aboutsummaryrefslogtreecommitdiff
path: root/target/arm/translate-a64.c
diff options
context:
space:
mode:
Diffstat (limited to 'target/arm/translate-a64.c')
-rw-r--r--target/arm/translate-a64.c11430
1 files changed, 11430 insertions, 0 deletions
diff --git a/target/arm/translate-a64.c b/target/arm/translate-a64.c
new file mode 100644
index 0000000000..6dc27a6115
--- /dev/null
+++ b/target/arm/translate-a64.c
@@ -0,0 +1,11430 @@
+/*
+ * AArch64 translation
+ *
+ * Copyright (c) 2013 Alexander Graf <agraf@suse.de>
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, see <http://www.gnu.org/licenses/>.
+ */
+#include "qemu/osdep.h"
+
+#include "cpu.h"
+#include "exec/exec-all.h"
+#include "tcg-op.h"
+#include "qemu/log.h"
+#include "arm_ldst.h"
+#include "translate.h"
+#include "internals.h"
+#include "qemu/host-utils.h"
+
+#include "exec/semihost.h"
+#include "exec/gen-icount.h"
+
+#include "exec/helper-proto.h"
+#include "exec/helper-gen.h"
+#include "exec/log.h"
+
+#include "trace-tcg.h"
+
+static TCGv_i64 cpu_X[32];
+static TCGv_i64 cpu_pc;
+
+/* Load/store exclusive handling */
+static TCGv_i64 cpu_exclusive_high;
+static TCGv_i64 cpu_reg(DisasContext *s, int reg);
+
+static const char *regnames[] = {
+ "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
+ "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
+ "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
+ "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
+};
+
+enum a64_shift_type {
+ A64_SHIFT_TYPE_LSL = 0,
+ A64_SHIFT_TYPE_LSR = 1,
+ A64_SHIFT_TYPE_ASR = 2,
+ A64_SHIFT_TYPE_ROR = 3
+};
+
+/* Table based decoder typedefs - used when the relevant bits for decode
+ * are too awkwardly scattered across the instruction (eg SIMD).
+ */
+typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
+
+typedef struct AArch64DecodeTable {
+ uint32_t pattern;
+ uint32_t mask;
+ AArch64DecodeFn *disas_fn;
+} AArch64DecodeTable;
+
+/* Function prototype for gen_ functions for calling Neon helpers */
+typedef void NeonGenOneOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32);
+typedef void NeonGenTwoOpFn(TCGv_i32, TCGv_i32, TCGv_i32);
+typedef void NeonGenTwoOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32);
+typedef void NeonGenTwo64OpFn(TCGv_i64, TCGv_i64, TCGv_i64);
+typedef void NeonGenTwo64OpEnvFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i64);
+typedef void NeonGenNarrowFn(TCGv_i32, TCGv_i64);
+typedef void NeonGenNarrowEnvFn(TCGv_i32, TCGv_ptr, TCGv_i64);
+typedef void NeonGenWidenFn(TCGv_i64, TCGv_i32);
+typedef void NeonGenTwoSingleOPFn(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
+typedef void NeonGenTwoDoubleOPFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
+typedef void NeonGenOneOpFn(TCGv_i64, TCGv_i64);
+typedef void CryptoTwoOpEnvFn(TCGv_ptr, TCGv_i32, TCGv_i32);
+typedef void CryptoThreeOpEnvFn(TCGv_ptr, TCGv_i32, TCGv_i32, TCGv_i32);
+
+/* initialize TCG globals. */
+void a64_translate_init(void)
+{
+ int i;
+
+ cpu_pc = tcg_global_mem_new_i64(cpu_env,
+ offsetof(CPUARMState, pc),
+ "pc");
+ for (i = 0; i < 32; i++) {
+ cpu_X[i] = tcg_global_mem_new_i64(cpu_env,
+ offsetof(CPUARMState, xregs[i]),
+ regnames[i]);
+ }
+
+ cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env,
+ offsetof(CPUARMState, exclusive_high), "exclusive_high");
+}
+
+static inline ARMMMUIdx get_a64_user_mem_index(DisasContext *s)
+{
+ /* Return the mmu_idx to use for A64 "unprivileged load/store" insns:
+ * if EL1, access as if EL0; otherwise access at current EL
+ */
+ switch (s->mmu_idx) {
+ case ARMMMUIdx_S12NSE1:
+ return ARMMMUIdx_S12NSE0;
+ case ARMMMUIdx_S1SE1:
+ return ARMMMUIdx_S1SE0;
+ case ARMMMUIdx_S2NS:
+ g_assert_not_reached();
+ default:
+ return s->mmu_idx;
+ }
+}
+
+void aarch64_cpu_dump_state(CPUState *cs, FILE *f,
+ fprintf_function cpu_fprintf, int flags)
+{
+ ARMCPU *cpu = ARM_CPU(cs);
+ CPUARMState *env = &cpu->env;
+ uint32_t psr = pstate_read(env);
+ int i;
+ int el = arm_current_el(env);
+ const char *ns_status;
+
+ cpu_fprintf(f, "PC=%016"PRIx64" SP=%016"PRIx64"\n",
+ env->pc, env->xregs[31]);
+ for (i = 0; i < 31; i++) {
+ cpu_fprintf(f, "X%02d=%016"PRIx64, i, env->xregs[i]);
+ if ((i % 4) == 3) {
+ cpu_fprintf(f, "\n");
+ } else {
+ cpu_fprintf(f, " ");
+ }
+ }
+
+ if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
+ ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
+ } else {
+ ns_status = "";
+ }
+
+ cpu_fprintf(f, "\nPSTATE=%08x %c%c%c%c %sEL%d%c\n",
+ psr,
+ psr & PSTATE_N ? 'N' : '-',
+ psr & PSTATE_Z ? 'Z' : '-',
+ psr & PSTATE_C ? 'C' : '-',
+ psr & PSTATE_V ? 'V' : '-',
+ ns_status,
+ el,
+ psr & PSTATE_SP ? 'h' : 't');
+
+ if (flags & CPU_DUMP_FPU) {
+ int numvfpregs = 32;
+ for (i = 0; i < numvfpregs; i += 2) {
+ uint64_t vlo = float64_val(env->vfp.regs[i * 2]);
+ uint64_t vhi = float64_val(env->vfp.regs[(i * 2) + 1]);
+ cpu_fprintf(f, "q%02d=%016" PRIx64 ":%016" PRIx64 " ",
+ i, vhi, vlo);
+ vlo = float64_val(env->vfp.regs[(i + 1) * 2]);
+ vhi = float64_val(env->vfp.regs[((i + 1) * 2) + 1]);
+ cpu_fprintf(f, "q%02d=%016" PRIx64 ":%016" PRIx64 "\n",
+ i + 1, vhi, vlo);
+ }
+ cpu_fprintf(f, "FPCR: %08x FPSR: %08x\n",
+ vfp_get_fpcr(env), vfp_get_fpsr(env));
+ }
+}
+
+void gen_a64_set_pc_im(uint64_t val)
+{
+ tcg_gen_movi_i64(cpu_pc, val);
+}
+
+/* Load the PC from a generic TCG variable.
+ *
+ * If address tagging is enabled via the TCR TBI bits, then loading
+ * an address into the PC will clear out any tag in the it:
+ * + for EL2 and EL3 there is only one TBI bit, and if it is set
+ * then the address is zero-extended, clearing bits [63:56]
+ * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
+ * and TBI1 controls addressses with bit 55 == 1.
+ * If the appropriate TBI bit is set for the address then
+ * the address is sign-extended from bit 55 into bits [63:56]
+ *
+ * We can avoid doing this for relative-branches, because the
+ * PC + offset can never overflow into the tag bits (assuming
+ * that virtual addresses are less than 56 bits wide, as they
+ * are currently), but we must handle it for branch-to-register.
+ */
+static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
+{
+
+ if (s->current_el <= 1) {
+ /* Test if NEITHER or BOTH TBI values are set. If so, no need to
+ * examine bit 55 of address, can just generate code.
+ * If mixed, then test via generated code
+ */
+ if (s->tbi0 && s->tbi1) {
+ TCGv_i64 tmp_reg = tcg_temp_new_i64();
+ /* Both bits set, sign extension from bit 55 into [63:56] will
+ * cover both cases
+ */
+ tcg_gen_shli_i64(tmp_reg, src, 8);
+ tcg_gen_sari_i64(cpu_pc, tmp_reg, 8);
+ tcg_temp_free_i64(tmp_reg);
+ } else if (!s->tbi0 && !s->tbi1) {
+ /* Neither bit set, just load it as-is */
+ tcg_gen_mov_i64(cpu_pc, src);
+ } else {
+ TCGv_i64 tcg_tmpval = tcg_temp_new_i64();
+ TCGv_i64 tcg_bit55 = tcg_temp_new_i64();
+ TCGv_i64 tcg_zero = tcg_const_i64(0);
+
+ tcg_gen_andi_i64(tcg_bit55, src, (1ull << 55));
+
+ if (s->tbi0) {
+ /* tbi0==1, tbi1==0, so 0-fill upper byte if bit 55 = 0 */
+ tcg_gen_andi_i64(tcg_tmpval, src,
+ 0x00FFFFFFFFFFFFFFull);
+ tcg_gen_movcond_i64(TCG_COND_EQ, cpu_pc, tcg_bit55, tcg_zero,
+ tcg_tmpval, src);
+ } else {
+ /* tbi0==0, tbi1==1, so 1-fill upper byte if bit 55 = 1 */
+ tcg_gen_ori_i64(tcg_tmpval, src,
+ 0xFF00000000000000ull);
+ tcg_gen_movcond_i64(TCG_COND_NE, cpu_pc, tcg_bit55, tcg_zero,
+ tcg_tmpval, src);
+ }
+ tcg_temp_free_i64(tcg_zero);
+ tcg_temp_free_i64(tcg_bit55);
+ tcg_temp_free_i64(tcg_tmpval);
+ }
+ } else { /* EL > 1 */
+ if (s->tbi0) {
+ /* Force tag byte to all zero */
+ tcg_gen_andi_i64(cpu_pc, src, 0x00FFFFFFFFFFFFFFull);
+ } else {
+ /* Load unmodified address */
+ tcg_gen_mov_i64(cpu_pc, src);
+ }
+ }
+}
+
+typedef struct DisasCompare64 {
+ TCGCond cond;
+ TCGv_i64 value;
+} DisasCompare64;
+
+static void a64_test_cc(DisasCompare64 *c64, int cc)
+{
+ DisasCompare c32;
+
+ arm_test_cc(&c32, cc);
+
+ /* Sign-extend the 32-bit value so that the GE/LT comparisons work
+ * properly. The NE/EQ comparisons are also fine with this choice. */
+ c64->cond = c32.cond;
+ c64->value = tcg_temp_new_i64();
+ tcg_gen_ext_i32_i64(c64->value, c32.value);
+
+ arm_free_cc(&c32);
+}
+
+static void a64_free_cc(DisasCompare64 *c64)
+{
+ tcg_temp_free_i64(c64->value);
+}
+
+static void gen_exception_internal(int excp)
+{
+ TCGv_i32 tcg_excp = tcg_const_i32(excp);
+
+ assert(excp_is_internal(excp));
+ gen_helper_exception_internal(cpu_env, tcg_excp);
+ tcg_temp_free_i32(tcg_excp);
+}
+
+static void gen_exception(int excp, uint32_t syndrome, uint32_t target_el)
+{
+ TCGv_i32 tcg_excp = tcg_const_i32(excp);
+ TCGv_i32 tcg_syn = tcg_const_i32(syndrome);
+ TCGv_i32 tcg_el = tcg_const_i32(target_el);
+
+ gen_helper_exception_with_syndrome(cpu_env, tcg_excp,
+ tcg_syn, tcg_el);
+ tcg_temp_free_i32(tcg_el);
+ tcg_temp_free_i32(tcg_syn);
+ tcg_temp_free_i32(tcg_excp);
+}
+
+static void gen_exception_internal_insn(DisasContext *s, int offset, int excp)
+{
+ gen_a64_set_pc_im(s->pc - offset);
+ gen_exception_internal(excp);
+ s->is_jmp = DISAS_EXC;
+}
+
+static void gen_exception_insn(DisasContext *s, int offset, int excp,
+ uint32_t syndrome, uint32_t target_el)
+{
+ gen_a64_set_pc_im(s->pc - offset);
+ gen_exception(excp, syndrome, target_el);
+ s->is_jmp = DISAS_EXC;
+}
+
+static void gen_ss_advance(DisasContext *s)
+{
+ /* If the singlestep state is Active-not-pending, advance to
+ * Active-pending.
+ */
+ if (s->ss_active) {
+ s->pstate_ss = 0;
+ gen_helper_clear_pstate_ss(cpu_env);
+ }
+}
+
+static void gen_step_complete_exception(DisasContext *s)
+{
+ /* We just completed step of an insn. Move from Active-not-pending
+ * to Active-pending, and then also take the swstep exception.
+ * This corresponds to making the (IMPDEF) choice to prioritize
+ * swstep exceptions over asynchronous exceptions taken to an exception
+ * level where debug is disabled. This choice has the advantage that
+ * we do not need to maintain internal state corresponding to the
+ * ISV/EX syndrome bits between completion of the step and generation
+ * of the exception, and our syndrome information is always correct.
+ */
+ gen_ss_advance(s);
+ gen_exception(EXCP_UDEF, syn_swstep(s->ss_same_el, 1, s->is_ldex),
+ default_exception_el(s));
+ s->is_jmp = DISAS_EXC;
+}
+
+static inline bool use_goto_tb(DisasContext *s, int n, uint64_t dest)
+{
+ /* No direct tb linking with singlestep (either QEMU's or the ARM
+ * debug architecture kind) or deterministic io
+ */
+ if (s->singlestep_enabled || s->ss_active || (s->tb->cflags & CF_LAST_IO)) {
+ return false;
+ }
+
+#ifndef CONFIG_USER_ONLY
+ /* Only link tbs from inside the same guest page */
+ if ((s->tb->pc & TARGET_PAGE_MASK) != (dest & TARGET_PAGE_MASK)) {
+ return false;
+ }
+#endif
+
+ return true;
+}
+
+static inline void gen_goto_tb(DisasContext *s, int n, uint64_t dest)
+{
+ TranslationBlock *tb;
+
+ tb = s->tb;
+ if (use_goto_tb(s, n, dest)) {
+ tcg_gen_goto_tb(n);
+ gen_a64_set_pc_im(dest);
+ tcg_gen_exit_tb((intptr_t)tb + n);
+ s->is_jmp = DISAS_TB_JUMP;
+ } else {
+ gen_a64_set_pc_im(dest);
+ if (s->ss_active) {
+ gen_step_complete_exception(s);
+ } else if (s->singlestep_enabled) {
+ gen_exception_internal(EXCP_DEBUG);
+ } else {
+ tcg_gen_exit_tb(0);
+ s->is_jmp = DISAS_TB_JUMP;
+ }
+ }
+}
+
+static void disas_set_insn_syndrome(DisasContext *s, uint32_t syn)
+{
+ /* We don't need to save all of the syndrome so we mask and shift
+ * out uneeded bits to help the sleb128 encoder do a better job.
+ */
+ syn &= ARM_INSN_START_WORD2_MASK;
+ syn >>= ARM_INSN_START_WORD2_SHIFT;
+
+ /* We check and clear insn_start_idx to catch multiple updates. */
+ assert(s->insn_start_idx != 0);
+ tcg_set_insn_param(s->insn_start_idx, 2, syn);
+ s->insn_start_idx = 0;
+}
+
+static void unallocated_encoding(DisasContext *s)
+{
+ /* Unallocated and reserved encodings are uncategorized */
+ gen_exception_insn(s, 4, EXCP_UDEF, syn_uncategorized(),
+ default_exception_el(s));
+}
+
+#define unsupported_encoding(s, insn) \
+ do { \
+ qemu_log_mask(LOG_UNIMP, \
+ "%s:%d: unsupported instruction encoding 0x%08x " \
+ "at pc=%016" PRIx64 "\n", \
+ __FILE__, __LINE__, insn, s->pc - 4); \
+ unallocated_encoding(s); \
+ } while (0);
+
+static void init_tmp_a64_array(DisasContext *s)
+{
+#ifdef CONFIG_DEBUG_TCG
+ int i;
+ for (i = 0; i < ARRAY_SIZE(s->tmp_a64); i++) {
+ TCGV_UNUSED_I64(s->tmp_a64[i]);
+ }
+#endif
+ s->tmp_a64_count = 0;
+}
+
+static void free_tmp_a64(DisasContext *s)
+{
+ int i;
+ for (i = 0; i < s->tmp_a64_count; i++) {
+ tcg_temp_free_i64(s->tmp_a64[i]);
+ }
+ init_tmp_a64_array(s);
+}
+
+static TCGv_i64 new_tmp_a64(DisasContext *s)
+{
+ assert(s->tmp_a64_count < TMP_A64_MAX);
+ return s->tmp_a64[s->tmp_a64_count++] = tcg_temp_new_i64();
+}
+
+static TCGv_i64 new_tmp_a64_zero(DisasContext *s)
+{
+ TCGv_i64 t = new_tmp_a64(s);
+ tcg_gen_movi_i64(t, 0);
+ return t;
+}
+
+/*
+ * Register access functions
+ *
+ * These functions are used for directly accessing a register in where
+ * changes to the final register value are likely to be made. If you
+ * need to use a register for temporary calculation (e.g. index type
+ * operations) use the read_* form.
+ *
+ * B1.2.1 Register mappings
+ *
+ * In instruction register encoding 31 can refer to ZR (zero register) or
+ * the SP (stack pointer) depending on context. In QEMU's case we map SP
+ * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
+ * This is the point of the _sp forms.
+ */
+static TCGv_i64 cpu_reg(DisasContext *s, int reg)
+{
+ if (reg == 31) {
+ return new_tmp_a64_zero(s);
+ } else {
+ return cpu_X[reg];
+ }
+}
+
+/* register access for when 31 == SP */
+static TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
+{
+ return cpu_X[reg];
+}
+
+/* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
+ * representing the register contents. This TCGv is an auto-freed
+ * temporary so it need not be explicitly freed, and may be modified.
+ */
+static TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
+{
+ TCGv_i64 v = new_tmp_a64(s);
+ if (reg != 31) {
+ if (sf) {
+ tcg_gen_mov_i64(v, cpu_X[reg]);
+ } else {
+ tcg_gen_ext32u_i64(v, cpu_X[reg]);
+ }
+ } else {
+ tcg_gen_movi_i64(v, 0);
+ }
+ return v;
+}
+
+static TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
+{
+ TCGv_i64 v = new_tmp_a64(s);
+ if (sf) {
+ tcg_gen_mov_i64(v, cpu_X[reg]);
+ } else {
+ tcg_gen_ext32u_i64(v, cpu_X[reg]);
+ }
+ return v;
+}
+
+/* We should have at some point before trying to access an FP register
+ * done the necessary access check, so assert that
+ * (a) we did the check and
+ * (b) we didn't then just plough ahead anyway if it failed.
+ * Print the instruction pattern in the abort message so we can figure
+ * out what we need to fix if a user encounters this problem in the wild.
+ */
+static inline void assert_fp_access_checked(DisasContext *s)
+{
+#ifdef CONFIG_DEBUG_TCG
+ if (unlikely(!s->fp_access_checked || s->fp_excp_el)) {
+ fprintf(stderr, "target-arm: FP access check missing for "
+ "instruction 0x%08x\n", s->insn);
+ abort();
+ }
+#endif
+}
+
+/* Return the offset into CPUARMState of an element of specified
+ * size, 'element' places in from the least significant end of
+ * the FP/vector register Qn.
+ */
+static inline int vec_reg_offset(DisasContext *s, int regno,
+ int element, TCGMemOp size)
+{
+ int offs = offsetof(CPUARMState, vfp.regs[regno * 2]);
+#ifdef HOST_WORDS_BIGENDIAN
+ /* This is complicated slightly because vfp.regs[2n] is
+ * still the low half and vfp.regs[2n+1] the high half
+ * of the 128 bit vector, even on big endian systems.
+ * Calculate the offset assuming a fully bigendian 128 bits,
+ * then XOR to account for the order of the two 64 bit halves.
+ */
+ offs += (16 - ((element + 1) * (1 << size)));
+ offs ^= 8;
+#else
+ offs += element * (1 << size);
+#endif
+ assert_fp_access_checked(s);
+ return offs;
+}
+
+/* Return the offset into CPUARMState of a slice (from
+ * the least significant end) of FP register Qn (ie
+ * Dn, Sn, Hn or Bn).
+ * (Note that this is not the same mapping as for A32; see cpu.h)
+ */
+static inline int fp_reg_offset(DisasContext *s, int regno, TCGMemOp size)
+{
+ int offs = offsetof(CPUARMState, vfp.regs[regno * 2]);
+#ifdef HOST_WORDS_BIGENDIAN
+ offs += (8 - (1 << size));
+#endif
+ assert_fp_access_checked(s);
+ return offs;
+}
+
+/* Offset of the high half of the 128 bit vector Qn */
+static inline int fp_reg_hi_offset(DisasContext *s, int regno)
+{
+ assert_fp_access_checked(s);
+ return offsetof(CPUARMState, vfp.regs[regno * 2 + 1]);
+}
+
+/* Convenience accessors for reading and writing single and double
+ * FP registers. Writing clears the upper parts of the associated
+ * 128 bit vector register, as required by the architecture.
+ * Note that unlike the GP register accessors, the values returned
+ * by the read functions must be manually freed.
+ */
+static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
+{
+ TCGv_i64 v = tcg_temp_new_i64();
+
+ tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64));
+ return v;
+}
+
+static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
+{
+ TCGv_i32 v = tcg_temp_new_i32();
+
+ tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32));
+ return v;
+}
+
+static void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
+{
+ TCGv_i64 tcg_zero = tcg_const_i64(0);
+
+ tcg_gen_st_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64));
+ tcg_gen_st_i64(tcg_zero, cpu_env, fp_reg_hi_offset(s, reg));
+ tcg_temp_free_i64(tcg_zero);
+}
+
+static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
+{
+ TCGv_i64 tmp = tcg_temp_new_i64();
+
+ tcg_gen_extu_i32_i64(tmp, v);
+ write_fp_dreg(s, reg, tmp);
+ tcg_temp_free_i64(tmp);
+}
+
+static TCGv_ptr get_fpstatus_ptr(void)
+{
+ TCGv_ptr statusptr = tcg_temp_new_ptr();
+ int offset;
+
+ /* In A64 all instructions (both FP and Neon) use the FPCR;
+ * there is no equivalent of the A32 Neon "standard FPSCR value"
+ * and all operations use vfp.fp_status.
+ */
+ offset = offsetof(CPUARMState, vfp.fp_status);
+ tcg_gen_addi_ptr(statusptr, cpu_env, offset);
+ return statusptr;
+}
+
+/* Set ZF and NF based on a 64 bit result. This is alas fiddlier
+ * than the 32 bit equivalent.
+ */
+static inline void gen_set_NZ64(TCGv_i64 result)
+{
+ tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
+ tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
+}
+
+/* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
+static inline void gen_logic_CC(int sf, TCGv_i64 result)
+{
+ if (sf) {
+ gen_set_NZ64(result);
+ } else {
+ tcg_gen_extrl_i64_i32(cpu_ZF, result);
+ tcg_gen_mov_i32(cpu_NF, cpu_ZF);
+ }
+ tcg_gen_movi_i32(cpu_CF, 0);
+ tcg_gen_movi_i32(cpu_VF, 0);
+}
+
+/* dest = T0 + T1; compute C, N, V and Z flags */
+static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
+{
+ if (sf) {
+ TCGv_i64 result, flag, tmp;
+ result = tcg_temp_new_i64();
+ flag = tcg_temp_new_i64();
+ tmp = tcg_temp_new_i64();
+
+ tcg_gen_movi_i64(tmp, 0);
+ tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
+
+ tcg_gen_extrl_i64_i32(cpu_CF, flag);
+
+ gen_set_NZ64(result);
+
+ tcg_gen_xor_i64(flag, result, t0);
+ tcg_gen_xor_i64(tmp, t0, t1);
+ tcg_gen_andc_i64(flag, flag, tmp);
+ tcg_temp_free_i64(tmp);
+ tcg_gen_extrh_i64_i32(cpu_VF, flag);
+
+ tcg_gen_mov_i64(dest, result);
+ tcg_temp_free_i64(result);
+ tcg_temp_free_i64(flag);
+ } else {
+ /* 32 bit arithmetic */
+ TCGv_i32 t0_32 = tcg_temp_new_i32();
+ TCGv_i32 t1_32 = tcg_temp_new_i32();
+ TCGv_i32 tmp = tcg_temp_new_i32();
+
+ tcg_gen_movi_i32(tmp, 0);
+ tcg_gen_extrl_i64_i32(t0_32, t0);
+ tcg_gen_extrl_i64_i32(t1_32, t1);
+ tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
+ tcg_gen_mov_i32(cpu_ZF, cpu_NF);
+ tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
+ tcg_gen_xor_i32(tmp, t0_32, t1_32);
+ tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
+ tcg_gen_extu_i32_i64(dest, cpu_NF);
+
+ tcg_temp_free_i32(tmp);
+ tcg_temp_free_i32(t0_32);
+ tcg_temp_free_i32(t1_32);
+ }
+}
+
+/* dest = T0 - T1; compute C, N, V and Z flags */
+static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
+{
+ if (sf) {
+ /* 64 bit arithmetic */
+ TCGv_i64 result, flag, tmp;
+
+ result = tcg_temp_new_i64();
+ flag = tcg_temp_new_i64();
+ tcg_gen_sub_i64(result, t0, t1);
+
+ gen_set_NZ64(result);
+
+ tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
+ tcg_gen_extrl_i64_i32(cpu_CF, flag);
+
+ tcg_gen_xor_i64(flag, result, t0);
+ tmp = tcg_temp_new_i64();
+ tcg_gen_xor_i64(tmp, t0, t1);
+ tcg_gen_and_i64(flag, flag, tmp);
+ tcg_temp_free_i64(tmp);
+ tcg_gen_extrh_i64_i32(cpu_VF, flag);
+ tcg_gen_mov_i64(dest, result);
+ tcg_temp_free_i64(flag);
+ tcg_temp_free_i64(result);
+ } else {
+ /* 32 bit arithmetic */
+ TCGv_i32 t0_32 = tcg_temp_new_i32();
+ TCGv_i32 t1_32 = tcg_temp_new_i32();
+ TCGv_i32 tmp;
+
+ tcg_gen_extrl_i64_i32(t0_32, t0);
+ tcg_gen_extrl_i64_i32(t1_32, t1);
+ tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
+ tcg_gen_mov_i32(cpu_ZF, cpu_NF);
+ tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
+ tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
+ tmp = tcg_temp_new_i32();
+ tcg_gen_xor_i32(tmp, t0_32, t1_32);
+ tcg_temp_free_i32(t0_32);
+ tcg_temp_free_i32(t1_32);
+ tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
+ tcg_temp_free_i32(tmp);
+ tcg_gen_extu_i32_i64(dest, cpu_NF);
+ }
+}
+
+/* dest = T0 + T1 + CF; do not compute flags. */
+static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
+{
+ TCGv_i64 flag = tcg_temp_new_i64();
+ tcg_gen_extu_i32_i64(flag, cpu_CF);
+ tcg_gen_add_i64(dest, t0, t1);
+ tcg_gen_add_i64(dest, dest, flag);
+ tcg_temp_free_i64(flag);
+
+ if (!sf) {
+ tcg_gen_ext32u_i64(dest, dest);
+ }
+}
+
+/* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
+static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
+{
+ if (sf) {
+ TCGv_i64 result, cf_64, vf_64, tmp;
+ result = tcg_temp_new_i64();
+ cf_64 = tcg_temp_new_i64();
+ vf_64 = tcg_temp_new_i64();
+ tmp = tcg_const_i64(0);
+
+ tcg_gen_extu_i32_i64(cf_64, cpu_CF);
+ tcg_gen_add2_i64(result, cf_64, t0, tmp, cf_64, tmp);
+ tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, tmp);
+ tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
+ gen_set_NZ64(result);
+
+ tcg_gen_xor_i64(vf_64, result, t0);
+ tcg_gen_xor_i64(tmp, t0, t1);
+ tcg_gen_andc_i64(vf_64, vf_64, tmp);
+ tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
+
+ tcg_gen_mov_i64(dest, result);
+
+ tcg_temp_free_i64(tmp);
+ tcg_temp_free_i64(vf_64);
+ tcg_temp_free_i64(cf_64);
+ tcg_temp_free_i64(result);
+ } else {
+ TCGv_i32 t0_32, t1_32, tmp;
+ t0_32 = tcg_temp_new_i32();
+ t1_32 = tcg_temp_new_i32();
+ tmp = tcg_const_i32(0);
+
+ tcg_gen_extrl_i64_i32(t0_32, t0);
+ tcg_gen_extrl_i64_i32(t1_32, t1);
+ tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, cpu_CF, tmp);
+ tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, tmp);
+
+ tcg_gen_mov_i32(cpu_ZF, cpu_NF);
+ tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
+ tcg_gen_xor_i32(tmp, t0_32, t1_32);
+ tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
+ tcg_gen_extu_i32_i64(dest, cpu_NF);
+
+ tcg_temp_free_i32(tmp);
+ tcg_temp_free_i32(t1_32);
+ tcg_temp_free_i32(t0_32);
+ }
+}
+
+/*
+ * Load/Store generators
+ */
+
+/*
+ * Store from GPR register to memory.
