || size != 0) { + unallocated_encoding(s); + return; + } + + switch (opcode) { + case 0x4: /* AESE */ + decrypt = 0; + genfn = gen_helper_crypto_aese; + break; + case 0x6: /* AESMC */ + decrypt = 0; + genfn = gen_helper_crypto_aesmc; + break; + case 0x5: /* AESD */ + decrypt = 1; + genfn = gen_helper_crypto_aese; + break; + case 0x7: /* AESIMC */ + decrypt = 1; + genfn = gen_helper_crypto_aesmc; + break; + default: + unallocated_encoding(s); + return; + } + + /* Note that we convert the Vx register indexes into the + * index within the vfp.regs[] array, so we can share the + * helper with the AArch32 instructions. + */ + tcg_rd_regno = tcg_const_i32(rd << 1); + tcg_rn_regno = tcg_const_i32(rn << 1); + tcg_decrypt = tcg_const_i32(decrypt); + + genfn(cpu_env, tcg_rd_regno, tcg_rn_regno, tcg_decrypt); + + tcg_temp_free_i32(tcg_rd_regno); + tcg_temp_free_i32(tcg_rn_regno); + tcg_temp_free_i32(tcg_decrypt); +} + +/* C3.6.20 Crypto three-reg SHA + * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 + * +-----------------+------+---+------+---+--------+-----+------+------+ + * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd | + * +-----------------+------+---+------+---+--------+-----+------+------+ + */ +static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn) +{ + int size = extract32(insn, 22, 2); + int opcode = extract32(insn, 12, 3); + int rm = extract32(insn, 16, 5); + int rn = extract32(insn, 5, 5); + int rd = extract32(insn, 0, 5); + CryptoThreeOpEnvFn *genfn; + TCGv_i32 tcg_rd_regno, tcg_rn_regno, tcg_rm_regno; + int feature = ARM_FEATURE_V8_SHA256; + + if (size != 0) { + unallocated_encoding(s); + return; + } + + switch (opcode) { + case 0: /* SHA1C */ + case 1: /* SHA1P */ + case 2: /* SHA1M */ + case 3: /* SHA1SU0 */ + genfn = NULL; + feature = ARM_FEATURE_V8_SHA1; + break; + case 4: /* SHA256H */ + genfn = gen_helper_crypto_sha256h; + break; + case 5: /* SHA256H2 */ + genfn = gen_helper_crypto_sha256h2; + break; + case 6: /* SHA256SU1 */ + genfn = gen_helper_crypto_sha256su1; + break; + default: + unallocated_encoding(s); + return; + } + + if (!arm_dc_feature(s, feature)) { + unallocated_encoding(s); + return; + } + + tcg_rd_regno = tcg_const_i32(rd << 1); + tcg_rn_regno = tcg_const_i32(rn << 1); + tcg_rm_regno = tcg_const_i32(rm << 1); + + if (genfn) { + genfn(cpu_env, tcg_rd_regno, tcg_rn_regno, tcg_rm_regno); + } else { + TCGv_i32 tcg_opcode = tcg_const_i32(opcode); + + gen_helper_crypto_sha1_3reg(cpu_env, tcg_rd_regno, + tcg_rn_regno, tcg_rm_regno, tcg_opcode); + tcg_temp_free_i32(tcg_opcode); + } + + tcg_temp_free_i32(tcg_rd_regno); + tcg_temp_free_i32(tcg_rn_regno); + tcg_temp_free_i32(tcg_rm_regno); +} + +/* C3.6.21 Crypto two-reg SHA + * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 + * +-----------------+------+-----------+--------+-----+------+------+ + * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | + * +-----------------+------+-----------+--------+-----+------+------+ + */ +static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn) +{ + int size = extract32(insn, 22, 2); + int opcode = extract32(insn, 12, 5); + int rn = extract32(insn, 5, 5); + int rd = extract32(insn, 0, 5); + CryptoTwoOpEnvFn *genfn; + int feature; + TCGv_i32 tcg_rd_regno, tcg_rn_regno; + + if (size != 0) { + unallocated_encoding(s); + return; + } + + switch (opcode) { + case 0: /* SHA1H */ + feature = ARM_FEATURE_V8_SHA1; + genfn = gen_helper_crypto_sha1h; + break; + case 1: /* SHA1SU1 */ + feature = ARM_FEATURE_V8_SHA1; + genfn = gen_helper_crypto_sha1su1; + break; + case 2: /* SHA256SU0 */ + feature = ARM_FEATURE_V8_SHA256; + genfn = gen_helper_crypto_sha256su0; + break; + default: + unallocated_encoding(s); + return; + } + + if (!arm_dc_feature(s, feature)) { + unallocated_encoding(s); + return; + } + + tcg_rd_regno = tcg_const_i32(rd << 1); + tcg_rn_regno = tcg_const_i32(rn << 1); + + genfn(cpu_env, tcg_rd_regno, tcg_rn_regno); + + tcg_temp_free_i32(tcg_rd_regno); + tcg_temp_free_i32(tcg_rn_regno); +} + +/* C3.6 Data processing - SIMD, inc Crypto + * + * As the decode gets a little complex we are using a table based + * approach for this part of the decode. + */ +static const AArch64DecodeTable data_proc_simd[] = { + /* pattern , mask , fn */ + { 0x0e200400, 0x9f200400, disas_simd_three_reg_same }, + { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff }, + { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc }, + { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes }, + { 0x0e000400, 0x9fe08400, disas_simd_copy }, + { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */ + /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */ + { 0x0f000400, 0x9ff80400, disas_simd_mod_imm }, + { 0x0f000400, 0x9f800400, disas_simd_shift_imm }, + { 0x0e000000, 0xbf208c00, disas_simd_tb }, + { 0x0e000800, 0xbf208c00, disas_simd_zip_trn }, + { 0x2e000000, 0xbf208400, disas_simd_ext }, + { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same }, + { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff }, + { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc }, + { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise }, + { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy }, + { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */ + { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm }, + { 0x4e280800, 0xff3e0c00, disas_crypto_aes }, + { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha }, + { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha }, + { 0x00000000, 0x00000000, NULL } +}; + +static void disas_data_proc_simd(DisasContext *s, uint32_t insn) +{ + /* Note that this is called with all non-FP cases from + * table C3-6 so it must UNDEF for entries not specifically + * allocated to instructions in that table. + */ + AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn); + if (fn) { + fn(s, insn); + } else { + unallocated_encoding(s); + } +} + +/* C3.6 Data processing - SIMD and floating point */ +static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn) +{ + if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) { + disas_data_proc_fp(s, insn); + } else { + /* SIMD, including crypto */ + disas_data_proc_simd(s, insn); + } +} + +/* C3.1 A64 instruction index by encoding */ +static void disas_a64_insn(CPUARMState *env, DisasContext *s) +{ + uint32_t insn; + + insn = arm_ldl_code(env, s->pc, s->sctlr_b); + s->insn = insn; + s->pc += 4; + + s->fp_access_checked = false; + + switch (extract32(insn, 25, 4)) { + case 0x0: case 0x1: case 0x2: case 0x3: /* UNALLOCATED */ + unallocated_encoding(s); + break; + case 0x8: case 0x9: /* Data processing - immediate */ + disas_data_proc_imm(s, insn); + break; + case 0xa: case 0xb: /* Branch, exception generation and system insns */ + disas_b_exc_sys(s, insn); + break; + case 0x4: + case 0x6: + case 0xc: + case 0xe: /* Loads and stores */ + disas_ldst(s, insn); + break; + case 0x5: + case 0xd: /* Data processing - register */ + disas_data_proc_reg(s, insn); + break; + case 0x7: + case 0xf: /* Data processing - SIMD and floating point */ + disas_data_proc_simd_fp(s, insn); + break; + default: + assert(FALSE); /* all 15 cases should be handled above */ + break; + } + + /* if we allocated any temporaries, free them here */ + free_tmp_a64(s); +} + +void gen_intermediate_code_a64(ARMCPU *cpu, TranslationBlock *tb) +{ + CPUState *cs = CPU(cpu); + CPUARMState *env = &cpu->env; + DisasContext dc1, *dc = &dc1; + target_ulong pc_start; + target_ulong next_page_start; + int num_insns; + int max_insns; + + pc_start = tb->pc; + + dc->tb = tb; + + dc->is_jmp = DISAS_NEXT; + dc->pc = pc_start; + dc->singlestep_enabled = cs->singlestep_enabled; + dc->condjmp = 0; + + dc->aarch64 = 1; + /* If we are coming from secure EL0 in a system with a 32-bit EL3, then + * there is no secure EL1, so we route exceptions to EL3. + */ + dc->secure_routed_to_el3 = arm_feature(env, ARM_FEATURE_EL3) && + !arm_el_is_aa64(env, 3); + dc->thumb = 0; + dc->sctlr_b = 0; + dc->be_data = ARM_TBFLAG_BE_DATA(tb->flags) ? MO_BE : MO_LE; + dc->condexec_mask = 0; + dc->condexec_cond = 0; + dc->mmu_idx = ARM_TBFLAG_MMUIDX(tb->flags); + dc->tbi0 = ARM_TBFLAG_TBI0(tb->flags); + dc->tbi1 = ARM_TBFLAG_TBI1(tb->flags); + dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx); +#if !defined(CONFIG_USER_ONLY) + dc->user = (dc->current_el == 0); +#endif + dc->fp_excp_el = ARM_TBFLAG_FPEXC_EL(tb->flags); + dc->vec_len = 0; + dc->vec_stride = 0; + dc->cp_regs = cpu->cp_regs; + dc->features = env->features; + + /* Single step state. The code-generation logic here is: + * SS_ACTIVE == 0: + * generate code with no special handling for single-stepping (except + * that anything that can make us go to SS_ACTIVE == 1 must end the TB; + * this happens anyway because those changes are all system register or + * PSTATE writes). + * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending) + * emit code for one insn + * emit code to clear PSTATE.SS + * emit code to generate software step exception for completed step + * end TB (as usual for having generated an exception) + * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending) + * emit code to generate a software step exception + * end the TB + */ + dc->ss_active = ARM_TBFLAG_SS_ACTIVE(tb->flags); + dc->pstate_ss = ARM_TBFLAG_PSTATE_SS(tb->flags); + dc->is_ldex = false; + dc->ss_same_el = (arm_debug_target_el(env) == dc->current_el); + + init_tmp_a64_array(dc); + + next_page_start = (pc_start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE; + num_insns = 0; + max_insns = tb->cflags & CF_COUNT_MASK; + if (max_insns == 0) { + max_insns = CF_COUNT_MASK; + } + if (max_insns > TCG_MAX_INSNS) { + max_insns = TCG_MAX_INSNS; + } + + gen_tb_start(tb); + + tcg_clear_temp_count(); + + do { + dc->insn_start_idx = tcg_op_buf_count(); + tcg_gen_insn_start(dc->pc, 0, 0); + num_insns++; + + if (unlikely(!QTAILQ_EMPTY(&cs->breakpoints))) { + CPUBreakpoint *bp; + QTAILQ_FOREACH(bp, &cs->breakpoints, entry) { + if (bp->pc == dc->pc) { + if (bp->flags & BP_CPU) { + gen_a64_set_pc_im(dc->pc); + gen_helper_check_breakpoints(cpu_env); + /* End the TB early; it likely won't be executed */ + dc->is_jmp = DISAS_UPDATE; + } else { + gen_exception_internal_insn(dc, 0, EXCP_DEBUG); + /* The address covered by the breakpoint must be + included in [tb->pc, tb->pc + tb->size) in order + to for it to be properly cleared -- thus we + increment the PC here so that