+ */
+static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
+ TCGv_i64 tcg_addr, int size, int memidx,
+ bool iss_valid,
+ unsigned int iss_srt,
+ bool iss_sf, bool iss_ar)
+{
+ g_assert(size <= 3);
+ tcg_gen_qemu_st_i64(source, tcg_addr, memidx, s->be_data + size);
+
+ if (iss_valid) {
+ uint32_t syn;
+
+ syn = syn_data_abort_with_iss(0,
+ size,
+ false,
+ iss_srt,
+ iss_sf,
+ iss_ar,
+ 0, 0, 0, 0, 0, false);
+ disas_set_insn_syndrome(s, syn);
+ }
+}
+
+static void do_gpr_st(DisasContext *s, TCGv_i64 source,
+ TCGv_i64 tcg_addr, int size,
+ bool iss_valid,
+ unsigned int iss_srt,
+ bool iss_sf, bool iss_ar)
+{
+ do_gpr_st_memidx(s, source, tcg_addr, size, get_mem_index(s),
+ iss_valid, iss_srt, iss_sf, iss_ar);
+}
+
+/*
+ * Load from memory to GPR register
+ */
+static void do_gpr_ld_memidx(DisasContext *s,
+ TCGv_i64 dest, TCGv_i64 tcg_addr,
+ int size, bool is_signed,
+ bool extend, int memidx,
+ bool iss_valid, unsigned int iss_srt,
+ bool iss_sf, bool iss_ar)
+{
+ TCGMemOp memop = s->be_data + size;
+
+ g_assert(size <= 3);
+
+ if (is_signed) {
+ memop += MO_SIGN;
+ }
+
+ tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
+
+ if (extend && is_signed) {
+ g_assert(size < 3);
+ tcg_gen_ext32u_i64(dest, dest);
+ }
+
+ if (iss_valid) {
+ uint32_t syn;
+
+ syn = syn_data_abort_with_iss(0,
+ size,
+ is_signed,
+ iss_srt,
+ iss_sf,
+ iss_ar,
+ 0, 0, 0, 0, 0, false);
+ disas_set_insn_syndrome(s, syn);
+ }
+}
+
+static void do_gpr_ld(DisasContext *s,
+ TCGv_i64 dest, TCGv_i64 tcg_addr,
+ int size, bool is_signed, bool extend,
+ bool iss_valid, unsigned int iss_srt,
+ bool iss_sf, bool iss_ar)
+{
+ do_gpr_ld_memidx(s, dest, tcg_addr, size, is_signed, extend,
+ get_mem_index(s),
+ iss_valid, iss_srt, iss_sf, iss_ar);
+}
+
+/*
+ * Store from FP register to memory
+ */
+static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, int size)
+{
+ /* This writes the bottom N bits of a 128 bit wide vector to memory */
+ TCGv_i64 tmp = tcg_temp_new_i64();
+ tcg_gen_ld_i64(tmp, cpu_env, fp_reg_offset(s, srcidx, MO_64));
+ if (size < 4) {
+ tcg_gen_qemu_st_i64(tmp, tcg_addr, get_mem_index(s),
+ s->be_data + size);
+ } else {
+ bool be = s->be_data == MO_BE;
+ TCGv_i64 tcg_hiaddr = tcg_temp_new_i64();
+
+ tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
+ tcg_gen_qemu_st_i64(tmp, be ? tcg_hiaddr : tcg_addr, get_mem_index(s),
+ s->be_data | MO_Q);
+ tcg_gen_ld_i64(tmp, cpu_env, fp_reg_hi_offset(s, srcidx));
+ tcg_gen_qemu_st_i64(tmp, be ? tcg_addr : tcg_hiaddr, get_mem_index(s),
+ s->be_data | MO_Q);
+ tcg_temp_free_i64(tcg_hiaddr);
+ }
+
+ tcg_temp_free_i64(tmp);
+}
+
+/*
+ * Load from memory to FP register
+ */
+static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, int size)
+{
+ /* This always zero-extends and writes to a full 128 bit wide vector */
+ TCGv_i64 tmplo = tcg_temp_new_i64();
+ TCGv_i64 tmphi;
+
+ if (size < 4) {
+ TCGMemOp memop = s->be_data + size;
+ tmphi = tcg_const_i64(0);
+ tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), memop);
+ } else {
+ bool be = s->be_data == MO_BE;
+ TCGv_i64 tcg_hiaddr;
+
+ tmphi = tcg_temp_new_i64();
+ tcg_hiaddr = tcg_temp_new_i64();
+
+ tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
+ tcg_gen_qemu_ld_i64(tmplo, be ? tcg_hiaddr : tcg_addr, get_mem_index(s),
+ s->be_data | MO_Q);
+ tcg_gen_qemu_ld_i64(tmphi, be ? tcg_addr : tcg_hiaddr, get_mem_index(s),
+ s->be_data | MO_Q);
+ tcg_temp_free_i64(tcg_hiaddr);
+ }
+
+ tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64));
+ tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx));
+
+ tcg_temp_free_i64(tmplo);
+ tcg_temp_free_i64(tmphi);
+}
+
+/*
+ * Vector load/store helpers.
+ *
+ * The principal difference between this and a FP load is that we don't
+ * zero extend as we are filling a partial chunk of the vector register.
+ * These functions don't support 128 bit loads/stores, which would be
+ * normal load/store operations.
+ *
+ * The _i32 versions are useful when operating on 32 bit quantities
+ * (eg for floating point single or using Neon helper functions).
+ */
+
+/* Get value of an element within a vector register */
+static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
+ int element, TCGMemOp memop)
+{
+ int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
+ switch (memop) {
+ case MO_8:
+ tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off);
+ break;
+ case MO_16:
+ tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off);
+ break;
+ case MO_32:
+ tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off);
+ break;
+ case MO_8|MO_SIGN:
+ tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off);
+ break;
+ case MO_16|MO_SIGN:
+ tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off);
+ break;
+ case MO_32|MO_SIGN:
+ tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off);
+ break;
+ case MO_64:
+ case MO_64|MO_SIGN:
+ tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off);
+ break;
+ default:
+ g_assert_not_reached();
+ }
+}
+
+static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
+ int element, TCGMemOp memop)
+{
+ int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
+ switch (memop) {
+ case MO_8:
+ tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off);
+ break;
+ case MO_16:
+ tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off);
+ break;
+ case MO_8|MO_SIGN:
+ tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off);
+ break;
+ case MO_16|MO_SIGN:
+ tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off);
+ break;
+ case MO_32:
+ case MO_32|MO_SIGN:
+ tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off);
+ break;
+ default:
+ g_assert_not_reached();
+ }
+}
+
+/* Set value of an element within a vector register */
+static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
+ int element, TCGMemOp memop)
+{
+ int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
+ switch (memop) {
+ case MO_8:
+ tcg_gen_st8_i64(tcg_src, cpu_env, vect_off);
+ break;
+ case MO_16:
+ tcg_gen_st16_i64(tcg_src, cpu_env, vect_off);
+ break;
+ case MO_32:
+ tcg_gen_st32_i64(tcg_src, cpu_env, vect_off);
+ break;
+ case MO_64:
+ tcg_gen_st_i64(tcg_src, cpu_env, vect_off);
+ break;
+ default:
+ g_assert_not_reached();
+ }
+}
+
+static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
+ int destidx, int element, TCGMemOp memop)
+{
+ int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
+ switch (memop) {
+ case MO_8:
+ tcg_gen_st8_i32(tcg_src, cpu_env, vect_off);
+ break;
+ case MO_16:
+ tcg_gen_st16_i32(tcg_src, cpu_env, vect_off);
+ break;
+ case MO_32:
+ tcg_gen_st_i32(tcg_src, cpu_env, vect_off);
+ break;
+ default:
+ g_assert_not_reached();
+ }
+}
+
+/* Clear the high 64 bits of a 128 bit vector (in general non-quad
+ * vector ops all need to do this).
+ */
+static void clear_vec_high(DisasContext *s, int rd)
+{
+ TCGv_i64 tcg_zero = tcg_const_i64(0);
+
+ write_vec_element(s, tcg_zero, rd, 1, MO_64);
+ tcg_temp_free_i64(tcg_zero);
+}
+
+/* Store from vector register to memory */
+static void do_vec_st(DisasContext *s, int srcidx, int element,
+ TCGv_i64 tcg_addr, int size)
+{
+ TCGMemOp memop = s->be_data + size;
+ TCGv_i64 tcg_tmp = tcg_temp_new_i64();
+
+ read_vec_element(s, tcg_tmp, srcidx, element, size);
+ tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), memop);
+
+ tcg_temp_free_i64(tcg_tmp);
+}
+
+/* Load from memory to vector register */
+static void do_vec_ld(DisasContext *s, int destidx, int element,
+ TCGv_i64 tcg_addr, int size)
+{
+ TCGMemOp memop = s->be_data + size;
+ TCGv_i64 tcg_tmp = tcg_temp_new_i64();
+
+ tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), memop);
+ write_vec_element(s, tcg_tmp, destidx, element, size);
+
+ tcg_temp_free_i64(tcg_tmp);
+}
+
+/* Check that FP/Neon access is enabled. If it is, return
+ * true. If not, emit code to generate an appropriate exception,
+ * and return false; the caller should not emit any code for
+ * the instruction. Note that this check must happen after all
+ * unallocated-encoding checks (otherwise the syndrome information
+ * for the resulting exception will be incorrect).
+ */
+static inline bool fp_access_check(DisasContext *s)
+{
+ assert(!s->fp_access_checked);
+ s->fp_access_checked = true;
+
+ if (!s->fp_excp_el) {
+ return true;
+ }
+
+ gen_exception_insn(s, 4, EXCP_UDEF, syn_fp_access_trap(1, 0xe, false),
+ s->fp_excp_el);
+ return false;
+}
+
+/*
+ * This utility function is for doing register extension with an
+ * optional shift. You will likely want to pass a temporary for the
+ * destination register. See DecodeRegExtend() in the ARM ARM.
+ */
+static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
+ int option, unsigned int shift)
+{
+ int extsize = extract32(option, 0, 2);
+ bool is_signed = extract32(option, 2, 1);
+
+ if (is_signed) {
+ switch (extsize) {
+ case 0:
+ tcg_gen_ext8s_i64(tcg_out, tcg_in);
+ break;
+ case 1:
+ tcg_gen_ext16s_i64(tcg_out, tcg_in);
+ break;
+ case 2:
+ tcg_gen_ext32s_i64(tcg_out, tcg_in);
+ break;
+ case 3:
+ tcg_gen_mov_i64(tcg_out, tcg_in);
+ break;
+ }
+ } else {
+ switch (extsize) {
+ case 0:
+ tcg_gen_ext8u_i64(tcg_out, tcg_in);
+ break;
+ case 1:
+ tcg_gen_ext16u_i64(tcg_out, tcg_in);
+ break;
+ case 2:
+ tcg_gen_ext32u_i64(tcg_out, tcg_in);
+ break;
+ case 3:
+ tcg_gen_mov_i64(tcg_out, tcg_in);
+ break;
+ }
+ }
+
+ if (shift) {
+ tcg_gen_shli_i64(tcg_out, tcg_out, shift);
+ }
+}
+
+static inline void gen_check_sp_alignment(DisasContext *s)
+{
+ /* The AArch64 architecture mandates that (if enabled via PSTATE
+ * or SCTLR bits) there is a check that SP is 16-aligned on every
+ * SP-relative load or store (with an exception generated if it is not).
+ * In line with general QEMU practice regarding misaligned accesses,
+ * we omit these checks for the sake of guest program performance.
+ * This function is provided as a hook so we can more easily add these
+ * checks in future (possibly as a "favour catching guest program bugs
+ * over speed" user selectable option).
+ */
+}
+
+/*
+ * This provides a simple table based table lookup decoder. It is
+ * intended to be used when the relevant bits for decode are too
+ * awkwardly placed and switch/if based logic would be confusing and
+ * deeply nested. Since it's a linear search through the table, tables
+ * should be kept small.
+ *
+ * It returns the first handler where insn & mask == pattern, or
+ * NULL if there is no match.
+ * The table is terminated by an empty mask (i.e. 0)
+ */
+static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
+ uint32_t insn)
+{
+ const AArch64DecodeTable *tptr = table;
+
+ while (tptr->mask) {
+ if ((insn & tptr->mask) == tptr->pattern) {
+ return tptr->disas_fn;
+ }
+ tptr++;
+ }
+ return NULL;
+}
+
+/*
+ * the instruction disassembly implemented here matches
+ * the instruction encoding classifications in chapter 3 (C3)
+ * of the ARM Architecture Reference Manual (DDI0487A_a)
+ */
+
+/* C3.2.7 Unconditional branch (immediate)
+ * 31 30 26 25 0
+ * +----+-----------+-------------------------------------+
+ * | op | 0 0 1 0 1 | imm26 |
+ * +----+-----------+-------------------------------------+
+ */
+static void disas_uncond_b_imm(DisasContext *s, uint32_t insn)
+{
+ uint64_t addr = s->pc + sextract32(insn, 0, 26) * 4 - 4;
+
+ if (insn & (1U << 31)) {
+ /* C5.6.26 BL Branch with link */
+ tcg_gen_movi_i64(cpu_reg(s, 30), s->pc);
+ }
+
+ /* C5.6.20 B Branch / C5.6.26 BL Branch with link */
+ gen_goto_tb(s, 0, addr);
+}
+
+/* C3.2.1 Compare & branch (immediate)
+ * 31 30 25 24 23 5 4 0
+ * +----+-------------+----+---------------------+--------+
+ * | sf | 0 1 1 0 1 0 | op | imm19 | Rt |
+ * +----+-------------+----+---------------------+--------+
+ */
+static void disas_comp_b_imm(DisasContext *s, uint32_t insn)
+{
+ unsigned int sf, op, rt;
+ uint64_t addr;
+ TCGLabel *label_match;
+ TCGv_i64 tcg_cmp;
+
+ sf = extract32(insn, 31, 1);
+ op = extract32(insn, 24, 1); /* 0: CBZ; 1: CBNZ */
+ rt = extract32(insn, 0, 5);
+ addr = s->pc + sextract32(insn, 5, 19) * 4 - 4;
+
+ tcg_cmp = read_cpu_reg(s, rt, sf);
+ label_match = gen_new_label();
+
+ tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
+ tcg_cmp, 0, label_match);
+
+ gen_goto_tb(s, 0, s->pc);
+ gen_set_label(label_match);
+ gen_goto_tb(s, 1, addr);
+}
+
+/* C3.2.5 Test & branch (immediate)
+ * 31 30 25 24 23 19 18 5 4 0
+ * +----+-------------+----+-------+-------------+------+
+ * | b5 | 0 1 1 0 1 1 | op | b40 | imm14 | Rt |
+ * +----+-------------+----+-------+-------------+------+
+ */
+static void disas_test_b_imm(DisasContext *s, uint32_t insn)
+{
+ unsigned int bit_pos, op, rt;
+ uint64_t addr;
+ TCGLabel *label_match;
+ TCGv_i64 tcg_cmp;
+
+ bit_pos = (extract32(insn, 31, 1) << 5) | extract32(insn, 19, 5);
+ op = extract32(insn, 24, 1); /* 0: TBZ; 1: TBNZ */
+ addr = s->pc + sextract32(insn, 5, 14) * 4 - 4;
+ rt = extract32(insn, 0, 5);
+
+ tcg_cmp = tcg_temp_new_i64();
+ tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, rt), (1ULL << bit_pos));
+ label_match = gen_new_label();
+ tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
+ tcg_cmp, 0, label_match);
+ tcg_temp_free_i64(tcg_cmp);
+ gen_goto_tb(s, 0, s->pc);
+ gen_set_label(label_match);
+ gen_goto_tb(s, 1, addr);
+}
+
+/* C3.2.2 / C5.6.19 Conditional branch (immediate)
+ * 31 25 24 23 5 4 3 0
+ * +---------------+----+---------------------+----+------+
+ * | 0 1 0 1 0 1 0 | o1 | imm19 | o0 | cond |
+ * +---------------+----+---------------------+----+------+
+ */
+static void disas_cond_b_imm(DisasContext *s, uint32_t insn)
+{
+ unsigned int cond;
+ uint64_t addr;
+
+ if ((insn & (1 << 4)) || (insn & (1 << 24))) {
+ unallocated_encoding(s);
+ return;
+ }
+ addr = s->pc + sextract32(insn, 5, 19) * 4 - 4;
+ cond = extract32(insn, 0, 4);
+
+ if (cond < 0x0e) {
+ /* genuinely conditional branches */
+ TCGLabel *label_match = gen_new_label();
+ arm_gen_test_cc(cond, label_match);
+ gen_goto_tb(s, 0, s->pc);
+ gen_set_label(label_match);
+ gen_goto_tb(s, 1, addr);
+ } else {
+ /* 0xe and 0xf are both "always" conditions */
+ gen_goto_tb(s, 0, addr);
+ }
+}
+
+/* C5.6.68 HINT */
+static void handle_hint(DisasContext *s, uint32_t insn,
+ unsigned int op1, unsigned int op2, unsigned int crm)
+{
+ unsigned int selector = crm << 3 | op2;
+
+ if (op1 != 3) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ switch (selector) {
+ case 0: /* NOP */
+ return;
+ case 3: /* WFI */
+ s->is_jmp = DISAS_WFI;
+ return;
+ case 1: /* YIELD */
+ s->is_jmp = DISAS_YIELD;
+ return;
+ case 2: /* WFE */
+ s->is_jmp = DISAS_WFE;
+ return;
+ case 4: /* SEV */
+ case 5: /* SEVL */
+ /* we treat all as NOP at least for now */
+ return;
+ default:
+ /* default specified as NOP equivalent */
+ return;
+ }
+}
+
+static void gen_clrex(DisasContext *s, uint32_t insn)
+{
+ tcg_gen_movi_i64(cpu_exclusive_addr, -1);
+}
+
+/* CLREX, DSB, DMB, ISB */
+static void handle_sync(DisasContext *s, uint32_t insn,
+ unsigned int op1, unsigned int op2, unsigned int crm)
+{
+ TCGBar bar;
+
+ if (op1 != 3) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ switch (op2) {
+ case 2: /* CLREX */
+ gen_clrex(s, insn);
+ return;
+ case 4: /* DSB */
+ case 5: /* DMB */
+ switch (crm & 3) {
+ case 1: /* MBReqTypes_Reads */
+ bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
+ break;
+ case 2: /* MBReqTypes_Writes */
+ bar = TCG_BAR_SC | TCG_MO_ST_ST;
+ break;
+ default: /* MBReqTypes_All */
+ bar = TCG_BAR_SC | TCG_MO_ALL;
+ break;
+ }
+ tcg_gen_mb(bar);
+ return;
+ case 6: /* ISB */
+ /* We need to break the TB after this insn to execute
+ * a self-modified code correctly and also to take
+ * any pending interrupts immediately.
+ */
+ s->is_jmp = DISAS_UPDATE;
+ return;
+ default:
+ unallocated_encoding(s);
+ return;
+ }
+}
+
+/* C5.6.130 MSR (immediate) - move immediate to processor state field */
+static void handle_msr_i(DisasContext *s, uint32_t insn,
+ unsigned int op1, unsigned int op2, unsigned int crm)
+{
+ int op = op1 << 3 | op2;
+ switch (op) {
+ case 0x05: /* SPSel */
+ if (s->current_el == 0) {
+ unallocated_encoding(s);
+ return;
+ }
+ /* fall through */
+ case 0x1e: /* DAIFSet */
+ case 0x1f: /* DAIFClear */
+ {
+ TCGv_i32 tcg_imm = tcg_const_i32(crm);
+ TCGv_i32 tcg_op = tcg_const_i32(op);
+ gen_a64_set_pc_im(s->pc - 4);
+ gen_helper_msr_i_pstate(cpu_env, tcg_op, tcg_imm);
+ tcg_temp_free_i32(tcg_imm);
+ tcg_temp_free_i32(tcg_op);
+ s->is_jmp = DISAS_UPDATE;
+ break;
+ }
+ default:
+ unallocated_encoding(s);
+ return;
+ }
+}
+
+static void gen_get_nzcv(TCGv_i64 tcg_rt)
+{
+ TCGv_i32 tmp = tcg_temp_new_i32();
+ TCGv_i32 nzcv = tcg_temp_new_i32();
+
+ /* build bit 31, N */
+ tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
+ /* build bit 30, Z */
+ tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
+ tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
+ /* build bit 29, C */
+ tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
+ /* build bit 28, V */
+ tcg_gen_shri_i32(tmp, cpu_VF, 31);
+ tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
+ /* generate result */
+ tcg_gen_extu_i32_i64(tcg_rt, nzcv);
+
+ tcg_temp_free_i32(nzcv);
+ tcg_temp_free_i32(tmp);
+}
+
+static void gen_set_nzcv(TCGv_i64 tcg_rt)
+
+{
+ TCGv_i32 nzcv = tcg_temp_new_i32();
+
+ /* take NZCV from R[t] */
+ tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
+
+ /* bit 31, N */
+ tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
+ /* bit 30, Z */
+ tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
+ tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
+ /* bit 29, C */
+ tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
+ tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
+ /* bit 28, V */
+ tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
+ tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
+ tcg_temp_free_i32(nzcv);
+}
+
+/* C5.6.129 MRS - move from system register
+ * C5.6.131 MSR (register) - move to system register
+ * C5.6.204 SYS
+ * C5.6.205 SYSL
+ * These are all essentially the same insn in 'read' and 'write'
+ * versions, with varying op0 fields.
+ */
+static void handle_sys(DisasContext *s, uint32_t insn, bool isread,
+ unsigned int op0, unsigned int op1, unsigned int op2,
+ unsigned int crn, unsigned int crm, unsigned int rt)
+{
+ const ARMCPRegInfo *ri;
+ TCGv_i64 tcg_rt;
+
+ ri = get_arm_cp_reginfo(s->cp_regs,
+ ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
+ crn, crm, op0, op1, op2));
+
+ if (!ri) {
+ /* Unknown register; this might be a guest error or a QEMU
+ * unimplemented feature.
+ */
+ qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
+ "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
+ isread ? "read" : "write", op0, op1, crn, crm, op2);
+ unallocated_encoding(s);
+ return;
+ }
+
+ /* Check access permissions */
+ if (!cp_access_ok(s->current_el, ri, isread)) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ if (ri->accessfn) {
+ /* Emit code to perform further access permissions checks at
+ * runtime; this may result in an exception.
+ */
+ TCGv_ptr tmpptr;
+ TCGv_i32 tcg_syn, tcg_isread;
+ uint32_t syndrome;
+
+ gen_a64_set_pc_im(s->pc - 4);
+ tmpptr = tcg_const_ptr(ri);
+ syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
+ tcg_syn = tcg_const_i32(syndrome);
+ tcg_isread = tcg_const_i32(isread);
+ gen_helper_access_check_cp_reg(cpu_env, tmpptr, tcg_syn, tcg_isread);
+ tcg_temp_free_ptr(tmpptr);
+ tcg_temp_free_i32(tcg_syn);
+ tcg_temp_free_i32(tcg_isread);
+ }
+
+ /* Handle special cases first */
+ switch (ri->type & ~(ARM_CP_FLAG_MASK & ~ARM_CP_SPECIAL)) {
+ case ARM_CP_NOP:
+ return;
+ case ARM_CP_NZCV:
+ tcg_rt = cpu_reg(s, rt);
+ if (isread) {
+ gen_get_nzcv(tcg_rt);
+ } else {
+ gen_set_nzcv(tcg_rt);
+ }
+ return;
+ case ARM_CP_CURRENTEL:
+ /* Reads as current EL value from pstate, which is
+ * guaranteed to be constant by the tb flags.
+ */
+ tcg_rt = cpu_reg(s, rt);
+ tcg_gen_movi_i64(tcg_rt, s->current_el << 2);
+ return;
+ case ARM_CP_DC_ZVA:
+ /* Writes clear the aligned block of memory which rt points into. */
+ tcg_rt = cpu_reg(s, rt);
+ gen_helper_dc_zva(cpu_env, tcg_rt);
+ return;
+ default:
+ break;
+ }
+
+ if ((s->tb->cflags & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
+ gen_io_start();
+ }
+
+ tcg_rt = cpu_reg(s, rt);
+
+ if (isread) {
+ if (ri->type & ARM_CP_CONST) {
+ tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
+ } else if (ri->readfn) {
+ TCGv_ptr tmpptr;
+ tmpptr = tcg_const_ptr(ri);
+ gen_helper_get_cp_reg64(tcg_rt, cpu_env, tmpptr);
+ tcg_temp_free_ptr(tmpptr);
+ } else {
+ tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset);
+ }
+ } else {
+ if (ri->type & ARM_CP_CONST) {
+ /* If not forbidden by access permissions, treat as WI */
+ return;
+ } else if (ri->writefn) {
+ TCGv_ptr tmpptr;
+ tmpptr = tcg_const_ptr(ri);
+ gen_helper_set_cp_reg64(cpu_env, tmpptr, tcg_rt);
+ tcg_temp_free_ptr(tmpptr);
+ } else {
+ tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset);
+ }
+ }
+
+ if ((s->tb->cflags & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
+ /* I/O operations must end the TB here (whether read or write) */
+ gen_io_end();
+ s->is_jmp = DISAS_UPDATE;
+ } else if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
+ /* We default to ending the TB on a coprocessor register write,
+ * but allow this to be suppressed by the register definition
+ * (usually only necessary to work around guest bugs).
+ */
+ s->is_jmp = DISAS_UPDATE;
+ }
+}
+
+/* C3.2.4 System
+ * 31 22 21 20 19 18 16 15 12 11 8 7 5 4 0
+ * +---------------------+---+-----+-----+-------+-------+-----+------+
+ * | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 | CRn | CRm | op2 | Rt |
+ * +---------------------+---+-----+-----+-------+-------+-----+------+
+ */
+static void disas_system(DisasContext *s, uint32_t insn)
+{
+ unsigned int l, op0, op1, crn, crm, op2, rt;
+ l = extract32(insn, 21, 1);
+ op0 = extract32(insn, 19, 2);
+ op1 = extract32(insn, 16, 3);
+ crn = extract32(insn, 12, 4);
+ crm = extract32(insn, 8, 4);
+ op2 = extract32(insn, 5, 3);
+ rt = extract32(insn, 0, 5);
+
+ if (op0 == 0) {
+ if (l || rt != 31) {
+ unallocated_encoding(s);
+ return;
+ }
+ switch (crn) {
+ case 2: /* C5.6.68 HINT */
+ handle_hint(s, insn, op1, op2, crm);
+ break;
+ case 3: /* CLREX, DSB, DMB, ISB */
+ handle_sync(s, insn, op1, op2, crm);
+ break;
+ case 4: /* C5.6.130 MSR (immediate) */
+ handle_msr_i(s, insn, op1, op2, crm);
+ break;
+ default:
+ unallocated_encoding(s);
+ break;
+ }
+ return;
+ }
+ handle_sys(s, insn, l, op0, op1, op2, crn, crm, rt);
+}
+
+/* C3.2.3 Exception generation
+ *
+ * 31 24 23 21 20 5 4 2 1 0
+ * +-----------------+-----+------------------------+-----+----+
+ * | 1 1 0 1 0 1 0 0 | opc | imm16 | op2 | LL |
+ * +-----------------------+------------------------+----------+
+ */
+static void disas_exc(DisasContext *s, uint32_t insn)
+{
+ int opc = extract32(insn, 21, 3);
+ int op2_ll = extract32(insn, 0, 5);
+ int imm16 = extract32(insn, 5, 16);
+ TCGv_i32 tmp;
+
+ switch (opc) {
+ case 0:
+ /* For SVC, HVC and SMC we advance the single-step state
+ * machine before taking the exception. This is architecturally
+ * mandated, to ensure that single-stepping a system call
+ * instruction works properly.
+ */
+ switch (op2_ll) {
+ case 1: /* SVC */
+ gen_ss_advance(s);
+ gen_exception_insn(s, 0, EXCP_SWI, syn_aa64_svc(imm16),
+ default_exception_el(s));
+ break;
+ case 2: /* HVC */
+ if (s->current_el == 0) {
+ unallocated_encoding(s);
+ break;
+ }
+ /* The pre HVC helper handles cases when HVC gets trapped
+ * as an undefined insn by runtime configuration.
+ */
+ gen_a64_set_pc_im(s->pc - 4);
+ gen_helper_pre_hvc(cpu_env);
+ gen_ss_advance(s);
+ gen_exception_insn(s, 0, EXCP_HVC, syn_aa64_hvc(imm16), 2);
+ break;
+ case 3: /* SMC */
+ if (s->current_el == 0) {
+ unallocated_encoding(s);
+ break;
+ }
+ gen_a64_set_pc_im(s->pc - 4);
+ tmp = tcg_const_i32(syn_aa64_smc(imm16));
+ gen_helper_pre_smc(cpu_env, tmp);
+ tcg_temp_free_i32(tmp);
+ gen_ss_advance(s);
+ gen_exception_insn(s, 0, EXCP_SMC, syn_aa64_smc(imm16), 3);
+ break;
+ default:
+ unallocated_encoding(s);
+ break;
+ }
+ break;
+ case 1:
+ if (op2_ll != 0) {
+ unallocated_encoding(s);
+ break;
+ }
+ /* BRK */
+ gen_exception_insn(s, 4, EXCP_BKPT, syn_aa64_bkpt(imm16),
+ default_exception_el(s));
+ break;
+ case 2:
+ if (op2_ll != 0) {
+ unallocated_encoding(s);
+ break;
+ }
+ /* HLT. This has two purposes.
+ * Architecturally, it is an external halting debug instruction.
+ * Since QEMU doesn't implement external debug, we treat this as
+ * it is required for halting debug disabled: it will UNDEF.
+ * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
+ */
+ if (semihosting_enabled() && imm16 == 0xf000) {
+#ifndef CONFIG_USER_ONLY
+ /* In system mode, don't allow userspace access to semihosting,
+ * to provide some semblance of security (and for consistency
+ * with our 32-bit semihosting).
+ */
+ if (s->current_el == 0) {
+ unsupported_encoding(s, insn);
+ break;
+ }
+#endif
+ gen_exception_internal_insn(s, 0, EXCP_SEMIHOST);
+ } else {
+ unsupported_encoding(s, insn);
+ }
+ break;
+ case 5:
+ if (op2_ll < 1 || op2_ll > 3) {
+ unallocated_encoding(s);
+ break;
+ }
+ /* DCPS1, DCPS2, DCPS3 */
+ unsupported_encoding(s, insn);
+ break;
+ default:
+ unallocated_encoding(s);
+ break;
+ }
+}
+
+/* C3.2.7 Unconditional branch (register)
+ * 31 25 24 21 20 16 15 10 9 5 4 0
+ * +---------------+-------+-------+-------+------+-------+
+ * | 1 1 0 1 0 1 1 | opc | op2 | op3 | Rn | op4 |
+ * +---------------+-------+-------+-------+------+-------+
+ */
+static void disas_uncond_b_reg(DisasContext *s, uint32_t insn)
+{
+ unsigned int opc, op2, op3, rn, op4;
+
+ opc = extract32(insn, 21, 4);
+ op2 = extract32(insn, 16, 5);
+ op3 = extract32(insn, 10, 6);
+ rn = extract32(insn, 5, 5);
+ op4 = extract32(insn, 0, 5);
+
+ if (op4 != 0x0 || op3 != 0x0 || op2 != 0x1f) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ switch (opc) {
+ case 0: /* BR */
+ case 1: /* BLR */
+ case 2: /* RET */
+ gen_a64_set_pc(s, cpu_reg(s, rn));
+ /* BLR also needs to load return address */
+ if (opc == 1) {
+ tcg_gen_movi_i64(cpu_reg(s, 30), s->pc);
+ }
+ break;
+ case 4: /* ERET */
+ if (s->current_el == 0) {
+ unallocated_encoding(s);
+ return;
+ }
+ gen_helper_exception_return(cpu_env);
+ s->is_jmp = DISAS_JUMP;
+ return;
+ case 5: /* DRPS */
+ if (rn != 0x1f) {
+ unallocated_encoding(s);
+ } else {
+ unsupported_encoding(s, insn);
+ }
+ return;
+ default:
+ unallocated_encoding(s);
+ return;
+ }
+
+ s->is_jmp = DISAS_JUMP;
+}
+
+/* C3.2 Branches, exception generating and system instructions */
+static void disas_b_exc_sys(DisasContext *s, uint32_t insn)
+{
+ switch (extract32(insn, 25, 7)) {
+ case 0x0a: case 0x0b:
+ case 0x4a: case 0x4b: /* Unconditional branch (immediate) */
+ disas_uncond_b_imm(s, insn);
+ break;
+ case 0x1a: case 0x5a: /* Compare & branch (immediate) */
+ disas_comp_b_imm(s, insn);
+ break;
+ case 0x1b: case 0x5b: /* Test & branch (immediate) */
+ disas_test_b_imm(s, insn);
+ break;
+ case 0x2a: /* Conditional branch (immediate) */
+ disas_cond_b_imm(s, insn);
+ break;
+ case 0x6a: /* Exception generation / System */
+ if (insn & (1 << 24)) {
+ disas_system(s, insn);
+ } else {
+ disas_exc(s, insn);
+ }
+ break;
+ case 0x6b: /* Unconditional branch (register) */
+ disas_uncond_b_reg(s, insn);
+ break;
+ default:
+ unallocated_encoding(s);
+ break;
+ }
+}
+
+/*
+ * Load/Store exclusive instructions are implemented by remembering
+ * the value/address loaded, and seeing if these are the same
+ * when the store is performed. This is not actually the architecturally
+ * mandated semantics, but it works for typical guest code sequences
+ * and avoids having to monitor regular stores.
+ *
+ * The store exclusive uses the atomic cmpxchg primitives to avoid
+ * races in multi-threaded linux-user and when MTTCG softmmu is
+ * enabled.
+ */
+static void gen_load_exclusive(DisasContext *s, int rt, int rt2,
+ TCGv_i64 addr, int size, bool is_pair)
+{
+ TCGv_i64 tmp = tcg_temp_new_i64();
+ TCGMemOp memop = s->be_data + size;
+
+ g_assert(size <= 3);
+ tcg_gen_qemu_ld_i64(tmp, addr, get_mem_index(s), memop);
+
+ if (is_pair) {
+ TCGv_i64 addr2 = tcg_temp_new_i64();
+ TCGv_i64 hitmp = tcg_temp_new_i64();
+
+ g_assert(size >= 2);
+ tcg_gen_addi_i64(addr2, addr, 1 << size);
+ tcg_gen_qemu_ld_i64(hitmp, addr2, get_mem_index(s), memop);
+ tcg_temp_free_i64(addr2);
+ tcg_gen_mov_i64(cpu_exclusive_high, hitmp);
+ tcg_gen_mov_i64(cpu_reg(s, rt2), hitmp);
+ tcg_temp_free_i64(hitmp);
+ }
+
+ tcg_gen_mov_i64(cpu_exclusive_val, tmp);
+ tcg_gen_mov_i64(cpu_reg(s, rt), tmp);
+
+ tcg_temp_free_i64(tmp);
+ tcg_gen_mov_i64(cpu_exclusive_addr, addr);
+}
+
+static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
+ TCGv_i64 inaddr, int size, int is_pair)
+{
+ /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
+ * && (!is_pair || env->exclusive_high == [addr + datasize])) {
+ * [addr] = {Rt};
+ * if (is_pair) {
+ * [addr + datasize] = {Rt2};
+ * }
+ * {Rd} = 0;
+ * } else {
+ * {Rd} = 1;
+ * }
+ * env->exclusive_addr = -1;
+ */
+ TCGLabel *fail_label = gen_new_label();
+ TCGLabel *done_label = gen_new_label();
+ TCGv_i64 addr = tcg_temp_local_new_i64();
+ TCGv_i64 tmp;
+
+ /* Copy input into a local temp so it is not trashed when the
+ * basic block ends at the branch insn.
+ */
+ tcg_gen_mov_i64(addr, inaddr);
+ tcg_gen_brcond_i64(TCG_COND_NE, addr, cpu_exclusive_addr, fail_label);
+
+ tmp = tcg_temp_new_i64();
+ if (is_pair) {
+ if (size == 2) {
+ TCGv_i64 val = tcg_temp_new_i64();
+ tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
+ tcg_gen_concat32_i64(val, cpu_exclusive_val, cpu_exclusive_high);
+ tcg_gen_atomic_cmpxchg_i64(tmp, addr, val, tmp,
+ get_mem_index(s),
+ size | MO_ALIGN | s->be_data);
+ tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, val);
+ tcg_temp_free_i64(val);
+ } else if (s->be_data == MO_LE) {
+ gen_helper_paired_cmpxchg64_le(tmp, cpu_env, addr, cpu_reg(s, rt),
+ cpu_reg(s, rt2));
+ } else {
+ gen_helper_paired_cmpxchg64_be(tmp, cpu_env, addr, cpu_reg(s, rt),
+ cpu_reg(s, rt2));
+ }
+ } else {
+ TCGv_i64 val = cpu_reg(s, rt);
+ tcg_gen_atomic_cmpxchg_i64(tmp, addr, cpu_exclusive_val, val,
+ get_mem_index(s),
+ size | MO_ALIGN | s->be_data);
+ tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
+ }
+
+ tcg_temp_free_i64(addr);
+
+ tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
+ tcg_temp_free_i64(tmp);
+ tcg_gen_br(done_label);
+
+ gen_set_label(fail_label);
+ tcg_gen_movi_i64(cpu_reg(s, rd), 1);
+ gen_set_label(done_label);
+ tcg_gen_movi_i64(cpu_exclusive_addr, -1);
+}
+
+/* Update the Sixty-Four bit (SF) registersize. This logic is derived
+ * from the ARMv8 specs for LDR (Shared decode for all encodings).
+ */
+static bool disas_ldst_compute_iss_sf(int size, bool is_signed, int opc)
+{
+ int opc0 = extract32(opc, 0, 1);
+ int regsize;
+
+ if (is_signed) {
+ regsize = opc0 ? 32 : 64;
+ } else {
+ regsize = size == 3 ? 64 : 32;
+ }
+ return regsize == 64;
+}
+
+/* C3.3.6 Load/store exclusive
+ *
+ * 31 30 29 24 23 22 21 20 16 15 14 10 9 5 4 0
+ * +-----+-------------+----+---+----+------+----+-------+------+------+
+ * | sz | 0 0 1 0 0 0 | o2 | L | o1 | Rs | o0 | Rt2 | Rn | Rt |
+ * +-----+-------------+----+---+----+------+----+-------+------+------+
+ *
+ * sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit
+ * L: 0 -> store, 1 -> load
+ * o2: 0 -> exclusive, 1 -> not
+ * o1: 0 -> single register, 1 -> register pair
+ * o0: 1 -> load-acquire/store-release, 0 -> not
+ */
+static void disas_ldst_excl(DisasContext *s, uint32_t insn)
+{
+ int rt = extract32(insn, 0, 5);
+ int rn = extract32(insn, 5, 5);
+ int rt2 = extract32(insn, 10, 5);
+ int is_lasr = extract32(insn, 15, 1);
+ int rs = extract32(insn, 16, 5);
+ int is_pair = extract32(insn, 21, 1);
+ int is_store = !extract32(insn, 22, 1);
+ int is_excl = !extract32(insn, 23, 1);
+ int size = extract32(insn, 30, 2);
+ TCGv_i64 tcg_addr;
+
+ if ((!is_excl && !is_pair && !is_lasr) ||
+ (!is_excl && is_pair) ||
+ (is_pair && size < 2)) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ if (rn == 31) {
+ gen_check_sp_alignment(s);
+ }
+ tcg_addr = read_cpu_reg_sp(s, rn, 1);
+
+ /* Note that since TCG is single threaded load-acquire/store-release
+ * semantics require no extra if (is_lasr) { ... } handling.
+ */
+
+ if (is_excl) {
+ if (!is_store) {
+ s->is_ldex = true;
+ gen_load_exclusive(s, rt, rt2, tcg_addr, size, is_pair);
+ if (is_lasr) {
+ tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
+ }
+ } else {
+ if (is_lasr) {
+ tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
+ }
+ gen_store_exclusive(s, rs, rt, rt2, tcg_addr, size, is_pair);
+ }
+ } else {
+ TCGv_i64 tcg_rt = cpu_reg(s, rt);
+ bool iss_sf = disas_ldst_compute_iss_sf(size, false, 0);
+
+ /* Generate ISS for non-exclusive accesses including LASR. */
+ if (is_store) {
+ if (is_lasr) {
+ tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
+ }
+ do_gpr_st(s, tcg_rt, tcg_addr, size,
+ true, rt, iss_sf, is_lasr);
+ } else {
+ do_gpr_ld(s, tcg_rt, tcg_addr, size, false, false,
+ true, rt, iss_sf, is_lasr);
+ if (is_lasr) {
+ tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
+ }
+ }
+ }
+}
+
+/*
+ * C3.3.5 Load register (literal)
+ *
+ * 31 30 29 27 26 25 24 23 5 4 0
+ * +-----+-------+---+-----+-------------------+-------+
+ * | opc | 0 1 1 | V | 0 0 | imm19 | Rt |
+ * +-----+-------+---+-----+-------------------+-------+
+ *
+ * V: 1 -> vector (simd/fp)
+ * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit,
+ * 10-> 32 bit signed, 11 -> prefetch
+ * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated)
+ */
+static void disas_ld_lit(DisasContext *s, uint32_t insn)
+{
+ int rt = extract32(insn, 0, 5);
+ int64_t imm = sextract32(insn, 5, 19) << 2;
+ bool is_vector = extract32(insn, 26, 1);
+ int opc = extract32(insn, 30, 2);
+ bool is_signed = false;
+ int size = 2;
+ TCGv_i64 tcg_rt, tcg_addr;
+
+ if (is_vector) {
+ if (opc == 3) {
+ unallocated_encoding(s);
+ return;
+ }
+ size = 2 + opc;
+ if (!fp_access_check(s)) {
+ return;
+ }
+ } else {
+ if (opc == 3) {
+ /* PRFM (literal) : prefetch */
+ return;
+ }
+ size = 2 + extract32(opc, 0, 1);
+ is_signed = extract32(opc, 1, 1);
+ }
+
+ tcg_rt = cpu_reg(s, rt);
+
+ tcg_addr = tcg_const_i64((s->pc - 4) + imm);
+ if (is_vector) {
+ do_fp_ld(s, rt, tcg_addr, size);
+ } else {
+ /* Only unsigned 32bit loads target 32bit registers. */
+ bool iss_sf = opc != 0;
+
+ do_gpr_ld(s, tcg_rt, tcg_addr, size, is_signed, false,
+ true, rt, iss_sf, false);
+ }
+ tcg_temp_free_i64(tcg_addr);
+}
+
+/*
+ * C5.6.80 LDNP (Load Pair - non-temporal hint)
+ * C5.6.81 LDP (Load Pair - non vector)
+ * C5.6.82 LDPSW (Load Pair Signed Word - non vector)
+ * C5.6.176 STNP (Store Pair - non-temporal hint)
+ * C5.6.177 STP (Store Pair - non vector)
+ * C6.3.165 LDNP (Load Pair of SIMD&FP - non-temporal hint)
+ * C6.3.165 LDP (Load Pair of SIMD&FP)
+ * C6.3.284 STNP (Store Pair of SIMD&FP - non-temporal hint)
+ * C6.3.284 STP (Store Pair of SIMD&FP)
+ *
+ * 31 30 29 27 26 25 24 23 22 21 15 14 10 9 5 4 0
+ * +-----+-------+---+---+-------+---+-----------------------------+
+ * | opc | 1 0 1 | V | 0 | index | L | imm7 | Rt2 | Rn | Rt |
+ * +-----+-------+---+---+-------+---+-------+-------+------+------+
+ *
+ * opc: LDP/STP/LDNP/STNP 00 -> 32 bit, 10 -> 64 bit
+ * LDPSW 01
+ * LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit
+ * V: 0 -> GPR, 1 -> Vector
+ * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index,
+ * 10 -> signed offset, 11 -> pre-index
+ * L: 0 -> Store 1 -> Load
+ *
+ * Rt, Rt2 = GPR or SIMD registers to be stored
+ * Rn = general purpose register containing address
+ * imm7 = signed offset (multiple of 4 or 8 depending on size)
+ */
+static void disas_ldst_pair(DisasContext *s, uint32_t insn)
+{
+ int rt = extract32(insn, 0, 5);
+ int rn = extract32(insn, 5, 5);
+ int rt2 = extract32(insn, 10, 5);
+ uint64_t offset = sextract64(insn, 15, 7);
+ int index = extract32(insn, 23, 2);
+ bool is_vector = extract32(insn, 26, 1);
+ bool is_load = extract32(insn, 22, 1);
+ int opc = extract32(insn, 30, 2);
+
+ bool is_signed = false;
+ bool postindex = false;
+ bool wback = false;
+
+ TCGv_i64 tcg_addr; /* calculated address */
+ int size;
+
+ if (opc == 3) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ if (is_vector) {
+ size = 2 + opc;
+ } else {
+ size = 2 + extract32(opc, 1, 1);
+ is_signed = extract32(opc, 0, 1);
+ if (!is_load && is_signed) {
+ unallocated_encoding(s);
+ return;
+ }
+ }
+
+ switch (index) {
+ case 1: /* post-index */
+ postindex = true;
+ wback = true;
+ break;
+ case 0:
+ /* signed offset with "non-temporal" hint. Since we don't emulate
+ * caches we don't care about hints to the cache system about
+ * data access patterns, and handle this identically to plain
+ * signed offset.
+ */
+ if (is_signed) {
+ /* There is no non-temporal-hint version of LDPSW */
+ unallocated_encoding(s);
+ return;
+ }
+ postindex = false;
+ break;
+ case 2: /* signed offset, rn not updated */
+ postindex = false;
+ break;
+ case 3: /* pre-index */
+ postindex = false;
+ wback = true;
+ break;
+ }
+
+ if (is_vector && !fp_access_check(s)) {
+ return;
+ }
+
+ offset <<= size;
+
+ if (rn == 31) {
+ gen_check_sp_alignment(s);
+ }
+
+ tcg_addr = read_cpu_reg_sp(s, rn, 1);
+
+ if (!postindex) {
+ tcg_gen_addi_i64(tcg_addr, tcg_addr, offset);
+ }
+
+ if (is_vector) {
+ if (is_load) {
+ do_fp_ld(s, rt, tcg_addr, size);
+ } else {
+ do_fp_st(s, rt, tcg_addr, size);
+ }
+ } else {
+ TCGv_i64 tcg_rt = cpu_reg(s, rt);
+ if (is_load) {
+ do_gpr_ld(s, tcg_rt, tcg_addr, size, is_signed, false,
+ false, 0, false, false);
+ } else {
+ do_gpr_st(s, tcg_rt, tcg_addr, size,
+ false, 0, false, false);
+ }
+ }
+ tcg_gen_addi_i64(tcg_addr, tcg_addr, 1 << size);
+ if (is_vector) {
+ if (is_load) {
+ do_fp_ld(s, rt2, tcg_addr, size);
+ } else {
+ do_fp_st(s, rt2, tcg_addr, size);
+ }
+ } else {
+ TCGv_i64 tcg_rt2 = cpu_reg(s, rt2);
+ if (is_load) {
+ do_gpr_ld(s, tcg_rt2, tcg_addr, size, is_signed, false,
+ false, 0, false, false);
+ } else {
+ do_gpr_st(s, tcg_rt2, tcg_addr, size,
+ false, 0, false, false);
+ }
+ }
+
+ if (wback) {
+ if (postindex) {
+ tcg_gen_addi_i64(tcg_addr, tcg_addr, offset - (1 << size));
+ } else {
+ tcg_gen_subi_i64(tcg_addr, tcg_addr, 1 << size);
+ }
+ tcg_gen_mov_i64(cpu_reg_sp(s, rn), tcg_addr);
+ }
+}
+
+/*
+ * C3.3.8 Load/store (immediate post-indexed)
+ * C3.3.9 Load/store (immediate pre-indexed)
+ * C3.3.12 Load/store (unscaled immediate)
+ *
+ * 31 30 29 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0
+ * +----+-------+---+-----+-----+---+--------+-----+------+------+
+ * |size| 1 1 1 | V | 0 0 | opc | 0 | imm9 | idx | Rn | Rt |
+ * +----+-------+---+-----+-----+---+--------+-----+------+------+
+ *
+ * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback)
+ 10 -> unprivileged
+ * V = 0 -> non-vector
+ * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit
+ * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
+ */
+static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn,
+ int opc,
+ int size,
+ int rt,
+ bool is_vector)
+{
+ int rn = extract32(insn, 5, 5);
+ int imm9 = sextract32(insn, 12, 9);
+ int idx = extract32(insn, 10, 2);
+ bool is_signed = false;
+ bool is_store = false;
+ bool is_extended = false;
+ bool is_unpriv = (idx == 2);
+ bool iss_valid = !is_vector;
+ bool post_index;
+ bool writeback;
+
+ TCGv_i64 tcg_addr;
+
+ if (is_vector) {
+ size |= (opc & 2) << 1;
+ if (size > 4 || is_unpriv) {
+ unallocated_encoding(s);
+ return;
+ }
+ is_store = ((opc & 1) == 0);
+ if (!fp_access_check(s)) {
+ return;
+ }
+ } else {
+ if (size == 3 && opc == 2) {
+ /* PRFM - prefetch */
+ if (is_unpriv) {
+ unallocated_encoding(s);
+ return;
+ }
+ return;
+ }
+ if (opc == 3 && size > 1) {
+ unallocated_encoding(s);
+ return;
+ }
+ is_store = (opc == 0);
+ is_signed = extract32(opc, 1, 1);
+ is_extended = (size < 3) && extract32(opc, 0, 1);
+ }
+
+ switch (idx) {
+ case 0:
+ case 2:
+ post_index = false;
+ writeback = false;
+ break;
+ case 1:
+ post_index = true;
+ writeback = true;
+ break;
+ case 3:
+ post_index = false;
+ writeback = true;
+ break;
+ }
+
+ if (rn == 31) {
+ gen_check_sp_alignment(s);
+ }
+ tcg_addr = read_cpu_reg_sp(s, rn, 1);
+
+ if (!post_index) {
+ tcg_gen_addi_i64(tcg_addr, tcg_addr, imm9);
+ }
+
+ if (is_vector) {
+ if (is_store) {
+ do_fp_st(s, rt, tcg_addr, size);
+ } else {
+ do_fp_ld(s, rt, tcg_addr, size);
+ }
+ } else {
+ TCGv_i64 tcg_rt = cpu_reg(s, rt);
+ int memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s);
+ bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
+
+ if (is_store) {
+ do_gpr_st_memidx(s, tcg_rt, tcg_addr, size, memidx,
+ iss_valid, rt, iss_sf, false);
+ } else {
+ do_gpr_ld_memidx(s, tcg_rt, tcg_addr, size,
+ is_signed, is_extended, memidx,
+ iss_valid, rt, iss_sf, false);
+ }
+ }
+
+ if (writeback) {
+ TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
+ if (post_index) {
+ tcg_gen_addi_i64(tcg_addr, tcg_addr, imm9);
+ }
+ tcg_gen_mov_i64(tcg_rn, tcg_addr);
+ }
+}
+
+/*
+ * C3.3.10 Load/store (register offset)
+ *
+ * 31 30 29 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0
+ * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
+ * |size| 1 1 1 | V | 0 0 | opc | 1 | Rm | opt | S| 1 0 | Rn | Rt |
+ * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
+ *
+ * For non-vector:
+ * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
+ * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
+ * For vector:
+ * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
+ * opc<0>: 0 -> store, 1 -> load
+ * V: 1 -> vector/simd
+ * opt: extend encoding (see DecodeRegExtend)
+ * S: if S=1 then scale (essentially index by sizeof(size))
+ * Rt: register to transfer into/out of
+ * Rn: address register or SP for base
+ * Rm: offset register or ZR for offset
+ */
+static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn,
+ int opc,
+ int size,
+ int rt,
+ bool is_vector)
+{
+ int rn = extract32(insn, 5, 5);
+ int shift = extract32(insn, 12, 1);
+ int rm = extract32(insn, 16, 5);
+ int opt = extract32(insn, 13, 3);
+ bool is_signed = false;
+ bool is_store = false;
+ bool is_extended = false;
+
+ TCGv_i64 tcg_rm;
+ TCGv_i64 tcg_addr;
+
+ if (extract32(opt, 1, 1) == 0) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ if (is_vector) {
+ size |= (opc & 2) << 1;
+ if (size > 4) {
+ unallocated_encoding(s);
+ return;
+ }
+ is_store = !extract32(opc, 0, 1);
+ if (!fp_access_check(s)) {
+ return;
+ }
+ } else {
+ if (size == 3 && opc == 2) {
+ /* PRFM - prefetch */
+ return;
+ }
+ if (opc == 3 && size > 1) {
+ unallocated_encoding(s);
+ return;
+ }
+ is_store = (opc == 0);
+ is_signed = extract32(opc, 1, 1);
+ is_extended = (size < 3) && extract32(opc, 0, 1);
+ }
+
+ if (rn == 31) {
+ gen_check_sp_alignment(s);
+ }
+ tcg_addr = read_cpu_reg_sp(s, rn, 1);
+
+ tcg_rm = read_cpu_reg(s, rm, 1);
+ ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0);
+
+ tcg_gen_add_i64(tcg_addr, tcg_addr, tcg_rm);
+
+ if (is_vector) {
+ if (is_store) {
+ do_fp_st(s, rt, tcg_addr, size);
+ } else {
+ do_fp_ld(s, rt, tcg_addr, size);
+ }
+ } else {
+ TCGv_i64 tcg_rt = cpu_reg(s, rt);
+ bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
+ if (is_store) {
+ do_gpr_st(s, tcg_rt, tcg_addr, size,
+ true, rt, iss_sf, false);
+ } else {
+ do_gpr_ld(s, tcg_rt, tcg_addr, size,
+ is_signed, is_extended,
+ true, rt, iss_sf, false);
+ }
+ }
+}
+
+/*
+ * C3.3.13 Load/store (unsigned immediate)
+ *
+ * 31 30 29 27 26 25 24 23 22 21 10 9 5
+ * +----+-------+---+-----+-----+------------+-------+------+
+ * |size| 1 1 1 | V | 0 1 | opc | imm12 | Rn | Rt |
+ * +----+-------+---+-----+-----+------------+-------+------+
+ *
+ * For non-vector:
+ * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
+ * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
+ * For vector:
+ * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
+ * opc<0>: 0 -> store, 1 -> load
+ * Rn: base address register (inc SP)
+ * Rt: target register
+ */
+static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn,
+ int opc,
+ int size,
+ int rt,
+ bool is_vector)
+{
+ int rn = extract32(insn, 5, 5);
+ unsigned int imm12 = extract32(insn, 10, 12);
+ unsigned int offset;
+
+ TCGv_i64 tcg_addr;
+
+ bool is_store;
+ bool is_signed = false;
+ bool is_extended = false;
+
+ if (is_vector) {
+ size |= (opc & 2) << 1;
+ if (size > 4) {
+ unallocated_encoding(s);
+ return;
+ }
+ is_store = !extract32(opc, 0, 1);
+ if (!fp_access_check(s)) {
+ return;
+ }
+ } else {
+ if (size == 3 && opc == 2) {
+ /* PRFM - prefetch */
+ return;
+ }
+ if (opc == 3 && size > 1) {
+ unallocated_encoding(s);
+ return;
+ }
+ is_store = (opc == 0);
+ is_signed = extract32(opc, 1, 1);
+ is_extended = (size < 3) && extract32(opc, 0, 1);
+ }
+
+ if (rn == 31) {
+ gen_check_sp_alignment(s);
+ }
+ tcg_addr = read_cpu_reg_sp(s, rn, 1);
+ offset = imm12 << size;
+ tcg_gen_addi_i64(tcg_addr, tcg_addr, offset);
+
+ if (is_vector) {
+ if (is_store) {
+ do_fp_st(s, rt, tcg_addr, size);
+ } else {
+ do_fp_ld(s, rt, tcg_addr, size);
+ }
+ } else {
+ TCGv_i64 tcg_rt = cpu_reg(s, rt);
+ bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
+ if (is_store) {
+ do_gpr_st(s, tcg_rt, tcg_addr, size,
+ true, rt, iss_sf, false);
+ } else {
+ do_gpr_ld(s, tcg_rt, tcg_addr, size, is_signed, is_extended,
+ true, rt, iss_sf, false);
+ }
+ }
+}
+
+/* Load/store register (all forms) */
+static void disas_ldst_reg(DisasContext *s, uint32_t insn)
+{
+ int rt = extract32(insn, 0, 5);
+ int opc = extract32(insn, 22, 2);
+ bool is_vector = extract32(insn, 26, 1);
+ int size = extract32(insn, 30, 2);
+
+ switch (extract32(insn, 24, 2)) {
+ case 0:
+ if (extract32(insn, 21, 1) == 1 && extract32(insn, 10, 2) == 2) {
+ disas_ldst_reg_roffset(s, insn, opc, size, rt, is_vector);
+ } else {
+ /* Load/store register (unscaled immediate)
+ * Load/store immediate pre/post-indexed
+ * Load/store register unprivileged
+ */
+ disas_ldst_reg_imm9(s, insn, opc, size, rt, is_vector);
+ }
+ break;
+ case 1:
+ disas_ldst_reg_unsigned_imm(s, insn, opc, size, rt, is_vector);
+ break;
+ default:
+ unallocated_encoding(s);
+ break;
+ }
+}
+
+/* C3.3.1 AdvSIMD load/store multiple structures
+ *
+ * 31 30 29 23 22 21 16 15 12 11 10 9 5 4 0
+ * +---+---+---------------+---+-------------+--------+------+------+------+
+ * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size | Rn | Rt |
+ * +---+---+---------------+---+-------------+--------+------+------+------+
+ *
+ * C3.3.2 AdvSIMD load/store multiple structures (post-indexed)
+ *
+ * 31 30 29 23 22 21 20 16 15 12 11 10 9 5 4 0
+ * +---+---+---------------+---+---+---------+--------+------+------+------+
+ * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 | Rm | opcode | size | Rn | Rt |
+ * +---+---+---------------+---+---+---------+--------+------+------+------+
+ *
+ * Rt: first (or only) SIMD&FP register to be transferred
+ * Rn: base address or SP
+ * Rm (post-index only): post-index register (when !31) or size dependent #imm
+ */
+static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn)
+{
+ int rt = extract32(insn, 0, 5);
+ int rn = extract32(insn, 5, 5);
+ int size = extract32(insn, 10, 2);
+ int opcode = extract32(insn, 12, 4);
+ bool is_store = !extract32(insn, 22, 1);
+ bool is_postidx = extract32(insn, 23, 1);
+ bool is_q = extract32(insn, 30, 1);
+ TCGv_i64 tcg_addr, tcg_rn;
+
+ int ebytes = 1 << size;
+ int elements = (is_q ? 128 : 64) / (8 << size);
+ int rpt; /* num iterations */
+ int selem; /* structure elements */
+ int r;
+
+ if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ /* From the shared decode logic */
+ switch (opcode) {
+ case 0x0:
+ rpt = 1;
+ selem = 4;
+ break;
+ case 0x2:
+ rpt = 4;
+ selem = 1;
+ break;
+ case 0x4:
+ rpt = 1;
+ selem = 3;
+ break;
+ case 0x6:
+ rpt = 3;
+ selem = 1;
+ break;
+ case 0x7:
+ rpt = 1;
+ selem = 1;
+ break;
+ case 0x8:
+ rpt = 1;
+ selem = 2;
+ break;
+ case 0xa:
+ rpt = 2;
+ selem = 1;
+ break;
+ default:
+ unallocated_encoding(s);
+ return;
+ }
+
+ if (size == 3 && !is_q && selem != 1) {
+ /* reserved */
+ unallocated_encoding(s);
+ return;
+ }
+
+ if (!fp_access_check(s)) {
+ return;
+ }
+
+ if (rn == 31) {
+ gen_check_sp_alignment(s);
+ }
+
+ tcg_rn = cpu_reg_sp(s, rn);
+ tcg_addr = tcg_temp_new_i64();
+ tcg_gen_mov_i64(tcg_addr, tcg_rn);
+
+ for (r = 0; r < rpt; r++) {
+ int e;
+ for (e = 0; e < elements; e++) {
+ int tt = (rt + r) % 32;
+ int xs;
+ for (xs = 0; xs < selem; xs++) {
+ if (is_store) {
+ do_vec_st(s, tt, e, tcg_addr, size);
+ } else {
+ do_vec_ld(s, tt, e, tcg_addr, size);
+
+ /* For non-quad operations, setting a slice of the low
+ * 64 bits of the register clears the high 64 bits (in
+ * the ARM ARM pseudocode this is implicit in the fact
+ * that 'rval' is a 64 bit wide variable). We optimize
+ * by noticing that we only need to do this the first
+ * time we touch a register.