the logic setting + tb->size below does the right thing. */ + dc->pc += 4; + goto done_generating; + } + break; + } + } + } + + if (num_insns == max_insns && (tb->cflags & CF_LAST_IO)) { + gen_io_start(); + } + + if (dc->ss_active && !dc->pstate_ss) { + /* Singlestep state is Active-pending. + * If we're in this state at the start of a TB then either + * a) we just took an exception to an EL which is being debugged + * and this is the first insn in the exception handler + * b) debug exceptions were masked and we just unmasked them + * without changing EL (eg by clearing PSTATE.D) + * In either case we're going to take a swstep exception in the + * "did not step an insn" case, and so the syndrome ISV and EX + * bits should be zero. + */ + assert(num_insns == 1); + gen_exception(EXCP_UDEF, syn_swstep(dc->ss_same_el, 0, 0), + default_exception_el(dc)); + dc->is_jmp = DISAS_EXC; + break; + } + + disas_a64_insn(env, dc); + + if (tcg_check_temp_count()) { + fprintf(stderr, "TCG temporary leak before "TARGET_FMT_lx"\n", + dc->pc); + } + + /* Translation stops when a conditional branch is encountered. + * Otherwise the subsequent code could get translated several times. + * Also stop translation when a page boundary is reached. This + * ensures prefetch aborts occur at the right place. + */ + } while (!dc->is_jmp && !tcg_op_buf_full() && + !cs->singlestep_enabled && + !singlestep && + !dc->ss_active && + dc->pc < next_page_start && + num_insns < max_insns); + + if (tb->cflags & CF_LAST_IO) { + gen_io_end(); + } + + if (unlikely(cs->singlestep_enabled || dc->ss_active) + && dc->is_jmp != DISAS_EXC) { + /* Note that this means single stepping WFI doesn't halt the CPU. + * For conditional branch insns this is harmless unreachable code as + * gen_goto_tb() has already handled emitting the debug exception + * (and thus a tb-jump is not possible when singlestepping). + */ + assert(dc->is_jmp != DISAS_TB_JUMP); + if (dc->is_jmp != DISAS_JUMP) { + gen_a64_set_pc_im(dc->pc); + } + if (cs->singlestep_enabled) { + gen_exception_internal(EXCP_DEBUG); + } else { + gen_step_complete_exception(dc); + } + } else { + switch (dc->is_jmp) { + case DISAS_NEXT: + gen_goto_tb(dc, 1, dc->pc); + break; + default: + case DISAS_UPDATE: + gen_a64_set_pc_im(dc->pc); + /* fall through */ + case DISAS_JUMP: + /* indicate that the hash table must be used to find the next TB */ + tcg_gen_exit_tb(0); + break; + case DISAS_TB_JUMP: + case DISAS_EXC: + case DISAS_SWI: + break; + case DISAS_WFE: + gen_a64_set_pc_im(dc->pc); + gen_helper_wfe(cpu_env); + break; + case DISAS_YIELD: + gen_a64_set_pc_im(dc->pc); + gen_helper_yield(cpu_env); + break; + case DISAS_WFI: + /* This is a special case because we don't want to just halt the CPU + * if trying to debug across a WFI. + */ + gen_a64_set_pc_im(dc->pc); + gen_helper_wfi(cpu_env); + /* The helper doesn't necessarily throw an exception, but we + * must go back to the main loop to check for interrupts anyway. + */ + tcg_gen_exit_tb(0); + break; + } + } + +done_generating: + gen_tb_end(tb, num_insns); + +#ifdef DEBUG_DISAS + if (qemu_loglevel_mask(CPU_LOG_TB_IN_ASM) && + qemu_log_in_addr_range(pc_start)) { + qemu_log_lock(); + qemu_log("----------------\n"); + qemu_log("IN: %s\n", lookup_symbol(pc_start)); + log_target_disas(cs, pc_start, dc->pc - pc_start, + 4 | (bswap_code(dc->sctlr_b) ? 2 : 0)); + qemu_log("\n"); + qemu_log_unlock(); + } +#endif + tb->size = dc->pc - pc_start; + tb->icount = num_insns; +} |