+ */
+ if (!is_q && e == 0 && (r == 0 || xs == selem - 1)) {
+ clear_vec_high(s, tt);
+ }
+ }
+ tcg_gen_addi_i64(tcg_addr, tcg_addr, ebytes);
+ tt = (tt + 1) % 32;
+ }
+ }
+ }
+
+ if (is_postidx) {
+ int rm = extract32(insn, 16, 5);
+ if (rm == 31) {
+ tcg_gen_mov_i64(tcg_rn, tcg_addr);
+ } else {
+ tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
+ }
+ }
+ tcg_temp_free_i64(tcg_addr);
+}
+
+/* C3.3.3 AdvSIMD load/store single structure
+ *
+ * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
+ * +---+---+---------------+-----+-----------+-----+---+------+------+------+
+ * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size | Rn | Rt |
+ * +---+---+---------------+-----+-----------+-----+---+------+------+------+
+ *
+ * C3.3.4 AdvSIMD load/store single structure (post-indexed)
+ *
+ * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
+ * +---+---+---------------+-----+-----------+-----+---+------+------+------+
+ * | 0 | Q | 0 0 1 1 0 1 1 | L R | Rm | opc | S | size | Rn | Rt |
+ * +---+---+---------------+-----+-----------+-----+---+------+------+------+
+ *
+ * Rt: first (or only) SIMD&FP register to be transferred
+ * Rn: base address or SP
+ * Rm (post-index only): post-index register (when !31) or size dependent #imm
+ * index = encoded in Q:S:size dependent on size
+ *
+ * lane_size = encoded in R, opc
+ * transfer width = encoded in opc, S, size
+ */
+static void disas_ldst_single_struct(DisasContext *s, uint32_t insn)
+{
+ int rt = extract32(insn, 0, 5);
+ int rn = extract32(insn, 5, 5);
+ int size = extract32(insn, 10, 2);
+ int S = extract32(insn, 12, 1);
+ int opc = extract32(insn, 13, 3);
+ int R = extract32(insn, 21, 1);
+ int is_load = extract32(insn, 22, 1);
+ int is_postidx = extract32(insn, 23, 1);
+ int is_q = extract32(insn, 30, 1);
+
+ int scale = extract32(opc, 1, 2);
+ int selem = (extract32(opc, 0, 1) << 1 | R) + 1;
+ bool replicate = false;
+ int index = is_q << 3 | S << 2 | size;
+ int ebytes, xs;
+ TCGv_i64 tcg_addr, tcg_rn;
+
+ switch (scale) {
+ case 3:
+ if (!is_load || S) {
+ unallocated_encoding(s);
+ return;
+ }
+ scale = size;
+ replicate = true;
+ break;
+ case 0:
+ break;
+ case 1:
+ if (extract32(size, 0, 1)) {
+ unallocated_encoding(s);
+ return;
+ }
+ index >>= 1;
+ break;
+ case 2:
+ if (extract32(size, 1, 1)) {
+ unallocated_encoding(s);
+ return;
+ }
+ if (!extract32(size, 0, 1)) {
+ index >>= 2;
+ } else {
+ if (S) {
+ unallocated_encoding(s);
+ return;
+ }
+ index >>= 3;
+ scale = 3;
+ }
+ break;
+ default:
+ g_assert_not_reached();
+ }
+
+ if (!fp_access_check(s)) {
+ return;
+ }
+
+ ebytes = 1 << scale;
+
+ if (rn == 31) {
+ gen_check_sp_alignment(s);
+ }
+
+ tcg_rn = cpu_reg_sp(s, rn);
+ tcg_addr = tcg_temp_new_i64();
+ tcg_gen_mov_i64(tcg_addr, tcg_rn);
+
+ for (xs = 0; xs < selem; xs++) {
+ if (replicate) {
+ /* Load and replicate to all elements */
+ uint64_t mulconst;
+ TCGv_i64 tcg_tmp = tcg_temp_new_i64();
+
+ tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr,
+ get_mem_index(s), s->be_data + scale);
+ switch (scale) {
+ case 0:
+ mulconst = 0x0101010101010101ULL;
+ break;
+ case 1:
+ mulconst = 0x0001000100010001ULL;
+ break;
+ case 2:
+ mulconst = 0x0000000100000001ULL;
+ break;
+ case 3:
+ mulconst = 0;
+ break;
+ default:
+ g_assert_not_reached();
+ }
+ if (mulconst) {
+ tcg_gen_muli_i64(tcg_tmp, tcg_tmp, mulconst);
+ }
+ write_vec_element(s, tcg_tmp, rt, 0, MO_64);
+ if (is_q) {
+ write_vec_element(s, tcg_tmp, rt, 1, MO_64);
+ } else {
+ clear_vec_high(s, rt);
+ }
+ tcg_temp_free_i64(tcg_tmp);
+ } else {
+ /* Load/store one element per register */
+ if (is_load) {
+ do_vec_ld(s, rt, index, tcg_addr, s->be_data + scale);
+ } else {
+ do_vec_st(s, rt, index, tcg_addr, s->be_data + scale);
+ }
+ }
+ tcg_gen_addi_i64(tcg_addr, tcg_addr, ebytes);
+ rt = (rt + 1) % 32;
+ }
+
+ if (is_postidx) {
+ int rm = extract32(insn, 16, 5);
+ if (rm == 31) {
+ tcg_gen_mov_i64(tcg_rn, tcg_addr);
+ } else {
+ tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
+ }
+ }
+ tcg_temp_free_i64(tcg_addr);
+}
+
+/* C3.3 Loads and stores */
+static void disas_ldst(DisasContext *s, uint32_t insn)
+{
+ switch (extract32(insn, 24, 6)) {
+ case 0x08: /* Load/store exclusive */
+ disas_ldst_excl(s, insn);
+ break;
+ case 0x18: case 0x1c: /* Load register (literal) */
+ disas_ld_lit(s, insn);
+ break;
+ case 0x28: case 0x29:
+ case 0x2c: case 0x2d: /* Load/store pair (all forms) */
+ disas_ldst_pair(s, insn);
+ break;
+ case 0x38: case 0x39:
+ case 0x3c: case 0x3d: /* Load/store register (all forms) */
+ disas_ldst_reg(s, insn);
+ break;
+ case 0x0c: /* AdvSIMD load/store multiple structures */
+ disas_ldst_multiple_struct(s, insn);
+ break;
+ case 0x0d: /* AdvSIMD load/store single structure */
+ disas_ldst_single_struct(s, insn);
+ break;
+ default:
+ unallocated_encoding(s);
+ break;
+ }
+}
+
+/* C3.4.6 PC-rel. addressing
+ * 31 30 29 28 24 23 5 4 0
+ * +----+-------+-----------+-------------------+------+
+ * | op | immlo | 1 0 0 0 0 | immhi | Rd |
+ * +----+-------+-----------+-------------------+------+
+ */
+static void disas_pc_rel_adr(DisasContext *s, uint32_t insn)
+{
+ unsigned int page, rd;
+ uint64_t base;
+ uint64_t offset;
+
+ page = extract32(insn, 31, 1);
+ /* SignExtend(immhi:immlo) -> offset */
+ offset = sextract64(insn, 5, 19);
+ offset = offset << 2 | extract32(insn, 29, 2);
+ rd = extract32(insn, 0, 5);
+ base = s->pc - 4;
+
+ if (page) {
+ /* ADRP (page based) */
+ base &= ~0xfff;
+ offset <<= 12;
+ }
+
+ tcg_gen_movi_i64(cpu_reg(s, rd), base + offset);
+}
+
+/*
+ * C3.4.1 Add/subtract (immediate)
+ *
+ * 31 30 29 28 24 23 22 21 10 9 5 4 0
+ * +--+--+--+-----------+-----+-------------+-----+-----+
+ * |sf|op| S| 1 0 0 0 1 |shift| imm12 | Rn | Rd |
+ * +--+--+--+-----------+-----+-------------+-----+-----+
+ *
+ * sf: 0 -> 32bit, 1 -> 64bit
+ * op: 0 -> add , 1 -> sub
+ * S: 1 -> set flags
+ * shift: 00 -> LSL imm by 0, 01 -> LSL imm by 12
+ */
+static void disas_add_sub_imm(DisasContext *s, uint32_t insn)
+{
+ int rd = extract32(insn, 0, 5);
+ int rn = extract32(insn, 5, 5);
+ uint64_t imm = extract32(insn, 10, 12);
+ int shift = extract32(insn, 22, 2);
+ bool setflags = extract32(insn, 29, 1);
+ bool sub_op = extract32(insn, 30, 1);
+ bool is_64bit = extract32(insn, 31, 1);
+
+ TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
+ TCGv_i64 tcg_rd = setflags ? cpu_reg(s, rd) : cpu_reg_sp(s, rd);
+ TCGv_i64 tcg_result;
+
+ switch (shift) {
+ case 0x0:
+ break;
+ case 0x1:
+ imm <<= 12;
+ break;
+ default:
+ unallocated_encoding(s);
+ return;
+ }
+
+ tcg_result = tcg_temp_new_i64();
+ if (!setflags) {
+ if (sub_op) {
+ tcg_gen_subi_i64(tcg_result, tcg_rn, imm);
+ } else {
+ tcg_gen_addi_i64(tcg_result, tcg_rn, imm);
+ }
+ } else {
+ TCGv_i64 tcg_imm = tcg_const_i64(imm);
+ if (sub_op) {
+ gen_sub_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
+ } else {
+ gen_add_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
+ }
+ tcg_temp_free_i64(tcg_imm);
+ }
+
+ if (is_64bit) {
+ tcg_gen_mov_i64(tcg_rd, tcg_result);
+ } else {
+ tcg_gen_ext32u_i64(tcg_rd, tcg_result);
+ }
+
+ tcg_temp_free_i64(tcg_result);
+}
+
+/* The input should be a value in the bottom e bits (with higher
+ * bits zero); returns that value replicated into every element
+ * of size e in a 64 bit integer.
+ */
+static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
+{
+ assert(e != 0);
+ while (e < 64) {
+ mask |= mask << e;
+ e *= 2;
+ }
+ return mask;
+}
+
+/* Return a value with the bottom len bits set (where 0 < len <= 64) */
+static inline uint64_t bitmask64(unsigned int length)
+{
+ assert(length > 0 && length <= 64);
+ return ~0ULL >> (64 - length);
+}
+
+/* Simplified variant of pseudocode DecodeBitMasks() for the case where we
+ * only require the wmask. Returns false if the imms/immr/immn are a reserved
+ * value (ie should cause a guest UNDEF exception), and true if they are
+ * valid, in which case the decoded bit pattern is written to result.
+ */
+static bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
+ unsigned int imms, unsigned int immr)
+{
+ uint64_t mask;
+ unsigned e, levels, s, r;
+ int len;
+
+ assert(immn < 2 && imms < 64 && immr < 64);
+
+ /* The bit patterns we create here are 64 bit patterns which
+ * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
+ * 64 bits each. Each element contains the same value: a run
+ * of between 1 and e-1 non-zero bits, rotated within the
+ * element by between 0 and e-1 bits.
+ *
+ * The element size and run length are encoded into immn (1 bit)
+ * and imms (6 bits) as follows:
+ * 64 bit elements: immn = 1, imms = <length of run - 1>
+ * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
+ * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
+ * 8 bit elements: immn = 0, imms = 110 : <length of run - 1>
+ * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
+ * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
+ * Notice that immn = 0, imms = 11111x is the only combination
+ * not covered by one of the above options; this is reserved.
+ * Further, <length of run - 1> all-ones is a reserved pattern.
+ *
+ * In all cases the rotation is by immr % e (and immr is 6 bits).
+ */
+
+ /* First determine the element size */
+ len = 31 - clz32((immn << 6) | (~imms & 0x3f));
+ if (len < 1) {
+ /* This is the immn == 0, imms == 0x11111x case */
+ return false;
+ }
+ e = 1 << len;
+
+ levels = e - 1;
+ s = imms & levels;
+ r = immr & levels;
+
+ if (s == levels) {
+ /* <length of run - 1> mustn't be all-ones. */
+ return false;
+ }
+
+ /* Create the value of one element: s+1 set bits rotated
+ * by r within the element (which is e bits wide)...
+ */
+ mask = bitmask64(s + 1);
+ if (r) {
+ mask = (mask >> r) | (mask << (e - r));
+ mask &= bitmask64(e);
+ }
+ /* ...then replicate the element over the whole 64 bit value */
+ mask = bitfield_replicate(mask, e);
+ *result = mask;
+ return true;
+}
+
+/* C3.4.4 Logical (immediate)
+ * 31 30 29 28 23 22 21 16 15 10 9 5 4 0
+ * +----+-----+-------------+---+------+------+------+------+
+ * | sf | opc | 1 0 0 1 0 0 | N | immr | imms | Rn | Rd |
+ * +----+-----+-------------+---+------+------+------+------+
+ */
+static void disas_logic_imm(DisasContext *s, uint32_t insn)
+{
+ unsigned int sf, opc, is_n, immr, imms, rn, rd;
+ TCGv_i64 tcg_rd, tcg_rn;
+ uint64_t wmask;
+ bool is_and = false;
+
+ sf = extract32(insn, 31, 1);
+ opc = extract32(insn, 29, 2);
+ is_n = extract32(insn, 22, 1);
+ immr = extract32(insn, 16, 6);
+ imms = extract32(insn, 10, 6);
+ rn = extract32(insn, 5, 5);
+ rd = extract32(insn, 0, 5);
+
+ if (!sf && is_n) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ if (opc == 0x3) { /* ANDS */
+ tcg_rd = cpu_reg(s, rd);
+ } else {
+ tcg_rd = cpu_reg_sp(s, rd);
+ }
+ tcg_rn = cpu_reg(s, rn);
+
+ if (!logic_imm_decode_wmask(&wmask, is_n, imms, immr)) {
+ /* some immediate field values are reserved */
+ unallocated_encoding(s);
+ return;
+ }
+
+ if (!sf) {
+ wmask &= 0xffffffff;
+ }
+
+ switch (opc) {
+ case 0x3: /* ANDS */
+ case 0x0: /* AND */
+ tcg_gen_andi_i64(tcg_rd, tcg_rn, wmask);
+ is_and = true;
+ break;
+ case 0x1: /* ORR */
+ tcg_gen_ori_i64(tcg_rd, tcg_rn, wmask);
+ break;
+ case 0x2: /* EOR */
+ tcg_gen_xori_i64(tcg_rd, tcg_rn, wmask);
+ break;
+ default:
+ assert(FALSE); /* must handle all above */
+ break;
+ }
+
+ if (!sf && !is_and) {
+ /* zero extend final result; we know we can skip this for AND
+ * since the immediate had the high 32 bits clear.
+ */
+ tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
+ }
+
+ if (opc == 3) { /* ANDS */
+ gen_logic_CC(sf, tcg_rd);
+ }
+}
+
+/*
+ * C3.4.5 Move wide (immediate)
+ *
+ * 31 30 29 28 23 22 21 20 5 4 0
+ * +--+-----+-------------+-----+----------------+------+
+ * |sf| opc | 1 0 0 1 0 1 | hw | imm16 | Rd |
+ * +--+-----+-------------+-----+----------------+------+
+ *
+ * sf: 0 -> 32 bit, 1 -> 64 bit
+ * opc: 00 -> N, 10 -> Z, 11 -> K
+ * hw: shift/16 (0,16, and sf only 32, 48)
+ */
+static void disas_movw_imm(DisasContext *s, uint32_t insn)
+{
+ int rd = extract32(insn, 0, 5);
+ uint64_t imm = extract32(insn, 5, 16);
+ int sf = extract32(insn, 31, 1);
+ int opc = extract32(insn, 29, 2);
+ int pos = extract32(insn, 21, 2) << 4;
+ TCGv_i64 tcg_rd = cpu_reg(s, rd);
+ TCGv_i64 tcg_imm;
+
+ if (!sf && (pos >= 32)) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ switch (opc) {
+ case 0: /* MOVN */
+ case 2: /* MOVZ */
+ imm <<= pos;
+ if (opc == 0) {
+ imm = ~imm;
+ }
+ if (!sf) {
+ imm &= 0xffffffffu;
+ }
+ tcg_gen_movi_i64(tcg_rd, imm);
+ break;
+ case 3: /* MOVK */
+ tcg_imm = tcg_const_i64(imm);
+ tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_imm, pos, 16);
+ tcg_temp_free_i64(tcg_imm);
+ if (!sf) {
+ tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
+ }
+ break;
+ default:
+ unallocated_encoding(s);
+ break;
+ }
+}
+
+/* C3.4.2 Bitfield
+ * 31 30 29 28 23 22 21 16 15 10 9 5 4 0
+ * +----+-----+-------------+---+------+------+------+------+
+ * | sf | opc | 1 0 0 1 1 0 | N | immr | imms | Rn | Rd |
+ * +----+-----+-------------+---+------+------+------+------+
+ */
+static void disas_bitfield(DisasContext *s, uint32_t insn)
+{
+ unsigned int sf, n, opc, ri, si, rn, rd, bitsize, pos, len;
+ TCGv_i64 tcg_rd, tcg_tmp;
+
+ sf = extract32(insn, 31, 1);
+ opc = extract32(insn, 29, 2);
+ n = extract32(insn, 22, 1);
+ ri = extract32(insn, 16, 6);
+ si = extract32(insn, 10, 6);
+ rn = extract32(insn, 5, 5);
+ rd = extract32(insn, 0, 5);
+ bitsize = sf ? 64 : 32;
+
+ if (sf != n || ri >= bitsize || si >= bitsize || opc > 2) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ tcg_rd = cpu_reg(s, rd);
+
+ /* Suppress the zero-extend for !sf. Since RI and SI are constrained
+ to be smaller than bitsize, we'll never reference data outside the
+ low 32-bits anyway. */
+ tcg_tmp = read_cpu_reg(s, rn, 1);
+
+ /* Recognize the common aliases. */
+ if (opc == 0) { /* SBFM */
+ if (ri == 0) {
+ if (si == 7) { /* SXTB */
+ tcg_gen_ext8s_i64(tcg_rd, tcg_tmp);
+ goto done;
+ } else if (si == 15) { /* SXTH */
+ tcg_gen_ext16s_i64(tcg_rd, tcg_tmp);
+ goto done;
+ } else if (si == 31) { /* SXTW */
+ tcg_gen_ext32s_i64(tcg_rd, tcg_tmp);
+ goto done;
+ }
+ }
+ if (si == 63 || (si == 31 && ri <= si)) { /* ASR */
+ if (si == 31) {
+ tcg_gen_ext32s_i64(tcg_tmp, tcg_tmp);
+ }
+ tcg_gen_sari_i64(tcg_rd, tcg_tmp, ri);
+ goto done;
+ }
+ } else if (opc == 2) { /* UBFM */
+ if (ri == 0) { /* UXTB, UXTH, plus non-canonical AND */
+ tcg_gen_andi_i64(tcg_rd, tcg_tmp, bitmask64(si + 1));
+ return;
+ }
+ if (si == 63 || (si == 31 && ri <= si)) { /* LSR */
+ if (si == 31) {
+ tcg_gen_ext32u_i64(tcg_tmp, tcg_tmp);
+ }
+ tcg_gen_shri_i64(tcg_rd, tcg_tmp, ri);
+ return;
+ }
+ if (si + 1 == ri && si != bitsize - 1) { /* LSL */
+ int shift = bitsize - 1 - si;
+ tcg_gen_shli_i64(tcg_rd, tcg_tmp, shift);
+ goto done;
+ }
+ }
+
+ if (opc != 1) { /* SBFM or UBFM */
+ tcg_gen_movi_i64(tcg_rd, 0);
+ }
+
+ /* do the bit move operation */
+ if (si >= ri) {
+ /* Wd<s-r:0> = Wn<s:r> */
+ tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri);
+ pos = 0;
+ len = (si - ri) + 1;
+ } else {
+ /* Wd<32+s-r,32-r> = Wn<s:0> */
+ pos = bitsize - ri;
+ len = si + 1;
+ }
+
+ tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
+
+ if (opc == 0) { /* SBFM - sign extend the destination field */
+ tcg_gen_shli_i64(tcg_rd, tcg_rd, 64 - (pos + len));
+ tcg_gen_sari_i64(tcg_rd, tcg_rd, 64 - (pos + len));
+ }
+
+ done:
+ if (!sf) { /* zero extend final result */
+ tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
+ }
+}
+
+/* C3.4.3 Extract
+ * 31 30 29 28 23 22 21 20 16 15 10 9 5 4 0
+ * +----+------+-------------+---+----+------+--------+------+------+
+ * | sf | op21 | 1 0 0 1 1 1 | N | o0 | Rm | imms | Rn | Rd |
+ * +----+------+-------------+---+----+------+--------+------+------+
+ */
+static void disas_extract(DisasContext *s, uint32_t insn)
+{
+ unsigned int sf, n, rm, imm, rn, rd, bitsize, op21, op0;
+
+ sf = extract32(insn, 31, 1);
+ n = extract32(insn, 22, 1);
+ rm = extract32(insn, 16, 5);
+ imm = extract32(insn, 10, 6);
+ rn = extract32(insn, 5, 5);
+ rd = extract32(insn, 0, 5);
+ op21 = extract32(insn, 29, 2);
+ op0 = extract32(insn, 21, 1);
+ bitsize = sf ? 64 : 32;
+
+ if (sf != n || op21 || op0 || imm >= bitsize) {
+ unallocated_encoding(s);
+ } else {
+ TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
+
+ tcg_rd = cpu_reg(s, rd);
+
+ if (unlikely(imm == 0)) {
+ /* tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
+ * so an extract from bit 0 is a special case.
+ */
+ if (sf) {
+ tcg_gen_mov_i64(tcg_rd, cpu_reg(s, rm));
+ } else {
+ tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rm));
+ }
+ } else if (rm == rn) { /* ROR */
+ tcg_rm = cpu_reg(s, rm);
+ if (sf) {
+ tcg_gen_rotri_i64(tcg_rd, tcg_rm, imm);
+ } else {
+ TCGv_i32 tmp = tcg_temp_new_i32();
+ tcg_gen_extrl_i64_i32(tmp, tcg_rm);
+ tcg_gen_rotri_i32(tmp, tmp, imm);
+ tcg_gen_extu_i32_i64(tcg_rd, tmp);
+ tcg_temp_free_i32(tmp);
+ }
+ } else {
+ tcg_rm = read_cpu_reg(s, rm, sf);
+ tcg_rn = read_cpu_reg(s, rn, sf);
+ tcg_gen_shri_i64(tcg_rm, tcg_rm, imm);
+ tcg_gen_shli_i64(tcg_rn, tcg_rn, bitsize - imm);
+ tcg_gen_or_i64(tcg_rd, tcg_rm, tcg_rn);
+ if (!sf) {
+ tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
+ }
+ }
+ }
+}
+
+/* C3.4 Data processing - immediate */
+static void disas_data_proc_imm(DisasContext *s, uint32_t insn)
+{
+ switch (extract32(insn, 23, 6)) {
+ case 0x20: case 0x21: /* PC-rel. addressing */
+ disas_pc_rel_adr(s, insn);
+ break;
+ case 0x22: case 0x23: /* Add/subtract (immediate) */
+ disas_add_sub_imm(s, insn);
+ break;
+ case 0x24: /* Logical (immediate) */
+ disas_logic_imm(s, insn);
+ break;
+ case 0x25: /* Move wide (immediate) */
+ disas_movw_imm(s, insn);
+ break;
+ case 0x26: /* Bitfield */
+ disas_bitfield(s, insn);
+ break;
+ case 0x27: /* Extract */
+ disas_extract(s, insn);
+ break;
+ default:
+ unallocated_encoding(s);
+ break;
+ }
+}
+
+/* Shift a TCGv src by TCGv shift_amount, put result in dst.
+ * Note that it is the caller's responsibility to ensure that the
+ * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
+ * mandated semantics for out of range shifts.
+ */
+static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
+ enum a64_shift_type shift_type, TCGv_i64 shift_amount)
+{
+ switch (shift_type) {
+ case A64_SHIFT_TYPE_LSL:
+ tcg_gen_shl_i64(dst, src, shift_amount);
+ break;
+ case A64_SHIFT_TYPE_LSR:
+ tcg_gen_shr_i64(dst, src, shift_amount);
+ break;
+ case A64_SHIFT_TYPE_ASR:
+ if (!sf) {
+ tcg_gen_ext32s_i64(dst, src);
+ }
+ tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
+ break;
+ case A64_SHIFT_TYPE_ROR:
+ if (sf) {
+ tcg_gen_rotr_i64(dst, src, shift_amount);
+ } else {
+ TCGv_i32 t0, t1;
+ t0 = tcg_temp_new_i32();
+ t1 = tcg_temp_new_i32();
+ tcg_gen_extrl_i64_i32(t0, src);
+ tcg_gen_extrl_i64_i32(t1, shift_amount);
+ tcg_gen_rotr_i32(t0, t0, t1);
+ tcg_gen_extu_i32_i64(dst, t0);
+ tcg_temp_free_i32(t0);
+ tcg_temp_free_i32(t1);
+ }
+ break;
+ default:
+ assert(FALSE); /* all shift types should be handled */
+ break;
+ }
+
+ if (!sf) { /* zero extend final result */
+ tcg_gen_ext32u_i64(dst, dst);
+ }
+}
+
+/* Shift a TCGv src by immediate, put result in dst.
+ * The shift amount must be in range (this should always be true as the
+ * relevant instructions will UNDEF on bad shift immediates).
+ */
+static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
+ enum a64_shift_type shift_type, unsigned int shift_i)
+{
+ assert(shift_i < (sf ? 64 : 32));
+
+ if (shift_i == 0) {
+ tcg_gen_mov_i64(dst, src);
+ } else {
+ TCGv_i64 shift_const;
+
+ shift_const = tcg_const_i64(shift_i);
+ shift_reg(dst, src, sf, shift_type, shift_const);
+ tcg_temp_free_i64(shift_const);
+ }
+}
+
+/* C3.5.10 Logical (shifted register)
+ * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
+ * +----+-----+-----------+-------+---+------+--------+------+------+
+ * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd |
+ * +----+-----+-----------+-------+---+------+--------+------+------+
+ */
+static void disas_logic_reg(DisasContext *s, uint32_t insn)
+{
+ TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
+ unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
+
+ sf = extract32(insn, 31, 1);
+ opc = extract32(insn, 29, 2);
+ shift_type = extract32(insn, 22, 2);
+ invert = extract32(insn, 21, 1);
+ rm = extract32(insn, 16, 5);
+ shift_amount = extract32(insn, 10, 6);
+ rn = extract32(insn, 5, 5);
+ rd = extract32(insn, 0, 5);
+
+ if (!sf && (shift_amount & (1 << 5))) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ tcg_rd = cpu_reg(s, rd);
+
+ if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
+ /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
+ * register-register MOV and MVN, so it is worth special casing.
+ */
+ tcg_rm = cpu_reg(s, rm);
+ if (invert) {
+ tcg_gen_not_i64(tcg_rd, tcg_rm);
+ if (!sf) {
+ tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
+ }
+ } else {
+ if (sf) {
+ tcg_gen_mov_i64(tcg_rd, tcg_rm);
+ } else {
+ tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
+ }
+ }
+ return;
+ }
+
+ tcg_rm = read_cpu_reg(s, rm, sf);
+
+ if (shift_amount) {
+ shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
+ }
+
+ tcg_rn = cpu_reg(s, rn);
+
+ switch (opc | (invert << 2)) {
+ case 0: /* AND */
+ case 3: /* ANDS */
+ tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
+ break;
+ case 1: /* ORR */
+ tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
+ break;
+ case 2: /* EOR */
+ tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
+ break;
+ case 4: /* BIC */
+ case 7: /* BICS */
+ tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
+ break;
+ case 5: /* ORN */
+ tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
+ break;
+ case 6: /* EON */
+ tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
+ break;
+ default:
+ assert(FALSE);
+ break;
+ }
+
+ if (!sf) {
+ tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
+ }
+
+ if (opc == 3) {
+ gen_logic_CC(sf, tcg_rd);
+ }
+}
+
+/*
+ * C3.5.1 Add/subtract (extended register)
+ *
+ * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0|
+ * +--+--+--+-----------+-----+--+-------+------+------+----+----+
+ * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd |
+ * +--+--+--+-----------+-----+--+-------+------+------+----+----+
+ *
+ * sf: 0 -> 32bit, 1 -> 64bit
+ * op: 0 -> add , 1 -> sub
+ * S: 1 -> set flags
+ * opt: 00
+ * option: extension type (see DecodeRegExtend)
+ * imm3: optional shift to Rm
+ *
+ * Rd = Rn + LSL(extend(Rm), amount)
+ */
+static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
+{
+ int rd = extract32(insn, 0, 5);
+ int rn = extract32(insn, 5, 5);
+ int imm3 = extract32(insn, 10, 3);
+ int option = extract32(insn, 13, 3);
+ int rm = extract32(insn, 16, 5);
+ bool setflags = extract32(insn, 29, 1);
+ bool sub_op = extract32(insn, 30, 1);
+ bool sf = extract32(insn, 31, 1);
+
+ TCGv_i64 tcg_rm, tcg_rn; /* temps */
+ TCGv_i64 tcg_rd;
+ TCGv_i64 tcg_result;
+
+ if (imm3 > 4) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ /* non-flag setting ops may use SP */
+ if (!setflags) {
+ tcg_rd = cpu_reg_sp(s, rd);
+ } else {
+ tcg_rd = cpu_reg(s, rd);
+ }
+ tcg_rn = read_cpu_reg_sp(s, rn, sf);
+
+ tcg_rm = read_cpu_reg(s, rm, sf);
+ ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
+
+ tcg_result = tcg_temp_new_i64();
+
+ if (!setflags) {
+ if (sub_op) {
+ tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
+ } else {
+ tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
+ }
+ } else {
+ if (sub_op) {
+ gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
+ } else {
+ gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
+ }
+ }
+
+ if (sf) {
+ tcg_gen_mov_i64(tcg_rd, tcg_result);
+ } else {
+ tcg_gen_ext32u_i64(tcg_rd, tcg_result);
+ }
+
+ tcg_temp_free_i64(tcg_result);
+}
+
+/*
+ * C3.5.2 Add/subtract (shifted register)
+ *
+ * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
+ * +--+--+--+-----------+-----+--+-------+---------+------+------+
+ * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd |
+ * +--+--+--+-----------+-----+--+-------+---------+------+------+
+ *
+ * sf: 0 -> 32bit, 1 -> 64bit
+ * op: 0 -> add , 1 -> sub
+ * S: 1 -> set flags
+ * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
+ * imm6: Shift amount to apply to Rm before the add/sub
+ */
+static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
+{
+ int rd = extract32(insn, 0, 5);
+ int rn = extract32(insn, 5, 5);
+ int imm6 = extract32(insn, 10, 6);
+ int rm = extract32(insn, 16, 5);
+ int shift_type = extract32(insn, 22, 2);
+ bool setflags = extract32(insn, 29, 1);
+ bool sub_op = extract32(insn, 30, 1);
+ bool sf = extract32(insn, 31, 1);
+
+ TCGv_i64 tcg_rd = cpu_reg(s, rd);
+ TCGv_i64 tcg_rn, tcg_rm;
+ TCGv_i64 tcg_result;
+
+ if ((shift_type == 3) || (!sf && (imm6 > 31))) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ tcg_rn = read_cpu_reg(s, rn, sf);
+ tcg_rm = read_cpu_reg(s, rm, sf);
+
+ shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
+
+ tcg_result = tcg_temp_new_i64();
+
+ if (!setflags) {
+ if (sub_op) {
+ tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
+ } else {
+ tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
+ }
+ } else {
+ if (sub_op) {
+ gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
+ } else {
+ gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
+ }
+ }
+
+ if (sf) {
+ tcg_gen_mov_i64(tcg_rd, tcg_result);
+ } else {
+ tcg_gen_ext32u_i64(tcg_rd, tcg_result);
+ }
+
+ tcg_temp_free_i64(tcg_result);
+}
+
+/* C3.5.9 Data-processing (3 source)
+
+ 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0
+ +--+------+-----------+------+------+----+------+------+------+
+ |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd |
+ +--+------+-----------+------+------+----+------+------+------+
+
+ */
+static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
+{
+ int rd = extract32(insn, 0, 5);
+ int rn = extract32(insn, 5, 5);
+ int ra = extract32(insn, 10, 5);
+ int rm = extract32(insn, 16, 5);
+ int op_id = (extract32(insn, 29, 3) << 4) |
+ (extract32(insn, 21, 3) << 1) |
+ extract32(insn, 15, 1);
+ bool sf = extract32(insn, 31, 1);
+ bool is_sub = extract32(op_id, 0, 1);
+ bool is_high = extract32(op_id, 2, 1);
+ bool is_signed = false;
+ TCGv_i64 tcg_op1;
+ TCGv_i64 tcg_op2;
+ TCGv_i64 tcg_tmp;
+
+ /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
+ switch (op_id) {
+ case 0x42: /* SMADDL */
+ case 0x43: /* SMSUBL */
+ case 0x44: /* SMULH */
+ is_signed = true;
+ break;
+ case 0x0: /* MADD (32bit) */
+ case 0x1: /* MSUB (32bit) */
+ case 0x40: /* MADD (64bit) */
+ case 0x41: /* MSUB (64bit) */
+ case 0x4a: /* UMADDL */
+ case 0x4b: /* UMSUBL */
+ case 0x4c: /* UMULH */
+ break;
+ default:
+ unallocated_encoding(s);
+ return;
+ }
+
+ if (is_high) {
+ TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
+ TCGv_i64 tcg_rd = cpu_reg(s, rd);
+ TCGv_i64 tcg_rn = cpu_reg(s, rn);
+ TCGv_i64 tcg_rm = cpu_reg(s, rm);
+
+ if (is_signed) {
+ tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
+ } else {
+ tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
+ }
+
+ tcg_temp_free_i64(low_bits);
+ return;
+ }
+
+ tcg_op1 = tcg_temp_new_i64();
+ tcg_op2 = tcg_temp_new_i64();
+ tcg_tmp = tcg_temp_new_i64();
+
+ if (op_id < 0x42) {
+ tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
+ tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
+ } else {
+ if (is_signed) {
+ tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
+ tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
+ } else {
+ tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
+ tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
+ }
+ }
+
+ if (ra == 31 && !is_sub) {
+ /* Special-case MADD with rA == XZR; it is the standard MUL alias */
+ tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
+ } else {
+ tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
+ if (is_sub) {
+ tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
+ } else {
+ tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
+ }
+ }
+
+ if (!sf) {
+ tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
+ }
+
+ tcg_temp_free_i64(tcg_op1);
+ tcg_temp_free_i64(tcg_op2);
+ tcg_temp_free_i64(tcg_tmp);
+}
+
+/* C3.5.3 - Add/subtract (with carry)
+ * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0
+ * +--+--+--+------------------------+------+---------+------+-----+
+ * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | opcode2 | Rn | Rd |
+ * +--+--+--+------------------------+------+---------+------+-----+
+ * [000000]
+ */
+
+static void disas_adc_sbc(DisasContext *s, uint32_t insn)
+{
+ unsigned int sf, op, setflags, rm, rn, rd;
+ TCGv_i64 tcg_y, tcg_rn, tcg_rd;
+
+ if (extract32(insn, 10, 6) != 0) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ sf = extract32(insn, 31, 1);
+ op = extract32(insn, 30, 1);
+ setflags = extract32(insn, 29, 1);
+ rm = extract32(insn, 16, 5);
+ rn = extract32(insn, 5, 5);
+ rd = extract32(insn, 0, 5);
+
+ tcg_rd = cpu_reg(s, rd);
+ tcg_rn = cpu_reg(s, rn);
+
+ if (op) {
+ tcg_y = new_tmp_a64(s);
+ tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
+ } else {
+ tcg_y = cpu_reg(s, rm);
+ }
+
+ if (setflags) {
+ gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
+ } else {
+ gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
+ }
+}
+
+/* C3.5.4 - C3.5.5 Conditional compare (immediate / register)
+ * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
+ * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
+ * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv |
+ * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
+ * [1] y [0] [0]
+ */
+static void disas_cc(DisasContext *s, uint32_t insn)
+{
+ unsigned int sf, op, y, cond, rn, nzcv, is_imm;
+ TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
+ TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
+ DisasCompare c;
+
+ if (!extract32(insn, 29, 1)) {
+ unallocated_encoding(s);
+ return;
+ }
+ if (insn & (1 << 10 | 1 << 4)) {
+ unallocated_encoding(s);
+ return;
+ }
+ sf = extract32(insn, 31, 1);
+ op = extract32(insn, 30, 1);
+ is_imm = extract32(insn, 11, 1);
+ y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
+ cond = extract32(insn, 12, 4);
+ rn = extract32(insn, 5, 5);
+ nzcv = extract32(insn, 0, 4);
+
+ /* Set T0 = !COND. */
+ tcg_t0 = tcg_temp_new_i32();
+ arm_test_cc(&c, cond);
+ tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
+ arm_free_cc(&c);
+
+ /* Load the arguments for the new comparison. */
+ if (is_imm) {
+ tcg_y = new_tmp_a64(s);
+ tcg_gen_movi_i64(tcg_y, y);
+ } else {
+ tcg_y = cpu_reg(s, y);
+ }
+ tcg_rn = cpu_reg(s, rn);
+
+ /* Set the flags for the new comparison. */
+ tcg_tmp = tcg_temp_new_i64();
+ if (op) {
+ gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
+ } else {
+ gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
+ }
+ tcg_temp_free_i64(tcg_tmp);
+
+ /* If COND was false, force the flags to #nzcv. Compute two masks
+ * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
+ * For tcg hosts that support ANDC, we can make do with just T1.
+ * In either case, allow the tcg optimizer to delete any unused mask.
+ */
+ tcg_t1 = tcg_temp_new_i32();
+ tcg_t2 = tcg_temp_new_i32();
+ tcg_gen_neg_i32(tcg_t1, tcg_t0);
+ tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
+
+ if (nzcv & 8) { /* N */
+ tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
+ } else {
+ if (TCG_TARGET_HAS_andc_i32) {
+ tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
+ } else {
+ tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
+ }
+ }
+ if (nzcv & 4) { /* Z */
+ if (TCG_TARGET_HAS_andc_i32) {
+ tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
+ } else {
+ tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
+ }
+ } else {
+ tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
+ }
+ if (nzcv & 2) { /* C */
+ tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
+ } else {
+ if (TCG_TARGET_HAS_andc_i32) {
+ tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
+ } else {
+ tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
+ }
+ }
+ if (nzcv & 1) { /* V */
+ tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
+ } else {
+ if (TCG_TARGET_HAS_andc_i32) {
+ tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
+ } else {
+ tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
+ }
+ }
+ tcg_temp_free_i32(tcg_t0);
+ tcg_temp_free_i32(tcg_t1);
+ tcg_temp_free_i32(tcg_t2);
+}
+
+/* C3.5.6 Conditional select
+ * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0
+ * +----+----+---+-----------------+------+------+-----+------+------+
+ * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd |
+ * +----+----+---+-----------------+------+------+-----+------+------+
+ */
+static void disas_cond_select(DisasContext *s, uint32_t insn)
+{
+ unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
+ TCGv_i64 tcg_rd, zero;
+ DisasCompare64 c;
+
+ if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
+ /* S == 1 or op2<1> == 1 */
+ unallocated_encoding(s);
+ return;
+ }
+ sf = extract32(insn, 31, 1);
+ else_inv = extract32(insn, 30, 1);
+ rm = extract32(insn, 16, 5);
+ cond = extract32(insn, 12, 4);
+ else_inc = extract32(insn, 10, 1);
+ rn = extract32(insn, 5, 5);
+ rd = extract32(insn, 0, 5);
+
+ tcg_rd = cpu_reg(s, rd);
+
+ a64_test_cc(&c, cond);
+ zero = tcg_const_i64(0);
+
+ if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
+ /* CSET & CSETM. */
+ tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero);
+ if (else_inv) {
+ tcg_gen_neg_i64(tcg_rd, tcg_rd);
+ }
+ } else {
+ TCGv_i64 t_true = cpu_reg(s, rn);
+ TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
+ if (else_inv && else_inc) {
+ tcg_gen_neg_i64(t_false, t_false);
+ } else if (else_inv) {
+ tcg_gen_not_i64(t_false, t_false);
+ } else if (else_inc) {
+ tcg_gen_addi_i64(t_false, t_false, 1);
+ }
+ tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
+ }
+
+ tcg_temp_free_i64(zero);
+ a64_free_cc(&c);
+
+ if (!sf) {
+ tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
+ }
+}
+
+static void handle_clz(DisasContext *s, unsigned int sf,
+ unsigned int rn, unsigned int rd)
+{
+ TCGv_i64 tcg_rd, tcg_rn;
+ tcg_rd = cpu_reg(s, rd);
+ tcg_rn = cpu_reg(s, rn);
+
+ if (sf) {
+ gen_helper_clz64(tcg_rd, tcg_rn);
+ } else {
+ TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
+ tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
+ gen_helper_clz(tcg_tmp32, tcg_tmp32);
+ tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
+ tcg_temp_free_i32(tcg_tmp32);
+ }
+}
+
+static void handle_cls(DisasContext *s, unsigned int sf,
+ unsigned int rn, unsigned int rd)
+{
+ TCGv_i64 tcg_rd, tcg_rn;
+ tcg_rd = cpu_reg(s, rd);
+ tcg_rn = cpu_reg(s, rn);
+
+ if (sf) {
+ gen_helper_cls64(tcg_rd, tcg_rn);
+ } else {
+ TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
+ tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
+ gen_helper_cls32(tcg_tmp32, tcg_tmp32);
+ tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
+ tcg_temp_free_i32(tcg_tmp32);
+ }
+}
+
+static void handle_rbit(DisasContext *s, unsigned int sf,
+ unsigned int rn, unsigned int rd)
+{
+ TCGv_i64 tcg_rd, tcg_rn;
+ tcg_rd = cpu_reg(s, rd);
+ tcg_rn = cpu_reg(s, rn);
+
+ if (sf) {
+ gen_helper_rbit64(tcg_rd, tcg_rn);
+ } else {
+ TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
+ tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
+ gen_helper_rbit(tcg_tmp32, tcg_tmp32);
+ tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
+ tcg_temp_free_i32(tcg_tmp32);
+ }
+}
+
+/* C5.6.149 REV with sf==1, opcode==3 ("REV64") */
+static void handle_rev64(DisasContext *s, unsigned int sf,
+ unsigned int rn, unsigned int rd)
+{
+ if (!sf) {
+ unallocated_encoding(s);
+ return;
+ }
+ tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
+}
+
+/* C5.6.149 REV with sf==0, opcode==2
+ * C5.6.151 REV32 (sf==1, opcode==2)
+ */
+static void handle_rev32(DisasContext *s, unsigned int sf,
+ unsigned int rn, unsigned int rd)
+{
+ TCGv_i64 tcg_rd = cpu_reg(s, rd);
+
+ if (sf) {
+ TCGv_i64 tcg_tmp = tcg_temp_new_i64();
+ TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
+
+ /* bswap32_i64 requires zero high word */
+ tcg_gen_ext32u_i64(tcg_tmp, tcg_rn);
+ tcg_gen_bswap32_i64(tcg_rd, tcg_tmp);
+ tcg_gen_shri_i64(tcg_tmp, tcg_rn, 32);
+ tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp);
+ tcg_gen_concat32_i64(tcg_rd, tcg_rd, tcg_tmp);
+
+ tcg_temp_free_i64(tcg_tmp);
+ } else {
+ tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rn));
+ tcg_gen_bswap32_i64(tcg_rd, tcg_rd);
+ }
+}
+
+/* C5.6.150 REV16 (opcode==1) */
+static void handle_rev16(DisasContext *s, unsigned int sf,
+ unsigned int rn, unsigned int rd)
+{
+ TCGv_i64 tcg_rd = cpu_reg(s, rd);
+ TCGv_i64 tcg_tmp = tcg_temp_new_i64();
+ TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
+
+ tcg_gen_andi_i64(tcg_tmp, tcg_rn, 0xffff);
+ tcg_gen_bswap16_i64(tcg_rd, tcg_tmp);
+
+ tcg_gen_shri_i64(tcg_tmp, tcg_rn, 16);
+ tcg_gen_andi_i64(tcg_tmp, tcg_tmp, 0xffff);
+ tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp);
+ tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, 16, 16);
+
+ if (sf) {
+ tcg_gen_shri_i64(tcg_tmp, tcg_rn, 32);
+ tcg_gen_andi_i64(tcg_tmp, tcg_tmp, 0xffff);
+ tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp);
+ tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, 32, 16);
+
+ tcg_gen_shri_i64(tcg_tmp, tcg_rn, 48);
+ tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp);
+ tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, 48, 16);
+ }
+
+ tcg_temp_free_i64(tcg_tmp);
+}
+
+/* C3.5.7 Data-processing (1 source)
+ * 31 30 29 28 21 20 16 15 10 9 5 4 0
+ * +----+---+---+-----------------+---------+--------+------+------+
+ * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd |
+ * +----+---+---+-----------------+---------+--------+------+------+
+ */
+static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
+{
+ unsigned int sf, opcode, rn, rd;
+
+ if (extract32(insn, 29, 1) || extract32(insn, 16, 5)) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ sf = extract32(insn, 31, 1);
+ opcode = extract32(insn, 10, 6);
+ rn = extract32(insn, 5, 5);
+ rd = extract32(insn, 0, 5);
+
+ switch (opcode) {
+ case 0: /* RBIT */
+ handle_rbit(s, sf, rn, rd);
+ break;
+ case 1: /* REV16 */
+ handle_rev16(s, sf, rn, rd);
+ break;
+ case 2: /* REV32 */
+ handle_rev32(s, sf, rn, rd);
+ break;
+ case 3: /* REV64 */
+ handle_rev64(s, sf, rn, rd);
+ break;
+ case 4: /* CLZ */
+ handle_clz(s, sf, rn, rd);
+ break;
+ case 5: /* CLS */
+ handle_cls(s, sf, rn, rd);
+ break;
+ }
+}
+
+static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
+ unsigned int rm, unsigned int rn, unsigned int rd)
+{
+ TCGv_i64 tcg_n, tcg_m, tcg_rd;
+ tcg_rd = cpu_reg(s, rd);
+
+ if (!sf && is_signed) {
+ tcg_n = new_tmp_a64(s);
+ tcg_m = new_tmp_a64(s);
+ tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
+ tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
+ } else {
+ tcg_n = read_cpu_reg(s, rn, sf);
+ tcg_m = read_cpu_reg(s, rm, sf);
+ }
+
+ if (is_signed) {
+ gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
+ } else {
+ gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
+ }
+
+ if (!sf) { /* zero extend final result */
+ tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
+ }
+}
+
+/* C5.6.115 LSLV, C5.6.118 LSRV, C5.6.17 ASRV, C5.6.154 RORV */
+static void handle_shift_reg(DisasContext *s,
+ enum a64_shift_type shift_type, unsigned int sf,
+ unsigned int rm, unsigned int rn, unsigned int rd)
+{
+ TCGv_i64 tcg_shift = tcg_temp_new_i64();
+ TCGv_i64 tcg_rd = cpu_reg(s, rd);
+ TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
+
+ tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
+ shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
+ tcg_temp_free_i64(tcg_shift);
+}
+
+/* CRC32[BHWX], CRC32C[BHWX] */
+static void handle_crc32(DisasContext *s,
+ unsigned int sf, unsigned int sz, bool crc32c,
+ unsigned int rm, unsigned int rn, unsigned int rd)
+{
+ TCGv_i64 tcg_acc, tcg_val;
+ TCGv_i32 tcg_bytes;
+
+ if (!arm_dc_feature(s, ARM_FEATURE_CRC)
+ || (sf == 1 && sz != 3)
+ || (sf == 0 && sz == 3)) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ if (sz == 3) {
+ tcg_val = cpu_reg(s, rm);
+ } else {
+ uint64_t mask;
+ switch (sz) {
+ case 0:
+ mask = 0xFF;
+ break;
+ case 1:
+ mask = 0xFFFF;
+ break;
+ case 2:
+ mask = 0xFFFFFFFF;
+ break;
+ default:
+ g_assert_not_reached();
+ }
+ tcg_val = new_tmp_a64(s);
+ tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
+ }
+
+ tcg_acc = cpu_reg(s, rn);
+ tcg_bytes = tcg_const_i32(1 << sz);
+
+ if (crc32c) {
+ gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
+ } else {
+ gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
+ }
+
+ tcg_temp_free_i32(tcg_bytes);
+}
+
+/* C3.5.8 Data-processing (2 source)
+ * 31 30 29 28 21 20 16 15 10 9 5 4 0
+ * +----+---+---+-----------------+------+--------+------+------+
+ * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd |
+ * +----+---+---+-----------------+------+--------+------+------+
+ */
+static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
+{
+ unsigned int sf, rm, opcode, rn, rd;
+ sf = extract32(insn, 31, 1);
+ rm = extract32(insn, 16, 5);
+ opcode = extract32(insn, 10, 6);
+ rn = extract32(insn, 5, 5);
+ rd = extract32(insn, 0, 5);
+
+ if (extract32(insn, 29, 1)) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ switch (opcode) {
+ case 2: /* UDIV */
+ handle_div(s, false, sf, rm, rn, rd);
+ break;
+ case 3: /* SDIV */
+ handle_div(s, true, sf, rm, rn, rd);
+ break;
+ case 8: /* LSLV */
+ handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
+ break;
+ case 9: /* LSRV */
+ handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
+ break;
+ case 10: /* ASRV */
+ handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
+ break;
+ case 11: /* RORV */
+ handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
+ break;
+ case 16:
+ case 17:
+ case 18:
+ case 19:
+ case 20:
+ case 21:
+ case 22:
+ case 23: /* CRC32 */
+ {
+ int sz = extract32(opcode, 0, 2);
+ bool crc32c = extract32(opcode, 2, 1);
+ handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
+ break;
+ }
+ default:
+ unallocated_encoding(s);
+ break;
+ }
+}
+
+/* C3.5 Data processing - register */
+static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
+{
+ switch (extract32(insn, 24, 5)) {
+ case 0x0a: /* Logical (shifted register) */
+ disas_logic_reg(s, insn);
+ break;
+ case 0x0b: /* Add/subtract */
+ if (insn & (1 << 21)) { /* (extended register) */
+ disas_add_sub_ext_reg(s, insn);
+ } else {
+ disas_add_sub_reg(s, insn);
+ }
+ break;
+ case 0x1b: /* Data-processing (3 source) */
+ disas_data_proc_3src(s, insn);
+ break;
+ case 0x1a:
+ switch (extract32(insn, 21, 3)) {
+ case 0x0: /* Add/subtract (with carry) */
+ disas_adc_sbc(s, insn);
+ break;
+ case 0x2: /* Conditional compare */
+ disas_cc(s, insn); /* both imm and reg forms */
+ break;
+ case 0x4: /* Conditional select */
+ disas_cond_select(s, insn);
+ break;
+ case 0x6: /* Data-processing */
+ if (insn & (1 << 30)) { /* (1 source) */
+ disas_data_proc_1src(s, insn);
+ } else { /* (2 source) */
+ disas_data_proc_2src(s, insn);
+ }
+ break;
+ default:
+ unallocated_encoding(s);
+ break;
+ }
+ break;
+ default:
+ unallocated_encoding(s);
+ break;
+ }
+}
+
+static void handle_fp_compare(DisasContext *s, bool is_double,
+ unsigned int rn, unsigned int rm,
+ bool cmp_with_zero, bool signal_all_nans)
+{
+ TCGv_i64 tcg_flags = tcg_temp_new_i64();
+ TCGv_ptr fpst = get_fpstatus_ptr();
+
+ if (is_double) {
+ TCGv_i64 tcg_vn, tcg_vm;
+
+ tcg_vn = read_fp_dreg(s, rn);
+ if (cmp_with_zero) {
+ tcg_vm = tcg_const_i64(0);
+ } else {
+ tcg_vm = read_fp_dreg(s, rm);
+ }
+ if (signal_all_nans) {
+ gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
+ } else {
+ gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
+ }
+ tcg_temp_free_i64(tcg_vn);
+ tcg_temp_free_i64(tcg_vm);
+ } else {
+ TCGv_i32 tcg_vn, tcg_vm;
+
+ tcg_vn = read_fp_sreg(s, rn);
+ if (cmp_with_zero) {
+ tcg_vm = tcg_const_i32(0);
+ } else {
+ tcg_vm = read_fp_sreg(s, rm);
+ }
+ if (signal_all_nans) {
+ gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
+ } else {
+ gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
+ }
+ tcg_temp_free_i32(tcg_vn);
+ tcg_temp_free_i32(tcg_vm);
+ }
+
+ tcg_temp_free_ptr(fpst);
+
+ gen_set_nzcv(tcg_flags);
+
+ tcg_temp_free_i64(tcg_flags);
+}
+
+/* C3.6.22 Floating point compare
+ * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0
+ * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
+ * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 |
+ * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
+ */
+static void disas_fp_compare(DisasContext *s, uint32_t insn)
+{
+ unsigned int mos, type, rm, op, rn, opc, op2r;
+
+ mos = extract32(insn, 29, 3);
+ type = extract32(insn, 22, 2); /* 0 = single, 1 = double */
+ rm = extract32(insn, 16, 5);
+ op = extract32(insn, 14, 2);
+ rn = extract32(insn, 5, 5);
+ opc = extract32(insn, 3, 2);
+ op2r = extract32(insn, 0, 3);
+
+ if (mos || op || op2r || type > 1) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ if (!fp_access_check(s)) {
+ return;
+ }
+
+ handle_fp_compare(s, type, rn, rm, opc & 1, opc & 2);
+}
+
+/* C3.6.23 Floating point conditional compare
+ * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
+ * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
+ * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv |
+ * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
+ */
+static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
+{
+ unsigned int mos, type, rm, cond, rn, op, nzcv;
+ TCGv_i64 tcg_flags;
+ TCGLabel *label_continue = NULL;
+
+ mos = extract32(insn, 29, 3);
+ type = extract32(insn, 22, 2); /* 0 = single, 1 = double */
+ rm = extract32(insn, 16, 5);
+ cond = extract32(insn, 12, 4);
+ rn = extract32(insn, 5, 5);
+ op = extract32(insn, 4, 1);
+ nzcv = extract32(insn, 0, 4);
+
+ if (mos || type > 1) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ if (!fp_access_check(s)) {
+ return;
+ }
+
+ if (cond < 0x0e) { /* not always */
+ TCGLabel *label_match = gen_new_label();
+ label_continue = gen_new_label();
+ arm_gen_test_cc(cond, label_match);
+ /* nomatch: */
+ tcg_flags = tcg_const_i64(nzcv << 28);
+ gen_set_nzcv(tcg_flags);
+ tcg_temp_free_i64(tcg_flags);
+ tcg_gen_br(label_continue);
+ gen_set_label(label_match);
+ }
+
+ handle_fp_compare(s, type, rn, rm, false, op);
+
+ if (cond < 0x0e) {
+ gen_set_label(label_continue);
+ }
+}
+
+/* C3.6.24 Floating point conditional select
+ * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
+ * +---+---+---+-----------+------+---+------+------+-----+------+------+
+ * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd |
+ * +---+---+---+-----------+------+---+------+------+-----+------+------+
+ */
+static void disas_fp_csel(DisasContext *s, uint32_t insn)
+{
+ unsigned int mos, type, rm, cond, rn, rd;
+ TCGv_i64 t_true, t_false, t_zero;
+ DisasCompare64 c;
+
+ mos = extract32(insn, 29, 3);
+ type = extract32(insn, 22, 2); /* 0 = single, 1 = double */
+ rm = extract32(insn, 16, 5);
+ cond = extract32(insn, 12, 4);
+ rn = extract32(insn, 5, 5);
+ rd = extract32(insn, 0, 5);
+
+ if (mos || type > 1) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ if (!fp_access_check(s)) {
+ return;
+ }
+
+ /* Zero extend sreg inputs to 64 bits now. */
+ t_true = tcg_temp_new_i64();
+ t_false = tcg_temp_new_i64();
+ read_vec_element(s, t_true, rn, 0, type ? MO_64 : MO_32);
+ read_vec_element(s, t_false, rm, 0, type ? MO_64 : MO_32);
+
+ a64_test_cc(&c, cond);
+ t_zero = tcg_const_i64(0);
+ tcg_gen_movcond_i64(c.cond, t_true, c.value, t_zero, t_true, t_false);
+ tcg_temp_free_i64(t_zero);
+ tcg_temp_free_i64(t_false);
+ a64_free_cc(&c);
+
+ /* Note that sregs write back zeros to the high bits,
+ and we've already done the zero-extension. */
+ write_fp_dreg(s, rd, t_true);
+ tcg_temp_free_i64(t_true);
+}
+
+/* C3.6.25 Floating-point data-processing (1 source) - single precision */
+static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
+{
+ TCGv_ptr fpst;
+ TCGv_i32 tcg_op;
+ TCGv_i32 tcg_res;
+
+ fpst = get_fpstatus_ptr();
+ tcg_op = read_fp_sreg(s, rn);
+ tcg_res = tcg_temp_new_i32();
+
+ switch (opcode) {
+ case 0x0: /* FMOV */
+ tcg_gen_mov_i32(tcg_res, tcg_op);
+ break;
+ case 0x1: /* FABS */
+ gen_helper_vfp_abss(tcg_res, tcg_op);
+ break;
+ case 0x2: /* FNEG */
+ gen_helper_vfp_negs(tcg_res, tcg_op);
+ break;
+ case 0x3: /* FSQRT */
+ gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
+ break;
+ case 0x8: /* FRINTN */
+ case 0x9: /* FRINTP */
+ case 0xa: /* FRINTM */
+ case 0xb: /* FRINTZ */
+ case 0xc: /* FRINTA */
+ {
+ TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7));
+
+ gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
+ gen_helper_rints(tcg_res, tcg_op, fpst);
+
+ gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
+ tcg_temp_free_i32(tcg_rmode);
+ break;
+ }
+ case 0xe: /* FRINTX */
+ gen_helper_rints_exact(tcg_res, tcg_op, fpst);
+ break;
+ case 0xf: /* FRINTI */
+ gen_helper_rints(tcg_res, tcg_op, fpst);
+ break;
+ default:
+ abort();
+ }
+
+ write_fp_sreg(s, rd, tcg_res);
+
+ tcg_temp_free_ptr(fpst);
+ tcg_temp_free_i32(tcg_op);
+ tcg_temp_free_i32(tcg_res);
+}
+
+/* C3.6.25 Floating-point data-processing (1 source) - double precision */
+static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
+{
+ TCGv_ptr fpst;
+ TCGv_i64 tcg_op;
+ TCGv_i64 tcg_res;
+
+ fpst = get_fpstatus_ptr();
+ tcg_op = read_fp_dreg(s, rn);
+ tcg_res = tcg_temp_new_i64();
+
+ switch (opcode) {
+ case 0x0: /* FMOV */
+ tcg_gen_mov_i64(tcg_res, tcg_op);
+ break;
+ case 0x1: /* FABS */
+ gen_helper_vfp_absd(tcg_res, tcg_op);
+ break;
+ case 0x2: /* FNEG */
+ gen_helper_vfp_negd(tcg_res, tcg_op);
+ break;
+ case 0x3: /* FSQRT */
+ gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env);
+ break;
+ case 0x8: /* FRINTN */
+ case 0x9: /* FRINTP */
+ case 0xa: /* FRINTM */
+ case 0xb: /* FRINTZ */
+ case 0xc: /* FRINTA */
+ {
+ TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7));
+
+ gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
+ gen_helper_rintd(tcg_res, tcg_op, fpst);
+
+ gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
+ tcg_temp_free_i32(tcg_rmode);
+ break;
+ }
+ case 0xe: /* FRINTX */
+ gen_helper_rintd_exact(tcg_res, tcg_op, fpst);
+ break;
+ case 0xf: /* FRINTI */
+ gen_helper_rintd(tcg_res, tcg_op, fpst);
+ break;
+ default:
+ abort();
+ }
+
+ write_fp_dreg(s, rd, tcg_res);
+
+ tcg_temp_free_ptr(fpst);
+ tcg_temp_free_i64(tcg_op);
+ tcg_temp_free_i64(tcg_res);
+}
+
+static void handle_fp_fcvt(DisasContext *s, int opcode,
+ int rd, int rn, int dtype, int ntype)
+{
+ switch (ntype) {
+ case 0x0:
+ {
+ TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
+ if (dtype == 1) {
+ /* Single to double */
+ TCGv_i64 tcg_rd = tcg_temp_new_i64();
+ gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env);
+ write_fp_dreg(s, rd, tcg_rd);
+ tcg_temp_free_i64(tcg_rd);
+ } else {
+ /* Single to half */
+ TCGv_i32 tcg_rd = tcg_temp_new_i32();
+ gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, cpu_env);
+ /* write_fp_sreg is OK here because top half of tcg_rd is zero */
+ write_fp_sreg(s, rd, tcg_rd);
+ tcg_temp_free_i32(tcg_rd);
+ }
+ tcg_temp_free_i32(tcg_rn);
+ break;
+ }
+ case 0x1:
+ {
+ TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
+ TCGv_i32 tcg_rd = tcg_temp_new_i32();
+ if (dtype == 0) {
+ /* Double to single */
+ gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env);
+ } else {
+ /* Double to half */
+ gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, cpu_env);
+ /* write_fp_sreg is OK here because top half of tcg_rd is zero */
+ }
+ write_fp_sreg(s, rd, tcg_rd);
+ tcg_temp_free_i32(tcg_rd);
+ tcg_temp_free_i64(tcg_rn);
+ break;
+ }
+ case 0x3:
+ {
+ TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
+ tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
+ if (dtype == 0) {
+ /* Half to single */
+ TCGv_i32 tcg_rd = tcg_temp_new_i32();
+ gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, cpu_env);
+ write_fp_sreg(s, rd, tcg_rd);
+ tcg_temp_free_i32(tcg_rd);
+ } else {
+ /* Half to double */
+ TCGv_i64 tcg_rd = tcg_temp_new_i64();
+ gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, cpu_env);
+ write_fp_dreg(s, rd, tcg_rd);
+ tcg_temp_free_i64(tcg_rd);
+ }
+ tcg_temp_free_i32(tcg_rn);
+ break;
+ }
+ default:
+ abort();
+ }
+}
+
+/* C3.6.25 Floating point data-processing (1 source)
+ * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0
+ * +---+---+---+-----------+------+---+--------+-----------+------+------+
+ * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd |
+ * +---+---+---+-----------+------+---+--------+-----------+------+------+
+ */
+static void disas_fp_1src(DisasContext *s, uint32_t insn)
+{
+ int type = extract32(insn, 22, 2);
+ int opcode = extract32(insn, 15, 6);
+ int rn = extract32(insn, 5, 5);
+ int rd = extract32(insn, 0, 5);
+
+ switch (opcode) {
+ case 0x4: case 0x5: case 0x7:
+ {
+ /* FCVT between half, single and double precision */
+ int dtype = extract32(opcode, 0, 2);
+ if (type == 2 || dtype == type) {
+ unallocated_encoding(s);
+ return;
+ }
+ if (!fp_access_check(s)) {
+ return;
+ }
+
+ handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
+ break;
+ }
+ case 0x0 ... 0x3:
+ case 0x8 ... 0xc:
+ case 0xe ... 0xf:
+ /* 32-to-32 and 64-to-64 ops */
+ switch (type) {
+ case 0:
+ if (!fp_access_check(s)) {
+ return;
+ }
+
+ handle_fp_1src_single(s, opcode, rd, rn);
+ break;
+ case 1:
+ if (!fp_access_check(s)) {
+ return;
+ }
+
+ handle_fp_1src_double(s, opcode, rd, rn);
+ break;
+ default:
+ unallocated_encoding(s);
+ }
+ break;
+ default:
+ unallocated_encoding(s);
+ break;
+ }
+}
+
+/* C3.6.26 Floating-point data-processing (2 source) - single precision */
+static void handle_fp_2src_single(DisasContext *s, int opcode,
+ int rd, int rn, int rm)
+{
+ TCGv_i32 tcg_op1;
+ TCGv_i32 tcg_op2;
+ TCGv_i32 tcg_res;
+ TCGv_ptr fpst;
+
+ tcg_res = tcg_temp_new_i32();
+ fpst = get_fpstatus_ptr();
+ tcg_op1 = read_fp_sreg(s, rn);
+ tcg_op2 = read_fp_sreg(s, rm);
+
+ switch (opcode) {
+ case 0x0: /* FMUL */
+ gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x1: /* FDIV */
+ gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x2: /* FADD */
+ gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x3: /* FSUB */
+ gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x4: /* FMAX */
+ gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x5: /* FMIN */
+ gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x6: /* FMAXNM */
+ gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x7: /* FMINNM */
+ gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x8: /* FNMUL */
+ gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
+ gen_helper_vfp_negs(tcg_res, tcg_res);
+ break;
+ }
+
+ write_fp_sreg(s, rd, tcg_res);
+
+ tcg_temp_free_ptr(fpst);
+ tcg_temp_free_i32(tcg_op1);
+ tcg_temp_free_i32(tcg_op2);
+ tcg_temp_free_i32(tcg_res);
+}
+
+/* C3.6.26 Floating-point data-processing (2 source) - double precision */
+static void handle_fp_2src_double(DisasContext *s, int opcode,
+ int rd, int rn, int rm)
+{
+ TCGv_i64 tcg_op1;
+ TCGv_i64 tcg_op2;
+ TCGv_i64 tcg_res;
+ TCGv_ptr fpst;
+
+ tcg_res = tcg_temp_new_i64();
+ fpst = get_fpstatus_ptr();
+ tcg_op1 = read_fp_dreg(s, rn);
+ tcg_op2 = read_fp_dreg(s, rm);
+
+ switch (opcode) {
+ case 0x0: /* FMUL */
+ gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x1: /* FDIV */
+ gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x2: /* FADD */
+ gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x3: /* FSUB */
+ gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x4: /* FMAX */
+ gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x5: /* FMIN */
+ gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x6: /* FMAXNM */
+ gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x7: /* FMINNM */
+ gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x8: /* FNMUL */
+ gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
+ gen_helper_vfp_negd(tcg_res, tcg_res);
+ break;
+ }
+
+ write_fp_dreg(s, rd, tcg_res);
+
+ tcg_temp_free_ptr(fpst);
+ tcg_temp_free_i64(tcg_op1);
+ tcg_temp_free_i64(tcg_op2);
+ tcg_temp_free_i64(tcg_res);
+}
+
+/* C3.6.26 Floating point data-processing (2 source)
+ * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
+ * +---+---+---+-----------+------+---+------+--------+-----+------+------+
+ * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd |
+ * +---+---+---+-----------+------+---+------+--------+-----+------+------+
+ */
+static void disas_fp_2src(DisasContext *s, uint32_t insn)
+{
+ int type = extract32(insn, 22, 2);
+ int rd = extract32(insn, 0, 5);
+ int rn = extract32(insn, 5, 5);
+ int rm = extract32(insn, 16, 5);
+ int opcode = extract32(insn, 12, 4);
+
+ if (opcode > 8) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ switch (type) {
+ case 0:
+ if (!fp_access_check(s)) {
+ return;
+ }
+ handle_fp_2src_single(s, opcode, rd, rn, rm);
+ break;
+ case 1:
+ if (!fp_access_check(s)) {
+ return;
+ }
+ handle_fp_2src_double(s, opcode, rd, rn, rm);
+ break;
+ default:
+ unallocated_encoding(s);
+ }
+}
+
+/* C3.6.27 Floating-point data-processing (3 source) - single precision */
+static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1,
+ int rd, int rn, int rm, int ra)
+{
+ TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
+ TCGv_i32 tcg_res = tcg_temp_new_i32();
+ TCGv_ptr fpst = get_fpstatus_ptr();
+
+ tcg_op1 = read_fp_sreg(s, rn);
+ tcg_op2 = read_fp_sreg(s, rm);
+ tcg_op3 = read_fp_sreg(s, ra);
+
+ /* These are fused multiply-add, and must be done as one
+ * floating point operation with no rounding between the
+ * multiplication and addition steps.
+ * NB that doing the negations here as separate steps is
+ * correct : an input NaN should come out with its sign bit
+ * flipped if it is a negated-input.
+ */
+ if (o1 == true) {
+ gen_helper_vfp_negs(tcg_op3, tcg_op3);
+ }
+
+ if (o0 != o1) {
+ gen_helper_vfp_negs(tcg_op1, tcg_op1);
+ }
+
+ gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
+
+ write_fp_sreg(s, rd, tcg_res);
+
+ tcg_temp_free_ptr(fpst);
+ tcg_temp_free_i32(tcg_op1);
+ tcg_temp_free_i32(tcg_op2);
+ tcg_temp_free_i32(tcg_op3);
+ tcg_temp_free_i32(tcg_res);
+}
+
+/* C3.6.27 Floating-point data-processing (3 source) - double precision */
+static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1,
+ int rd, int rn, int rm, int ra)
+{
+ TCGv_i64 tcg_op1, tcg_op2, tcg_op3;
+ TCGv_i64 tcg_res = tcg_temp_new_i64();
+ TCGv_ptr fpst = get_fpstatus_ptr();
+
+ tcg_op1 = read_fp_dreg(s, rn);
+ tcg_op2 = read_fp_dreg(s, rm);
+ tcg_op3 = read_fp_dreg(s, ra);
+
+ /* These are fused multiply-add, and must be done as one
+ * floating point operation with no rounding between the
+ * multiplication and addition steps.
+ * NB that doing the negations here as separate steps is
+ * correct : an input NaN should come out with its sign bit
+ * flipped if it is a negated-input.
+ */
+ if (o1 == true) {
+ gen_helper_vfp_negd(tcg_op3, tcg_op3);
+ }
+
+ if (o0 != o1) {
+ gen_helper_vfp_negd(tcg_op1, tcg_op1);
+ }
+
+ gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
+
+ write_fp_dreg(s, rd, tcg_res);
+
+ tcg_temp_free_ptr(fpst);
+ tcg_temp_free_i64(tcg_op1);
+ tcg_temp_free_i64(tcg_op2);
+ tcg_temp_free_i64(tcg_op3);
+ tcg_temp_free_i64(tcg_res);
+}
+
+/* C3.6.27 Floating point data-processing (3 source)
+ * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0
+ * +---+---+---+-----------+------+----+------+----+------+------+------+
+ * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd |
+ * +---+---+---+-----------+------+----+------+----+------+------+------+
+ */
+static void disas_fp_3src(DisasContext *s, uint32_t insn)
+{
+ int type = extract32(insn, 22, 2);
+ int rd = extract32(insn, 0, 5);
+ int rn = extract32(insn, 5, 5);
+ int ra = extract32(insn, 10, 5);
+ int rm = extract32(insn, 16, 5);
+ bool o0 = extract32(insn, 15, 1);
+ bool o1 = extract32(insn, 21, 1);
+
+ switch (type) {
+ case 0:
+ if (!fp_access_check(s)) {
+ return;
+ }
+ handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra);
+ break;
+ case 1:
+ if (!fp_access_check(s)) {
+ return;
+ }
+ handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra);
+ break;
+ default:
+ unallocated_encoding(s);
+ }
+}
+
+/* C3.6.28 Floating point immediate
+ * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0
+ * +---+---+---+-----------+------+---+------------+-------+------+------+
+ * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd |
+ * +---+---+---+-----------+------+---+------------+-------+------+------+
+ */
+static void disas_fp_imm(DisasContext *s, uint32_t insn)
+{
+ int rd = extract32(insn, 0, 5);
+ int imm8 = extract32(insn, 13, 8);
+ int is_double = extract32(insn, 22, 2);
+ uint64_t imm;
+ TCGv_i64 tcg_res;
+
+ if (is_double > 1) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ if (!fp_access_check(s)) {
+ return;
+ }
+
+ /* The imm8 encodes the sign bit, enough bits to represent
+ * an exponent in the range 01....1xx to 10....0xx,
+ * and the most significant 4 bits of the mantissa; see
+ * VFPExpandImm() in the v8 ARM ARM.
+ */
+ if (is_double) {
+ imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) |
+ (extract32(imm8, 6, 1) ? 0x3fc0 : 0x4000) |
+ extract32(imm8, 0, 6);
+ imm <<= 48;
+ } else {
+ imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) |
+ (extract32(imm8, 6, 1) ? 0x3e00 : 0x4000) |
+ (extract32(imm8, 0, 6) << 3);
+ imm <<= 16;
+ }
+
+ tcg_res = tcg_const_i64(imm);
+ write_fp_dreg(s, rd, tcg_res);
+ tcg_temp_free_i64(tcg_res);
+}
+
+/* Handle floating point <=> fixed point conversions. Note that we can
+ * also deal with fp <=> integer conversions as a special case (scale == 64)
+ * OPTME: consider handling that special case specially or at least skipping
+ * the call to scalbn in the helpers for zero shifts.
+ */
+static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
+ bool itof, int rmode, int scale, int sf, int type)
+{
+ bool is_signed = !(opcode & 1);
+ bool is_double = type;
+ TCGv_ptr tcg_fpstatus;
+ TCGv_i32 tcg_shift;
+
+ tcg_fpstatus = get_fpstatus_ptr();
+
+ tcg_shift = tcg_const_i32(64 - scale);
+
+ if (itof) {
+ TCGv_i64 tcg_int = cpu_reg(s, rn);
+ if (!sf) {
+ TCGv_i64 tcg_extend = new_tmp_a64(s);
+
+ if (is_signed) {
+ tcg_gen_ext32s_i64(tcg_extend, tcg_int);
+ } else {
+ tcg_gen_ext32u_i64(tcg_extend, tcg_int);
+ }
+
+ tcg_int = tcg_extend;
+ }
+
+ if (is_double) {
+ TCGv_i64 tcg_double = tcg_temp_new_i64();
+ if (is_signed) {
+ gen_helper_vfp_sqtod(tcg_double, tcg_int,
+ tcg_shift, tcg_fpstatus);
+ } else {
+ gen_helper_vfp_uqtod(tcg_double, tcg_int,
+ tcg_shift, tcg_fpstatus);
+ }
+ write_fp_dreg(s, rd, tcg_double);
+ tcg_temp_free_i64(tcg_double);
+ } else {
+ TCGv_i32 tcg_single = tcg_temp_new_i32();
+ if (is_signed) {
+ gen_helper_vfp_sqtos(tcg_single, tcg_int,
+ tcg_shift, tcg_fpstatus);
+ } else {
+ gen_helper_vfp_uqtos(tcg_single, tcg_int,
+ tcg_shift, tcg_fpstatus);
+ }
+ write_fp_sreg(s, rd, tcg_single);
+ tcg_temp_free_i32(tcg_single);
+ }
+ } else {
+ TCGv_i64 tcg_int = cpu_reg(s, rd);
+ TCGv_i32 tcg_rmode;
+
+ if (extract32(opcode, 2, 1)) {
+ /* There are too many rounding modes to all fit into rmode,
+ * so FCVTA[US] is a special case.
+ */
+ rmode = FPROUNDING_TIEAWAY;
+ }
+
+ tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
+
+ gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
+
+ if (is_double) {
+ TCGv_i64 tcg_double = read_fp_dreg(s, rn);
+ if (is_signed) {
+ if (!sf) {
+ gen_helper_vfp_tosld(tcg_int, tcg_double,
+ tcg_shift, tcg_fpstatus);
+ } else {
+ gen_helper_vfp_tosqd(tcg_int, tcg_double,
+ tcg_shift, tcg_fpstatus);
+ }
+ } else {
+ if (!sf) {
+ gen_helper_vfp_tould(tcg_int, tcg_double,
+ tcg_shift, tcg_fpstatus);
+ } else {
+ gen_helper_vfp_touqd(tcg_int, tcg_double,
+ tcg_shift, tcg_fpstatus);
+ }
+ }
+ tcg_temp_free_i64(tcg_double);
+ } else {
+ TCGv_i32 tcg_single = read_fp_sreg(s, rn);
+ if (sf) {
+ if (is_signed) {
+ gen_helper_vfp_tosqs(tcg_int, tcg_single,
+ tcg_shift, tcg_fpstatus);
+ } else {
+ gen_helper_vfp_touqs(tcg_int, tcg_single,
+ tcg_shift, tcg_fpstatus);
+ }
+ } else {
+ TCGv_i32 tcg_dest = tcg_temp_new_i32();
+ if (is_signed) {
+ gen_helper_vfp_tosls(tcg_dest, tcg_single,
+ tcg_shift, tcg_fpstatus);
+ } else {
+ gen_helper_vfp_touls(tcg_dest, tcg_single,
+ tcg_shift, tcg_fpstatus);
+ }
+ tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
+ tcg_temp_free_i32(tcg_dest);
+ }
+ tcg_temp_free_i32(tcg_single);
+ }
+
+ gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
+ tcg_temp_free_i32(tcg_rmode);
+
+ if (!sf) {
+ tcg_gen_ext32u_i64(tcg_int, tcg_int);
+ }
+ }
+
+ tcg_temp_free_ptr(tcg_fpstatus);
+ tcg_temp_free_i32(tcg_shift);
+}
+
+/* C3.6.29 Floating point <-> fixed point conversions
+ * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
+ * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
+ * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd |
+ * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
+ */
+static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
+{
+ int rd = extract32(insn, 0, 5);
+ int rn = extract32(insn, 5, 5);
+ int scale = extract32(insn, 10, 6);
+ int opcode = extract32(insn, 16, 3);
+ int rmode = extract32(insn, 19, 2);
+ int type = extract32(insn, 22, 2);
+ bool sbit = extract32(insn, 29, 1);
+ bool sf = extract32(insn, 31, 1);
+ bool itof;
+
+ if (sbit || (type > 1)
+ || (!sf && scale < 32)) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ switch ((rmode << 3) | opcode) {
+ case 0x2: /* SCVTF */
+ case 0x3: /* UCVTF */
+ itof = true;
+ break;
+ case 0x18: /* FCVTZS */
+ case 0x19: /* FCVTZU */
+ itof = false;
+ break;
+ default:
+ unallocated_encoding(s);
+ return;
+ }
+
+ if (!fp_access_check(s)) {
+ return;
+ }
+
+ handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
+}
+
+static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
+{
+ /* FMOV: gpr to or from float, double, or top half of quad fp reg,
+ * without conversion.
+ */
+
+ if (itof) {
+ TCGv_i64 tcg_rn = cpu_reg(s, rn);
+
+ switch (type) {
+ case 0:
+ {
+ /* 32 bit */
+ TCGv_i64 tmp = tcg_temp_new_i64();
+ tcg_gen_ext32u_i64(tmp, tcg_rn);
+ tcg_gen_st_i64(tmp, cpu_env, fp_reg_offset(s, rd, MO_64));
+ tcg_gen_movi_i64(tmp, 0);
+ tcg_gen_st_i64(tmp, cpu_env, fp_reg_hi_offset(s, rd));
+ tcg_temp_free_i64(tmp);
+ break;
+ }
+ case 1:
+ {
+ /* 64 bit */
+ TCGv_i64 tmp = tcg_const_i64(0);
+ tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_offset(s, rd, MO_64));
+ tcg_gen_st_i64(tmp, cpu_env, fp_reg_hi_offset(s, rd));
+ tcg_temp_free_i64(tmp);
+ break;
+ }
+ case 2:
+ /* 64 bit to top half. */
+ tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd));
+ break;
+ }
+ } else {
+ TCGv_i64 tcg_rd = cpu_reg(s, rd);
+
+ switch (type) {
+ case 0:
+ /* 32 bit */
+ tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32));
+ break;
+ case 1:
+ /* 64 bit */
+ tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64));
+ break;
+ case 2:
+ /* 64 bits from top half */
+ tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn));
+ break;
+ }
+ }
+}
+
+/* C3.6.30 Floating point <-> integer conversions
+ * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
+ * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
+ * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
+ * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
+ */
+static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
+{
+ int rd = extract32(insn, 0, 5);
+ int rn = extract32(insn, 5, 5);
+ int opcode = extract32(insn, 16, 3);
+ int rmode = extract32(insn, 19, 2);
+ int type = extract32(insn, 22, 2);
+ bool sbit = extract32(insn, 29, 1);
+ bool sf = extract32(insn, 31, 1);
+
+ if (sbit) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ if (opcode > 5) {
+ /* FMOV */
+ bool itof = opcode & 1;
+
+ if (rmode >= 2) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ switch (sf << 3 | type << 1 | rmode) {
+ case 0x0: /* 32 bit */
+ case 0xa: /* 64 bit */
+ case 0xd: /* 64 bit to top half of quad */
+ break;
+ default:
+ /* all other sf/type/rmode combinations are invalid */
+ unallocated_encoding(s);
+ break;
+ }
+
+ if (!fp_access_check(s)) {
+ return;
+ }
+ handle_fmov(s, rd, rn, type, itof);
+ } else {
+ /* actual FP conversions */
+ bool itof = extract32(opcode, 1, 1);
+
+ if (type > 1 || (rmode != 0 && opcode > 1)) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ if (!fp_access_check(s)) {
+ return;
+ }
+ handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
+ }
+}
+
+/* FP-specific subcases of table C3-6 (SIMD and FP data processing)
+ * 31 30 29 28 25 24 0
+ * +---+---+---+---------+-----------------------------+
+ * | | 0 | | 1 1 1 1 | |
+ * +---+---+---+---------+-----------------------------+
+ */
+static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
+{
+ if (extract32(insn, 24, 1)) {
+ /* Floating point data-processing (3 source) */
+ disas_fp_3src(s, insn);
+ } else if (extract32(insn, 21, 1) == 0) {
+ /* Floating point to fixed point conversions */
+ disas_fp_fixed_conv(s, insn);
+ } else {
+ switch (extract32(insn, 10, 2)) {
+ case 1:
+ /* Floating point conditional compare */
+ disas_fp_ccomp(s, insn);
+ break;
+ case 2:
+ /* Floating point data-processing (2 source) */
+ disas_fp_2src(s, insn);
+ break;
+ case 3:
+ /* Floating point conditional select */
+ disas_fp_csel(s, insn);
+ break;
+ case 0:
+ switch (ctz32(extract32(insn, 12, 4))) {
+ case 0: /* [15:12] == xxx1 */
+ /* Floating point immediate */
+ disas_fp_imm(s, insn);
+ break;
+ case 1: /* [15:12] == xx10 */
+ /* Floating point compare */
+ disas_fp_compare(s, insn);
+ break;
+ case 2: /* [15:12] == x100 */
+ /* Floating point data-processing (1 source) */
+ disas_fp_1src(s, insn);
+ break;
+ case 3: /* [15:12] == 1000 */
+ unallocated_encoding(s);
+ break;
+ default: /* [15:12] == 0000 */
+ /* Floating point <-> integer conversions */
+ disas_fp_int_conv(s, insn);
+ break;
+ }
+ break;
+ }
+ }
+}
+
+static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
+ int pos)
+{
+ /* Extract 64 bits from the middle of two concatenated 64 bit
+ * vector register slices left:right. The extracted bits start
+ * at 'pos' bits into the right (least significant) side.
+ * We return the result in tcg_right, and guarantee not to
+ * trash tcg_left.
+ */
+ TCGv_i64 tcg_tmp = tcg_temp_new_i64();
+ assert(pos > 0 && pos < 64);
+
+ tcg_gen_shri_i64(tcg_right, tcg_right, pos);
+ tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
+ tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
+
+ tcg_temp_free_i64(tcg_tmp);
+}
+
+/* C3.6.1 EXT
+ * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0
+ * +---+---+-------------+-----+---+------+---+------+---+------+------+
+ * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd |
+ * +---+---+-------------+-----+---+------+---+------+---+------+------+
+ */
+static void disas_simd_ext(DisasContext *s, uint32_t insn)
+{
+ int is_q = extract32(insn, 30, 1);
+ int op2 = extract32(insn, 22, 2);
+ int imm4 = extract32(insn, 11, 4);
+ int rm = extract32(insn, 16, 5);
+ int rn = extract32(insn, 5, 5);
+ int rd = extract32(insn, 0, 5);
+ int pos = imm4 << 3;
+ TCGv_i64 tcg_resl, tcg_resh;
+
+ if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ if (!fp_access_check(s)) {
+ return;
+ }
+
+ tcg_resh = tcg_temp_new_i64();
+ tcg_resl = tcg_temp_new_i64();
+
+ /* Vd gets bits starting at pos bits into Vm:Vn. This is
+ * either extracting 128 bits from a 128:128 concatenation, or
+ * extracting 64 bits from a 64:64 concatenation.
+ */
+ if (!is_q) {
+ read_vec_element(s, tcg_resl, rn, 0, MO_64);
+ if (pos != 0) {
+ read_vec_element(s, tcg_resh, rm, 0, MO_64);
+ do_ext64(s, tcg_resh, tcg_resl, pos);
+ }
+ tcg_gen_movi_i64(tcg_resh, 0);
+ } else {
+ TCGv_i64 tcg_hh;
+ typedef struct {
+ int reg;
+ int elt;
+ } EltPosns;
+ EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
+ EltPosns *elt = eltposns;
+
+ if (pos >= 64) {
+ elt++;
+ pos -= 64;
+ }
+
+ read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
+ elt++;
+ read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
+ elt++;
+ if (pos != 0) {
+ do_ext64(s, tcg_resh, tcg_resl, pos);
+ tcg_hh = tcg_temp_new_i64();
+ read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
+ do_ext64(s, tcg_hh, tcg_resh, pos);
+ tcg_temp_free_i64(tcg_hh);
+ }
+ }
+
+ write_vec_element(s, tcg_resl, rd, 0, MO_64);
+ tcg_temp_free_i64(tcg_resl);
+ write_vec_element(s, tcg_resh, rd, 1, MO_64);
+ tcg_temp_free_i64(tcg_resh);
+}
+
+/* C3.6.2 TBL/TBX
+ * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
+ * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
+ * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd |
+ * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
+ */
+static void disas_simd_tb(DisasContext *s, uint32_t insn)
+{
+ int op2 = extract32(insn, 22, 2);
+ int is_q = extract32(insn, 30, 1);
+ int rm = extract32(insn, 16, 5);
+ int rn = extract32(insn, 5, 5);
+ int rd = extract32(insn, 0, 5);
+ int is_tblx = extract32(insn, 12, 1);
+ int len = extract32(insn, 13, 2);
+ TCGv_i64 tcg_resl, tcg_resh, tcg_idx;
+ TCGv_i32 tcg_regno, tcg_numregs;
+
+ if (op2 != 0) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ if (!fp_access_check(s)) {
+ return;
+ }
+
+ /* This does a table lookup: for every byte element in the input
+ * we index into a table formed from up to four vector registers,
+ * and then the output is the result of the lookups. Our helper
+ * function does the lookup operation for a single 64 bit part of
+ * the input.
+ */
+ tcg_resl = tcg_temp_new_i64();
+ tcg_resh = tcg_temp_new_i64();
+
+ if (is_tblx) {
+ read_vec_element(s, tcg_resl, rd, 0, MO_64);
+ } else {
+ tcg_gen_movi_i64(tcg_resl, 0);
+ }
+ if (is_tblx && is_q) {
+ read_vec_element(s, tcg_resh, rd, 1, MO_64);
+ } else {
+ tcg_gen_movi_i64(tcg_resh, 0);
+ }
+
+ tcg_idx = tcg_temp_new_i64();
+ tcg_regno = tcg_const_i32(rn);
+ tcg_numregs = tcg_const_i32(len + 1);
+ read_vec_element(s, tcg_idx, rm, 0, MO_64);
+ gen_helper_simd_tbl(tcg_resl, cpu_env, tcg_resl, tcg_idx,
+ tcg_regno, tcg_numregs);
+ if (is_q) {
+ read_vec_element(s, tcg_idx, rm, 1, MO_64);
+ gen_helper_simd_tbl(tcg_resh, cpu_env, tcg_resh, tcg_idx,
+ tcg_regno, tcg_numregs);
+ }
+ tcg_temp_free_i64(tcg_idx);
+ tcg_temp_free_i32(tcg_regno);
+ tcg_temp_free_i32(tcg_numregs);
+
+ write_vec_element(s, tcg_resl, rd, 0, MO_64);
+ tcg_temp_free_i64(tcg_resl);
+ write_vec_element(s, tcg_resh, rd, 1, MO_64);
+ tcg_temp_free_i64(tcg_resh);
+}
+
+/* C3.6.3 ZIP/UZP/TRN
+ * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
+ * +---+---+-------------+------+---+------+---+------------------+------+
+ * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd |
+ * +---+---+-------------+------+---+------+---+------------------+------+
+ */
+static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
+{
+ int rd = extract32(insn, 0, 5);
+ int rn = extract32(insn, 5, 5);
+ int rm = extract32(insn, 16, 5);
+ int size = extract32(insn, 22, 2);
+ /* opc field bits [1:0] indicate ZIP/UZP/TRN;
+ * bit 2 indicates 1 vs 2 variant of the insn.
+ */
+ int opcode = extract32(insn, 12, 2);
+ bool part = extract32(insn, 14, 1);
+ bool is_q = extract32(insn, 30, 1);
+ int esize = 8 << size;
+ int i, ofs;
+ int datasize = is_q ? 128 : 64;
+ int elements = datasize / esize;
+ TCGv_i64 tcg_res, tcg_resl, tcg_resh;
+
+ if (opcode == 0 || (size == 3 && !is_q)) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ if (!fp_access_check(s)) {
+ return;
+ }
+
+ tcg_resl = tcg_const_i64(0);
+ tcg_resh = tcg_const_i64(0);
+ tcg_res = tcg_temp_new_i64();
+
+ for (i = 0; i < elements; i++) {
+ switch (opcode) {
+ case 1: /* UZP1/2 */
+ {
+ int midpoint = elements / 2;
+ if (i < midpoint) {
+ read_vec_element(s, tcg_res, rn, 2 * i + part, size);
+ } else {
+ read_vec_element(s, tcg_res, rm,
+ 2 * (i - midpoint) + part, size);
+ }
+ break;
+ }
+ case 2: /* TRN1/2 */
+ if (i & 1) {
+ read_vec_element(s, tcg_res, rm, (i & ~1) + part, size);
+ } else {
+ read_vec_element(s, tcg_res, rn, (i & ~1) + part, size);
+ }
+ break;
+ case 3: /* ZIP1/2 */
+ {
+ int base = part * elements / 2;
+ if (i & 1) {
+ read_vec_element(s, tcg_res, rm, base + (i >> 1), size);
+ } else {
+ read_vec_element(s, tcg_res, rn, base + (i >> 1), size);
+ }
+ break;
+ }
+ default:
+ g_assert_not_reached();
+ }
+
+ ofs = i * esize;
+ if (ofs < 64) {
+ tcg_gen_shli_i64(tcg_res, tcg_res, ofs);
+ tcg_gen_or_i64(tcg_resl, tcg_resl, tcg_res);
+ } else {
+ tcg_gen_shli_i64(tcg_res, tcg_res, ofs - 64);
+ tcg_gen_or_i64(tcg_resh, tcg_resh, tcg_res);
+ }
+ }
+
+ tcg_temp_free_i64(tcg_res);
+
+ write_vec_element(s, tcg_resl, rd, 0, MO_64);
+ tcg_temp_free_i64(tcg_resl);
+ write_vec_element(s, tcg_resh, rd, 1, MO_64);
+ tcg_temp_free_i64(tcg_resh);
+}
+
+static void do_minmaxop(DisasContext *s, TCGv_i32 tcg_elt1, TCGv_i32 tcg_elt2,
+ int opc, bool is_min, TCGv_ptr fpst)
+{
+ /* Helper function for disas_simd_across_lanes: do a single precision
+ * min/max operation on the specified two inputs,
+ * and return the result in tcg_elt1.
+ */
+ if (opc == 0xc) {
+ if (is_min) {
+ gen_helper_vfp_minnums(tcg_elt1, tcg_elt1, tcg_elt2, fpst);
+ } else {
+ gen_helper_vfp_maxnums(tcg_elt1, tcg_elt1, tcg_elt2, fpst);
+ }
+ } else {
+ assert(opc == 0xf);
+ if (is_min) {
+ gen_helper_vfp_mins(tcg_elt1, tcg_elt1, tcg_elt2, fpst);
+ } else {
+ gen_helper_vfp_maxs(tcg_elt1, tcg_elt1, tcg_elt2, fpst);
+ }
+ }
+}
+
+/* C3.6.4 AdvSIMD across lanes
+ * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
+ * +---+---+---+-----------+------+-----------+--------+-----+------+------+
+ * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
+ * +---+---+---+-----------+------+-----------+--------+-----+------+------+
+ */
+static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
+{
+ int rd = extract32(insn, 0, 5);
+ int rn = extract32(insn, 5, 5);
+ int size = extract32(insn, 22, 2);
+ int opcode = extract32(insn, 12, 5);
+ bool is_q = extract32(insn, 30, 1);
+ bool is_u = extract32(insn, 29, 1);
+ bool is_fp = false;
+ bool is_min = false;
+ int esize;
+ int elements;
+ int i;
+ TCGv_i64 tcg_res, tcg_elt;
+
+ switch (opcode) {
+ case 0x1b: /* ADDV */
+ if (is_u) {
+ unallocated_encoding(s);
+ return;
+ }
+ /* fall through */
+ case 0x3: /* SADDLV, UADDLV */
+ case 0xa: /* SMAXV, UMAXV */
+ case 0x1a: /* SMINV, UMINV */
+ if (size == 3 || (size == 2 && !is_q)) {
+ unallocated_encoding(s);
+ return;
+ }
+ break;
+ case 0xc: /* FMAXNMV, FMINNMV */
+ case 0xf: /* FMAXV, FMINV */
+ if (!is_u || !is_q || extract32(size, 0, 1)) {
+ unallocated_encoding(s);
+ return;
+ }
+ /* Bit 1 of size field encodes min vs max, and actual size is always
+ * 32 bits: adjust the size variable so following code can rely on it
+ */
+ is_min = extract32(size, 1, 1);
+ is_fp = true;
+ size = 2;
+ break;
+ default:
+ unallocated_encoding(s);
+ return;
+ }
+
+ if (!fp_access_check(s)) {
+ return;
+ }
+
+ esize = 8 << size;
+ elements = (is_q ? 128 : 64) / esize;
+
+ tcg_res = tcg_temp_new_i64();
+ tcg_elt = tcg_temp_new_i64();
+
+ /* These instructions operate across all lanes of a vector
+ * to produce a single result. We can guarantee that a 64
+ * bit intermediate is sufficient:
+ * + for [US]ADDLV the maximum element size is 32 bits, and
+ * the result type is 64 bits
+ * + for FMAX*V, FMIN*V, ADDV the intermediate type is the
+ * same as the element size, which is 32 bits at most
+ * For the integer operations we can choose to work at 64
+ * or 32 bits and truncate at the end; for simplicity
+ * we use 64 bits always. The floating point
+ * ops do require 32 bit intermediates, though.
+ */
+ if (!is_fp) {
+ read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
+
+ for (i = 1; i < elements; i++) {
+ read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
+
+ switch (opcode) {
+ case 0x03: /* SADDLV / UADDLV */
+ case 0x1b: /* ADDV */
+ tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
+ break;
+ case 0x0a: /* SMAXV / UMAXV */
+ tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
+ tcg_res,
+ tcg_res, tcg_elt, tcg_res, tcg_elt);
+ break;
+ case 0x1a: /* SMINV / UMINV */
+ tcg_gen_movcond_i64(is_u ? TCG_COND_LEU : TCG_COND_LE,
+ tcg_res,
+ tcg_res, tcg_elt, tcg_res, tcg_elt);
+ break;
+ break;
+ default:
+ g_assert_not_reached();
+ }
+
+ }
+ } else {
+ /* Floating point ops which work on 32 bit (single) intermediates.
+ * Note that correct NaN propagation requires that we do these
+ * operations in exactly the order specified by the pseudocode.
+ */
+ TCGv_i32 tcg_elt1 = tcg_temp_new_i32();
+ TCGv_i32 tcg_elt2 = tcg_temp_new_i32();
+ TCGv_i32 tcg_elt3 = tcg_temp_new_i32();
+ TCGv_ptr fpst = get_fpstatus_ptr();
+
+ assert(esize == 32);
+ assert(elements == 4);
+
+ read_vec_element(s, tcg_elt, rn, 0, MO_32);
+ tcg_gen_extrl_i64_i32(tcg_elt1, tcg_elt);
+ read_vec_element(s, tcg_elt, rn, 1, MO_32);
+ tcg_gen_extrl_i64_i32(tcg_elt2, tcg_elt);
+
+ do_minmaxop(s, tcg_elt1, tcg_elt2, opcode, is_min, fpst);
+
+ read_vec_element(s, tcg_elt, rn, 2, MO_32);
+ tcg_gen_extrl_i64_i32(tcg_elt2, tcg_elt);
+ read_vec_element(s, tcg_elt, rn, 3, MO_32);
+ tcg_gen_extrl_i64_i32(tcg_elt3, tcg_elt);
+
+ do_minmaxop(s, tcg_elt2, tcg_elt3, opcode, is_min, fpst);
+
+ do_minmaxop(s, tcg_elt1, tcg_elt2, opcode, is_min, fpst);
+
+ tcg_gen_extu_i32_i64(tcg_res, tcg_elt1);
+ tcg_temp_free_i32(tcg_elt1);
+ tcg_temp_free_i32(tcg_elt2);
+ tcg_temp_free_i32(tcg_elt3);
+ tcg_temp_free_ptr(fpst);
+ }
+
+ tcg_temp_free_i64(tcg_elt);
+
+ /* Now truncate the result to the width required for the final output */
+ if (opcode == 0x03) {
+ /* SADDLV, UADDLV: result is 2*esize */
+ size++;
+ }
+
+ switch (size) {
+ case 0:
+ tcg_gen_ext8u_i64(tcg_res, tcg_res);
+ break;
+ case 1:
+ tcg_gen_ext16u_i64(tcg_res, tcg_res);
+ break;
+ case 2:
+ tcg_gen_ext32u_i64(tcg_res, tcg_res);
+ break;
+ case 3:
+ break;
+ default:
+ g_assert_not_reached();
+ }
+
+ write_fp_dreg(s, rd, tcg_res);
+ tcg_temp_free_i64(tcg_res);
+}
+
+/* C6.3.31 DUP (Element, Vector)
+ *
+ * 31 30 29 21 20 16 15 10 9 5 4 0
+ * +---+---+-------------------+--------+-------------+------+------+
+ * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
+ * +---+---+-------------------+--------+-------------+------+------+
+ *
+ * size: encoded in imm5 (see ARM ARM LowestSetBit())
+ */
+static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn,
+ int imm5)
+{
+ int size = ctz32(imm5);
+ int esize = 8 << size;
+ int elements = (is_q ? 128 : 64) / esize;
+ int index, i;
+ TCGv_i64 tmp;
+
+ if (size > 3 || (size == 3 && !is_q)) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ if (!fp_access_check(s)) {
+ return;
+ }
+
+ index = imm5 >> (size + 1);
+
+ tmp = tcg_temp_new_i64();
+ read_vec_element(s, tmp, rn, index, size);
+
+ for (i = 0; i < elements; i++) {
+ write_vec_element(s, tmp, rd, i, size);
+ }
+
+ if (!is_q) {
+ clear_vec_high(s, rd);
+ }
+
+ tcg_temp_free_i64(tmp);
+}
+
+/* C6.3.31 DUP (element, scalar)
+ * 31 21 20 16 15 10 9 5 4 0
+ * +-----------------------+--------+-------------+------+------+
+ * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
+ * +-----------------------+--------+-------------+------+------+
+ */
+static void handle_simd_dupes(DisasContext *s, int rd, int rn,
+ int imm5)
+{
+ int size = ctz32(imm5);
+ int index;
+ TCGv_i64 tmp;
+
+ if (size > 3) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ if (!fp_access_check(s)) {
+ return;
+ }
+
+ index = imm5 >> (size + 1);
+
+ /* This instruction just extracts the specified element and
+ * zero-extends it into the bottom of the destination register.
+ */
+ tmp = tcg_temp_new_i64();
+ read_vec_element(s, tmp, rn, index, size);
+ write_fp_dreg(s, rd, tmp);
+ tcg_temp_free_i64(tmp);
+}
+
+/* C6.3.32 DUP (General)
+ *
+ * 31 30 29 21 20 16 15 10 9 5 4 0
+ * +---+---+-------------------+--------+-------------+------+------+
+ * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd |
+ * +---+---+-------------------+--------+-------------+------+------+
+ *
+ * size: encoded in imm5 (see ARM ARM LowestSetBit())
+ */
+static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn,
+ int imm5)
+{
+ int size = ctz32(imm5);
+ int esize = 8 << size;
+ int elements = (is_q ? 128 : 64)/esize;
+ int i = 0;
+
+ if (size > 3 || ((size == 3) && !is_q)) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ if (!fp_access_check(s)) {
+ return;
+ }
+
+ for (i = 0; i < elements; i++) {
+ write_vec_element(s, cpu_reg(s, rn), rd, i, size);
+ }
+ if (!is_q) {
+ clear_vec_high(s, rd);
+ }
+}
+
+/* C6.3.150 INS (Element)
+ *
+ * 31 21 20 16 15 14 11 10 9 5 4 0
+ * +-----------------------+--------+------------+---+------+------+
+ * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
+ * +-----------------------+--------+------------+---+------+------+
+ *
+ * size: encoded in imm5 (see ARM ARM LowestSetBit())
+ * index: encoded in imm5<4:size+1>
+ */
+static void handle_simd_inse(DisasContext *s, int rd, int rn,
+ int imm4, int imm5)
+{
+ int size = ctz32(imm5);
+ int src_index, dst_index;
+ TCGv_i64 tmp;
+
+ if (size > 3) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ if (!fp_access_check(s)) {
+ return;
+ }
+
+ dst_index = extract32(imm5, 1+size, 5);
+ src_index = extract32(imm4, size, 4);
+
+ tmp = tcg_temp_new_i64();
+
+ read_vec_element(s, tmp, rn, src_index, size);
+ write_vec_element(s, tmp, rd, dst_index, size);
+
+ tcg_temp_free_i64(tmp);
+}
+
+
+/* C6.3.151 INS (General)
+ *
+ * 31 21 20 16 15 10 9 5 4 0
+ * +-----------------------+--------+-------------+------+------+
+ * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd |
+ * +-----------------------+--------+-------------+------+------+
+ *
+ * size: encoded in imm5 (see ARM ARM LowestSetBit())
+ * index: encoded in imm5<4:size+1>
+ */
+static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5)
+{
+ int size = ctz32(imm5);
+ int idx;
+
+ if (size > 3) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ if (!fp_access_check(s)) {
+ return;
+ }
+
+ idx = extract32(imm5, 1 + size, 4 - size);
+ write_vec_element(s, cpu_reg(s, rn), rd, idx, size);
+}
+
+/*
+ * C6.3.321 UMOV (General)
+ * C6.3.237 SMOV (General)
+ *
+ * 31 30 29 21 20 16 15 12 10 9 5 4 0
+ * +---+---+-------------------+--------+-------------+------+------+
+ * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd |
+ * +---+---+-------------------+--------+-------------+------+------+
+ *
+ * U: unsigned when set
+ * size: encoded in imm5 (see ARM ARM LowestSetBit())
+ */
+static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed,
+ int rn, int rd, int imm5)
+{
+ int size = ctz32(imm5);
+ int element;
+ TCGv_i64 tcg_rd;
+
+ /* Check for UnallocatedEncodings */
+ if (is_signed) {
+ if (size > 2 || (size == 2 && !is_q)) {
+ unallocated_encoding(s);
+ return;
+ }
+ } else {
+ if (size > 3
+ || (size < 3 && is_q)
+ || (size == 3 && !is_q)) {
+ unallocated_encoding(s);
+ return;
+ }
+ }
+
+ if (!fp_access_check(s)) {
+ return;
+ }
+
+ element = extract32(imm5, 1+size, 4);
+
+ tcg_rd = cpu_reg(s, rd);
+ read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0));
+ if (is_signed && !is_q) {
+ tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
+ }
+}
+
+/* C3.6.5 AdvSIMD copy
+ * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
+ * +---+---+----+-----------------+------+---+------+---+------+------+
+ * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
+ * +---+---+----+-----------------+------+---+------+---+------+------+
+ */
+static void disas_simd_copy(DisasContext *s, uint32_t insn)
+{
+ int rd = extract32(insn, 0, 5);
+ int rn = extract32(insn, 5, 5);
+ int imm4 = extract32(insn, 11, 4);
+ int op = extract32(insn, 29, 1);
+ int is_q = extract32(insn, 30, 1);
+ int imm5 = extract32(insn, 16, 5);
+
+ if (op) {
+ if (is_q) {
+ /* INS (element) */
+ handle_simd_inse(s, rd, rn, imm4, imm5);
+ } else {
+ unallocated_encoding(s);
+ }
+ } else {
+ switch (imm4) {
+ case 0:
+ /* DUP (element - vector) */
+ handle_simd_dupe(s, is_q, rd, rn, imm5);
+ break;
+ case 1:
+ /* DUP (general) */
+ handle_simd_dupg(s, is_q, rd, rn, imm5);
+ break;
+ case 3:
+ if (is_q) {
+ /* INS (general) */
+ handle_simd_insg(s, rd, rn, imm5);
+ } else {
+ unallocated_encoding(s);
+ }
+ break;
+ case 5:
+ case 7:
+ /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */
+ handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5);
+ break;
+ default:
+ unallocated_encoding(s);
+ break;
+ }
+ }
+}
+
+/* C3.6.6 AdvSIMD modified immediate
+ * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0
+ * +---+---+----+---------------------+-----+-------+----+---+-------+------+
+ * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd |
+ * +---+---+----+---------------------+-----+-------+----+---+-------+------+
+ *
+ * There are a number of operations that can be carried out here:
+ * MOVI - move (shifted) imm into register
+ * MVNI - move inverted (shifted) imm into register
+ * ORR - bitwise OR of (shifted) imm with register
+ * BIC - bitwise clear of (shifted) imm with register
+ */
+static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
+{
+ int rd = extract32(insn, 0, 5);
+ int cmode = extract32(insn, 12, 4);
+ int cmode_3_1 = extract32(cmode, 1, 3);
+ int cmode_0 = extract32(cmode, 0, 1);
+ int o2 = extract32(insn, 11, 1);
+ uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
+ bool is_neg = extract32(insn, 29, 1);
+ bool is_q = extract32(insn, 30, 1);
+ uint64_t imm = 0;
+ TCGv_i64 tcg_rd, tcg_imm;
+ int i;
+
+ if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ if (!fp_access_check(s)) {
+ return;
+ }
+
+ /* See AdvSIMDExpandImm() in ARM ARM */
+ switch (cmode_3_1) {
+ case 0: /* Replicate(Zeros(24):imm8, 2) */
+ case 1: /* Replicate(Zeros(16):imm8:Zeros(8), 2) */
+ case 2: /* Replicate(Zeros(8):imm8:Zeros(16), 2) */
+ case 3: /* Replicate(imm8:Zeros(24), 2) */
+ {
+ int shift = cmode_3_1 * 8;
+ imm = bitfield_replicate(abcdefgh << shift, 32);
+ break;
+ }
+ case 4: /* Replicate(Zeros(8):imm8, 4) */
+ case 5: /* Replicate(imm8:Zeros(8), 4) */
+ {
+ int shift = (cmode_3_1 & 0x1) * 8;
+ imm = bitfield_replicate(abcdefgh << shift, 16);
+ break;
+ }
+ case 6:
+ if (cmode_0) {
+ /* Replicate(Zeros(8):imm8:Ones(16), 2) */
+ imm = (abcdefgh << 16) | 0xffff;
+ } else {
+ /* Replicate(Zeros(16):imm8:Ones(8), 2) */
+ imm = (abcdefgh << 8) | 0xff;
+ }
+ imm = bitfield_replicate(imm, 32);
+ break;
+ case 7:
+ if (!cmode_0 && !is_neg) {
+ imm = bitfield_replicate(abcdefgh, 8);
+ } else if (!cmode_0 && is_neg) {
+ int i;
+ imm = 0;
+ for (i = 0; i < 8; i++) {
+ if ((abcdefgh) & (1 << i)) {
+ imm |= 0xffULL << (i * 8);
+ }
+ }
+ } else if (cmode_0) {
+ if (is_neg) {
+ imm = (abcdefgh & 0x3f) << 48;
+ if (abcdefgh & 0x80) {
+ imm |= 0x8000000000000000ULL;
+ }
+ if (abcdefgh & 0x40) {
+ imm |= 0x3fc0000000000000ULL;
+ } else {
+ imm |= 0x4000000000000000ULL;
+ }
+ } else {
+ imm = (abcdefgh & 0x3f) << 19;
+ if (abcdefgh & 0x80) {
+ imm |= 0x80000000;
+ }
+ if (abcdefgh & 0x40) {
+ imm |= 0x3e000000;
+ } else {
+ imm |= 0x40000000;
+ }
+ imm |= (imm << 32);
+ }
+ }
+ break;
+ }
+
+ if (cmode_3_1 != 7 && is_neg) {
+ imm = ~imm;
+ }
+
+ tcg_imm = tcg_const_i64(imm);
+ tcg_rd = new_tmp_a64(s);
+
+ for (i = 0; i < 2; i++) {
+ int foffs = i ? fp_reg_hi_offset(s, rd) : fp_reg_offset(s, rd, MO_64);
+
+ if (i == 1 && !is_q) {
+ /* non-quad ops clear high half of vector */
+ tcg_gen_movi_i64(tcg_rd, 0);
+ } else if ((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9) {
+ tcg_gen_ld_i64(tcg_rd, cpu_env, foffs);
+ if (is_neg) {
+ /* AND (BIC) */
+ tcg_gen_and_i64(tcg_rd, tcg_rd, tcg_imm);
+ } else {
+ /* ORR */
+ tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_imm);
+ }
+ } else {
+ /* MOVI */
+ tcg_gen_mov_i64(tcg_rd, tcg_imm);
+ }
+ tcg_gen_st_i64(tcg_rd, cpu_env, foffs);
+ }
+
+ tcg_temp_free_i64(tcg_imm);
+}
+
+/* C3.6.7 AdvSIMD scalar copy
+ * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
+ * +-----+----+-----------------+------+---+------+---+------+------+
+ * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
+ * +-----+----+-----------------+------+---+------+---+------+------+
+ */
+static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn)
+{
+ int rd = extract32(insn, 0, 5);
+ int rn = extract32(insn, 5, 5);
+ int imm4 = extract32(insn, 11, 4);
+ int imm5 = extract32(insn, 16, 5);
+ int op = extract32(insn, 29, 1);
+
+ if (op != 0 || imm4 != 0) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ /* DUP (element, scalar) */
+ handle_simd_dupes(s, rd, rn, imm5);
+}
+
+/* C3.6.8 AdvSIMD scalar pairwise
+ * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
+ * +-----+---+-----------+------+-----------+--------+-----+------+------+
+ * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
+ * +-----+---+-----------+------+-----------+--------+-----+------+------+
+ */
+static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn)
+{
+ int u = extract32(insn, 29, 1);
+ int size = extract32(insn, 22, 2);
+ int opcode = extract32(insn, 12, 5);
+ int rn = extract32(insn, 5, 5);
+ int rd = extract32(insn, 0, 5);
+ TCGv_ptr fpst;
+
+ /* For some ops (the FP ones), size[1] is part of the encoding.
+ * For ADDP strictly it is not but size[1] is always 1 for valid
+ * encodings.
+ */
+ opcode |= (extract32(size, 1, 1) << 5);
+
+ switch (opcode) {
+ case 0x3b: /* ADDP */
+ if (u || size != 3) {
+ unallocated_encoding(s);
+ return;
+ }
+ if (!fp_access_check(s)) {
+ return;
+ }
+
+ TCGV_UNUSED_PTR(fpst);
+ break;
+ case 0xc: /* FMAXNMP */
+ case 0xd: /* FADDP */
+ case 0xf: /* FMAXP */
+ case 0x2c: /* FMINNMP */
+ case 0x2f: /* FMINP */
+ /* FP op, size[0] is 32 or 64 bit */
+ if (!u) {
+ unallocated_encoding(s);
+ return;
+ }
+ if (!fp_access_check(s)) {
+ return;
+ }
+
+ size = extract32(size, 0, 1) ? 3 : 2;
+ fpst = get_fpstatus_ptr();
+ break;
+ default:
+ unallocated_encoding(s);
+ return;
+ }
+
+ if (size == 3) {
+ TCGv_i64 tcg_op1 = tcg_temp_new_i64();
+ TCGv_i64 tcg_op2 = tcg_temp_new_i64();
+ TCGv_i64 tcg_res = tcg_temp_new_i64();
+
+ read_vec_element(s, tcg_op1, rn, 0, MO_64);
+ read_vec_element(s, tcg_op2, rn, 1, MO_64);
+
+ switch (opcode) {
+ case 0x3b: /* ADDP */
+ tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2);
+ break;
+ case 0xc: /* FMAXNMP */
+ gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0xd: /* FADDP */
+ gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0xf: /* FMAXP */
+ gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x2c: /* FMINNMP */
+ gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x2f: /* FMINP */
+ gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ default:
+ g_assert_not_reached();
+ }
+
+ write_fp_dreg(s, rd, tcg_res);
+
+ tcg_temp_free_i64(tcg_op1);
+ tcg_temp_free_i64(tcg_op2);
+ tcg_temp_free_i64(tcg_res);
+ } else {
+ TCGv_i32 tcg_op1 = tcg_temp_new_i32();
+ TCGv_i32 tcg_op2 = tcg_temp_new_i32();
+ TCGv_i32 tcg_res = tcg_temp_new_i32();
+
+ read_vec_element_i32(s, tcg_op1, rn, 0, MO_32);
+ read_vec_element_i32(s, tcg_op2, rn, 1, MO_32);
+
+ switch (opcode) {
+ case 0xc: /* FMAXNMP */
+ gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0xd: /* FADDP */
+ gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0xf: /* FMAXP */
+ gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x2c: /* FMINNMP */
+ gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x2f: /* FMINP */
+ gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ default:
+ g_assert_not_reached();
+ }
+
+ write_fp_sreg(s, rd, tcg_res);
+
+ tcg_temp_free_i32(tcg_op1);
+ tcg_temp_free_i32(tcg_op2);
+ tcg_temp_free_i32(tcg_res);
+ }
+
+ if (!TCGV_IS_UNUSED_PTR(fpst)) {
+ tcg_temp_free_ptr(fpst);
+ }
+}
+
+/*
+ * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
+ *
+ * This code is handles the common shifting code and is used by both
+ * the vector and scalar code.
+ */
+static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
+ TCGv_i64 tcg_rnd, bool accumulate,
+ bool is_u, int size, int shift)
+{
+ bool extended_result = false;
+ bool round = !TCGV_IS_UNUSED_I64(tcg_rnd);
+ int ext_lshift = 0;
+ TCGv_i64 tcg_src_hi;
+
+ if (round && size == 3) {
+ extended_result = true;
+ ext_lshift = 64 - shift;
+ tcg_src_hi = tcg_temp_new_i64();
+ } else if (shift == 64) {
+ if (!accumulate && is_u) {
+ /* result is zero */
+ tcg_gen_movi_i64(tcg_res, 0);
+ return;
+ }
+ }
+
+ /* Deal with the rounding step */
+ if (round) {
+ if (extended_result) {
+ TCGv_i64 tcg_zero = tcg_const_i64(0);
+ if (!is_u) {
+ /* take care of sign extending tcg_res */
+ tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
+ tcg_gen_add2_i64(tcg_src, tcg_src_hi,
+ tcg_src, tcg_src_hi,
+ tcg_rnd, tcg_zero);
+ } else {
+ tcg_gen_add2_i64(tcg_src, tcg_src_hi,
+ tcg_src, tcg_zero,
+ tcg_rnd, tcg_zero);
+ }
+ tcg_temp_free_i64(tcg_zero);
+ } else {
+ tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
+ }
+ }
+
+ /* Now do the shift right */
+ if (round && extended_result) {
+ /* extended case, >64 bit precision required */
+ if (ext_lshift == 0) {
+ /* special case, only high bits matter */
+ tcg_gen_mov_i64(tcg_src, tcg_src_hi);
+ } else {
+ tcg_gen_shri_i64(tcg_src, tcg_src, shift);
+ tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
+ tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
+ }
+ } else {
+ if (is_u) {
+ if (shift == 64) {
+ /* essentially shifting in 64 zeros */
+ tcg_gen_movi_i64(tcg_src, 0);
+ } else {
+ tcg_gen_shri_i64(tcg_src, tcg_src, shift);
+ }
+ } else {
+ if (shift == 64) {
+ /* effectively extending the sign-bit */
+ tcg_gen_sari_i64(tcg_src, tcg_src, 63);
+ } else {
+ tcg_gen_sari_i64(tcg_src, tcg_src, shift);
+ }
+ }
+ }
+
+ if (accumulate) {
+ tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
+ } else {
+ tcg_gen_mov_i64(tcg_res, tcg_src);
+ }
+
+ if (extended_result) {
+ tcg_temp_free_i64(tcg_src_hi);
+ }
+}
+
+/* Common SHL/SLI - Shift left with an optional insert */
+static void handle_shli_with_ins(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
+ bool insert, int shift)
+{
+ if (insert) { /* SLI */
+ tcg_gen_deposit_i64(tcg_res, tcg_res, tcg_src, shift, 64 - shift);
+ } else { /* SHL */
+ tcg_gen_shli_i64(tcg_res, tcg_src, shift);
+ }
+}
+
+/* SRI: shift right with insert */
+static void handle_shri_with_ins(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
+ int size, int shift)
+{
+ int esize = 8 << size;
+
+ /* shift count same as element size is valid but does nothing;
+ * special case to avoid potential shift by 64.
+ */
+ if (shift != esize) {
+ tcg_gen_shri_i64(tcg_src, tcg_src, shift);
+ tcg_gen_deposit_i64(tcg_res, tcg_res, tcg_src, 0, esize - shift);
+ }
+}
+
+/* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
+static void handle_scalar_simd_shri(DisasContext *s,
+ bool is_u, int immh, int immb,
+ int opcode, int rn, int rd)
+{
+ const int size = 3;
+ int immhb = immh << 3 | immb;
+ int shift = 2 * (8 << size) - immhb;
+ bool accumulate = false;
+ bool round = false;
+ bool insert = false;
+ TCGv_i64 tcg_rn;
+ TCGv_i64 tcg_rd;
+ TCGv_i64 tcg_round;
+
+ if (!extract32(immh, 3, 1)) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ if (!fp_access_check(s)) {
+ return;
+ }
+
+ switch (opcode) {
+ case 0x02: /* SSRA / USRA (accumulate) */
+ accumulate = true;
+ break;
+ case 0x04: /* SRSHR / URSHR (rounding) */
+ round = true;
+ break;
+ case 0x06: /* SRSRA / URSRA (accum + rounding) */
+ accumulate = round = true;
+ break;
+ case 0x08: /* SRI */
+ insert = true;
+ break;
+ }
+
+ if (round) {
+ uint64_t round_const = 1ULL << (shift - 1);
+ tcg_round = tcg_const_i64(round_const);
+ } else {
+ TCGV_UNUSED_I64(tcg_round);
+ }
+
+ tcg_rn = read_fp_dreg(s, rn);
+ tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
+
+ if (insert) {
+ handle_shri_with_ins(tcg_rd, tcg_rn, size, shift);
+ } else {
+ handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
+ accumulate, is_u, size, shift);
+ }
+
+ write_fp_dreg(s, rd, tcg_rd);
+
+ tcg_temp_free_i64(tcg_rn);
+ tcg_temp_free_i64(tcg_rd);
+ if (round) {
+ tcg_temp_free_i64(tcg_round);
+ }
+}
+
+/* SHL/SLI - Scalar shift left */
+static void handle_scalar_simd_shli(DisasContext *s, bool insert,
+ int immh, int immb, int opcode,
+ int rn, int rd)
+{
+ int size = 32 - clz32(immh) - 1;
+ int immhb = immh << 3 | immb;
+ int shift = immhb - (8 << size);
+ TCGv_i64 tcg_rn = new_tmp_a64(s);
+ TCGv_i64 tcg_rd = new_tmp_a64(s);
+
+ if (!extract32(immh, 3, 1)) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ if (!fp_access_check(s)) {
+ return;
+ }
+
+ tcg_rn = read_fp_dreg(s, rn);
+ tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
+
+ handle_shli_with_ins(tcg_rd, tcg_rn, insert, shift);
+
+ write_fp_dreg(s, rd, tcg_rd);
+
+ tcg_temp_free_i64(tcg_rn);
+ tcg_temp_free_i64(tcg_rd);
+}
+
+/* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
+ * (signed/unsigned) narrowing */
+static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
+ bool is_u_shift, bool is_u_narrow,
+ int immh, int immb, int opcode,
+ int rn, int rd)
+{
+ int immhb = immh << 3 | immb;
+ int size = 32 - clz32(immh) - 1;
+ int esize = 8 << size;
+ int shift = (2 * esize) - immhb;
+ int elements = is_scalar ? 1 : (64 / esize);
+ bool round = extract32(opcode, 0, 1);
+ TCGMemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
+ TCGv_i64 tcg_rn, tcg_rd, tcg_round;
+ TCGv_i32 tcg_rd_narrowed;
+ TCGv_i64 tcg_final;
+
+ static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
+ { gen_helper_neon_narrow_sat_s8,
+ gen_helper_neon_unarrow_sat8 },
+ { gen_helper_neon_narrow_sat_s16,
+ gen_helper_neon_unarrow_sat16 },
+ { gen_helper_neon_narrow_sat_s32,
+ gen_helper_neon_unarrow_sat32 },
+ { NULL, NULL },
+ };
+ static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
+ gen_helper_neon_narrow_sat_u8,
+ gen_helper_neon_narrow_sat_u16,
+ gen_helper_neon_narrow_sat_u32,
+ NULL
+ };
+ NeonGenNarrowEnvFn *narrowfn;
+
+ int i;
+
+ assert(size < 4);
+
+ if (extract32(immh, 3, 1)) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ if (!fp_access_check(s)) {
+ return;
+ }
+
+ if (is_u_shift) {
+ narrowfn = unsigned_narrow_fns[size];
+ } else {
+ narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
+ }
+
+ tcg_rn = tcg_temp_new_i64();
+ tcg_rd = tcg_temp_new_i64();
+ tcg_rd_narrowed = tcg_temp_new_i32();
+ tcg_final = tcg_const_i64(0);
+
+ if (round) {
+ uint64_t round_const = 1ULL << (shift - 1);
+ tcg_round = tcg_const_i64(round_const);
+ } else {
+ TCGV_UNUSED_I64(tcg_round);
+ }
+
+ for (i = 0; i < elements; i++) {
+ read_vec_element(s, tcg_rn, rn, i, ldop);
+ handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
+ false, is_u_shift, size+1, shift);
+ narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd);
+ tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
+ tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
+ }
+
+ if (!is_q) {
+ clear_vec_high(s, rd);
+ write_vec_element(s, tcg_final, rd, 0, MO_64);
+ } else {
+ write_vec_element(s, tcg_final, rd, 1, MO_64);
+ }
+
+ if (round) {
+ tcg_temp_free_i64(tcg_round);
+ }
+ tcg_temp_free_i64(tcg_rn);
+ tcg_temp_free_i64(tcg_rd);
+ tcg_temp_free_i32(tcg_rd_narrowed);
+ tcg_temp_free_i64(tcg_final);
+ return;
+}
+
+/* SQSHLU, UQSHL, SQSHL: saturating left shifts */
+static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
+ bool src_unsigned, bool dst_unsigned,
+ int immh, int immb, int rn, int rd)
+{
+ int immhb = immh << 3 | immb;
+ int size = 32 - clz32(immh) - 1;
+ int shift = immhb - (8 << size);
+ int pass;
+
+ assert(immh != 0);
+ assert(!(scalar && is_q));
+
+ if (!scalar) {
+ if (!is_q && extract32(immh, 3, 1)) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ /* Since we use the variable-shift helpers we must
+ * replicate the shift count into each element of
+ * the tcg_shift value.
+ */
+ switch (size) {
+ case 0:
+ shift |= shift << 8;
+ /* fall through */
+ case 1:
+ shift |= shift << 16;
+ break;
+ case 2:
+ case 3:
+ break;
+ default:
+ g_assert_not_reached();
+ }
+ }
+
+ if (!fp_access_check(s)) {
+ return;
+ }
+
+ if (size == 3) {
+ TCGv_i64 tcg_shift = tcg_const_i64(shift);
+ static NeonGenTwo64OpEnvFn * const fns[2][2] = {
+ { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
+ { NULL, gen_helper_neon_qshl_u64 },
+ };
+ NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
+ int maxpass = is_q ? 2 : 1;
+
+ for (pass = 0; pass < maxpass; pass++) {
+ TCGv_i64 tcg_op = tcg_temp_new_i64();
+
+ read_vec_element(s, tcg_op, rn, pass, MO_64);
+ genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
+ write_vec_element(s, tcg_op, rd, pass, MO_64);
+
+ tcg_temp_free_i64(tcg_op);
+ }
+ tcg_temp_free_i64(tcg_shift);
+
+ if (!is_q) {
+ clear_vec_high(s, rd);
+ }
+ } else {
+ TCGv_i32 tcg_shift = tcg_const_i32(shift);
+ static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
+ {
+ { gen_helper_neon_qshl_s8,
+ gen_helper_neon_qshl_s16,
+ gen_helper_neon_qshl_s32 },
+ { gen_helper_neon_qshlu_s8,
+ gen_helper_neon_qshlu_s16,
+ gen_helper_neon_qshlu_s32 }
+ }, {
+ { NULL, NULL, NULL },
+ { gen_helper_neon_qshl_u8,
+ gen_helper_neon_qshl_u16,
+ gen_helper_neon_qshl_u32 }
+ }
+ };
+ NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
+ TCGMemOp memop = scalar ? size : MO_32;
+ int maxpass = scalar ? 1 : is_q ? 4 : 2;
+
+ for (pass = 0; pass < maxpass; pass++) {
+ TCGv_i32 tcg_op = tcg_temp_new_i32();
+
+ read_vec_element_i32(s, tcg_op, rn, pass, memop);
+ genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
+ if (scalar) {
+ switch (size) {
+ case 0:
+ tcg_gen_ext8u_i32(tcg_op, tcg_op);
+ break;
+ case 1:
+ tcg_gen_ext16u_i32(tcg_op, tcg_op);
+ break;
+ case 2:
+ break;
+ default:
+ g_assert_not_reached();
+ }
+ write_fp_sreg(s, rd, tcg_op);
+ } else {
+ write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
+ }
+
+ tcg_temp_free_i32(tcg_op);
+ }
+ tcg_temp_free_i32(tcg_shift);
+
+ if (!is_q && !scalar) {
+ clear_vec_high(s, rd);
+ }
+ }
+}
+
+/* Common vector code for handling integer to FP conversion */
+static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
+ int elements, int is_signed,
+ int fracbits, int size)
+{
+ bool is_double = size == 3 ? true : false;
+ TCGv_ptr tcg_fpst = get_fpstatus_ptr();
+ TCGv_i32 tcg_shift = tcg_const_i32(fracbits);
+ TCGv_i64 tcg_int = tcg_temp_new_i64();
+ TCGMemOp mop = size | (is_signed ? MO_SIGN : 0);
+ int pass;
+
+ for (pass = 0; pass < elements; pass++) {
+ read_vec_element(s, tcg_int, rn, pass, mop);
+
+ if (is_double) {
+ TCGv_i64 tcg_double = tcg_temp_new_i64();
+ if (is_signed) {
+ gen_helper_vfp_sqtod(tcg_double, tcg_int,
+ tcg_shift, tcg_fpst);
+ } else {
+ gen_helper_vfp_uqtod(tcg_double, tcg_int,
+ tcg_shift, tcg_fpst);
+ }
+ if (elements == 1) {
+ write_fp_dreg(s, rd, tcg_double);
+ } else {
+ write_vec_element(s, tcg_double, rd, pass, MO_64);
+ }
+ tcg_temp_free_i64(tcg_double);
+ } else {
+ TCGv_i32 tcg_single = tcg_temp_new_i32();
+ if (is_signed) {
+ gen_helper_vfp_sqtos(tcg_single, tcg_int,
+ tcg_shift, tcg_fpst);
+ } else {
+ gen_helper_vfp_uqtos(tcg_single, tcg_int,
+ tcg_shift, tcg_fpst);
+ }
+ if (elements == 1) {
+ write_fp_sreg(s, rd, tcg_single);
+ } else {
+ write_vec_element_i32(s, tcg_single, rd, pass, MO_32);
+ }
+ tcg_temp_free_i32(tcg_single);
+ }
+ }
+
+ if (!is_double && elements == 2) {
+ clear_vec_high(s, rd);
+ }
+
+ tcg_temp_free_i64(tcg_int);
+ tcg_temp_free_ptr(tcg_fpst);
+ tcg_temp_free_i32(tcg_shift);
+}
+
+/* UCVTF/SCVTF - Integer to FP conversion */
+static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
+ bool is_q, bool is_u,
+ int immh, int immb, int opcode,
+ int rn, int rd)
+{
+ bool is_double = extract32(immh, 3, 1);
+ int size = is_double ? MO_64 : MO_32;
+ int elements;
+ int immhb = immh << 3 | immb;
+ int fracbits = (is_double ? 128 : 64) - immhb;
+
+ if (!extract32(immh, 2, 2)) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ if (is_scalar) {
+ elements = 1;
+ } else {
+ elements = is_double ? 2 : is_q ? 4 : 2;
+ if (is_double && !is_q) {
+ unallocated_encoding(s);
+ return;
+ }
+ }
+
+ if (!fp_access_check(s)) {
+ return;
+ }
+
+ /* immh == 0 would be a failure of the decode logic */
+ g_assert(immh);
+
+ handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
+}
+
+/* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
+static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
+ bool is_q, bool is_u,
+ int immh, int immb, int rn, int rd)
+{
+ bool is_double = extract32(immh, 3, 1);
+ int immhb = immh << 3 | immb;
+ int fracbits = (is_double ? 128 : 64) - immhb;
+ int pass;
+ TCGv_ptr tcg_fpstatus;
+ TCGv_i32 tcg_rmode, tcg_shift;
+
+ if (!extract32(immh, 2, 2)) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ if (!is_scalar && !is_q && is_double) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ if (!fp_access_check(s)) {
+ return;
+ }
+
+ assert(!(is_scalar && is_q));
+
+ tcg_rmode = tcg_const_i32(arm_rmode_to_sf(FPROUNDING_ZERO));
+ gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
+ tcg_fpstatus = get_fpstatus_ptr();
+ tcg_shift = tcg_const_i32(fracbits);
+
+ if (is_double) {
+ int maxpass = is_scalar ? 1 : 2;
+
+ for (pass = 0; pass < maxpass; pass++) {
+ TCGv_i64 tcg_op = tcg_temp_new_i64();
+
+ read_vec_element(s, tcg_op, rn, pass, MO_64);
+ if (is_u) {
+ gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
+ } else {
+ gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
+ }
+ write_vec_element(s, tcg_op, rd, pass, MO_64);
+ tcg_temp_free_i64(tcg_op);
+ }
+ if (!is_q) {
+ clear_vec_high(s, rd);
+ }
+ } else {
+ int maxpass = is_scalar ? 1 : is_q ? 4 : 2;
+ for (pass = 0; pass < maxpass; pass++) {
+ TCGv_i32 tcg_op = tcg_temp_new_i32();
+
+ read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
+ if (is_u) {
+ gen_helper_vfp_touls(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
+ } else {
+ gen_helper_vfp_tosls(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
+ }
+ if (is_scalar) {
+ write_fp_sreg(s, rd, tcg_op);
+ } else {
+ write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
+ }
+ tcg_temp_free_i32(tcg_op);
+ }
+ if (!is_q && !is_scalar) {
+ clear_vec_high(s, rd);
+ }
+ }
+
+ tcg_temp_free_ptr(tcg_fpstatus);
+ tcg_temp_free_i32(tcg_shift);
+ gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
+ tcg_temp_free_i32(tcg_rmode);
+}
+
+/* C3.6.9 AdvSIMD scalar shift by immediate
+ * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
+ * +-----+---+-------------+------+------+--------+---+------+------+
+ * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
+ * +-----+---+-------------+------+------+--------+---+------+------+
+ *
+ * This is the scalar version so it works on a fixed sized registers
+ */
+static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
+{
+ int rd = extract32(insn, 0, 5);
+ int rn = extract32(insn, 5, 5);
+ int opcode = extract32(insn, 11, 5);
+ int immb = extract32(insn, 16, 3);
+ int immh = extract32(insn, 19, 4);
+ bool is_u = extract32(insn, 29, 1);
+
+ if (immh == 0) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ switch (opcode) {
+ case 0x08: /* SRI */
+ if (!is_u) {
+ unallocated_encoding(s);
+ return;
+ }
+ /* fall through */
+ case 0x00: /* SSHR / USHR */
+ case 0x02: /* SSRA / USRA */
+ case 0x04: /* SRSHR / URSHR */
+ case 0x06: /* SRSRA / URSRA */
+ handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
+ break;
+ case 0x0a: /* SHL / SLI */
+ handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
+ break;
+ case 0x1c: /* SCVTF, UCVTF */
+ handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
+ opcode, rn, rd);
+ break;
+ case 0x10: /* SQSHRUN, SQSHRUN2 */
+ case 0x11: /* SQRSHRUN, SQRSHRUN2 */
+ if (!is_u) {
+ unallocated_encoding(s);
+ return;
+ }
+ handle_vec_simd_sqshrn(s, true, false, false, true,
+ immh, immb, opcode, rn, rd);
+ break;
+ case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
+ case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
+ handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
+ immh, immb, opcode, rn, rd);
+ break;
+ case 0xc: /* SQSHLU */
+ if (!is_u) {
+ unallocated_encoding(s);
+ return;
+ }
+ handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
+ break;
+ case 0xe: /* SQSHL, UQSHL */
+ handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
+ break;
+ case 0x1f: /* FCVTZS, FCVTZU */
+ handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
+ break;
+ default:
+ unallocated_encoding(s);
+ break;
+ }
+}
+
+/* C3.6.10 AdvSIMD scalar three different
+ * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
+ * +-----+---+-----------+------+---+------+--------+-----+------+------+
+ * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
+ * +-----+---+-----------+------+---+------+--------+-----+------+------+
+ */
+static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
+{
+ bool is_u = extract32(insn, 29, 1);
+ int size = extract32(insn, 22, 2);
+ int opcode = extract32(insn, 12, 4);
+ int rm = extract32(insn, 16, 5);
+ int rn = extract32(insn, 5, 5);
+ int rd = extract32(insn, 0, 5);
+
+ if (is_u) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ switch (opcode) {
+ case 0x9: /* SQDMLAL, SQDMLAL2 */
+ case 0xb: /* SQDMLSL, SQDMLSL2 */
+ case 0xd: /* SQDMULL, SQDMULL2 */
+ if (size == 0 || size == 3) {
+ unallocated_encoding(s);
+ return;
+ }
+ break;
+ default:
+ unallocated_encoding(s);
+ return;
+ }
+
+ if (!fp_access_check(s)) {
+ return;
+ }
+
+ if (size == 2) {
+ TCGv_i64 tcg_op1 = tcg_temp_new_i64();
+ TCGv_i64 tcg_op2 = tcg_temp_new_i64();
+ TCGv_i64 tcg_res = tcg_temp_new_i64();
+
+ read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
+ read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
+
+ tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
+ gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res);
+
+ switch (opcode) {
+ case 0xd: /* SQDMULL, SQDMULL2 */
+ break;
+ case 0xb: /* SQDMLSL, SQDMLSL2 */
+ tcg_gen_neg_i64(tcg_res, tcg_res);
+ /* fall through */
+ case 0x9: /* SQDMLAL, SQDMLAL2 */
+ read_vec_element(s, tcg_op1, rd, 0, MO_64);
+ gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env,
+ tcg_res, tcg_op1);
+ break;
+ default:
+ g_assert_not_reached();
+ }
+
+ write_fp_dreg(s, rd, tcg_res);
+
+ tcg_temp_free_i64(tcg_op1);
+ tcg_temp_free_i64(tcg_op2);
+ tcg_temp_free_i64(tcg_res);
+ } else {
+ TCGv_i32 tcg_op1 = tcg_temp_new_i32();
+ TCGv_i32 tcg_op2 = tcg_temp_new_i32();
+ TCGv_i64 tcg_res = tcg_temp_new_i64();
+
+ read_vec_element_i32(s, tcg_op1, rn, 0, MO_16);
+ read_vec_element_i32(s, tcg_op2, rm, 0, MO_16);
+
+ gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
+ gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res);
+
+ switch (opcode) {
+ case 0xd: /* SQDMULL, SQDMULL2 */
+ break;
+ case 0xb: /* SQDMLSL, SQDMLSL2 */
+ gen_helper_neon_negl_u32(tcg_res, tcg_res);
+ /* fall through */
+ case 0x9: /* SQDMLAL, SQDMLAL2 */
+ {
+ TCGv_i64 tcg_op3 = tcg_temp_new_i64();
+ read_vec_element(s, tcg_op3, rd, 0, MO_32);
+ gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env,
+ tcg_res, tcg_op3);
+ tcg_temp_free_i64(tcg_op3);
+ break;
+ }
+ default:
+ g_assert_not_reached();
+ }
+
+ tcg_gen_ext32u_i64(tcg_res, tcg_res);
+ write_fp_dreg(s, rd, tcg_res);
+
+ tcg_temp_free_i32(tcg_op1);
+ tcg_temp_free_i32(tcg_op2);
+ tcg_temp_free_i64(tcg_res);
+ }
+}
+
+static void handle_3same_64(DisasContext *s, int opcode, bool u,
+ TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm)
+{
+ /* Handle 64x64->64 opcodes which are shared between the scalar
+ * and vector 3-same groups. We cover every opcode where size == 3
+ * is valid in either the three-reg-same (integer, not pairwise)
+ * or scalar-three-reg-same groups. (Some opcodes are not yet
+ * implemented.)
+ */
+ TCGCond cond;
+
+ switch (opcode) {
+ case 0x1: /* SQADD */
+ if (u) {
+ gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
+ } else {
+ gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
+ }
+ break;
+ case 0x5: /* SQSUB */
+ if (u) {
+ gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
+ } else {
+ gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
+ }
+ break;
+ case 0x6: /* CMGT, CMHI */
+ /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0.
+ * We implement this using setcond (test) and then negating.
+ */
+ cond = u ? TCG_COND_GTU : TCG_COND_GT;
+ do_cmop:
+ tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm);
+ tcg_gen_neg_i64(tcg_rd, tcg_rd);
+ break;
+ case 0x7: /* CMGE, CMHS */
+ cond = u ? TCG_COND_GEU : TCG_COND_GE;
+ goto do_cmop;
+ case 0x11: /* CMTST, CMEQ */
+ if (u) {
+ cond = TCG_COND_EQ;
+ goto do_cmop;
+ }
+ /* CMTST : test is "if (X & Y != 0)". */
+ tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
+ tcg_gen_setcondi_i64(TCG_COND_NE, tcg_rd, tcg_rd, 0);
+ tcg_gen_neg_i64(tcg_rd, tcg_rd);
+ break;
+ case 0x8: /* SSHL, USHL */
+ if (u) {
+ gen_helper_neon_shl_u64(tcg_rd, tcg_rn, tcg_rm);
+ } else {
+ gen_helper_neon_shl_s64(tcg_rd, tcg_rn, tcg_rm);
+ }
+ break;
+ case 0x9: /* SQSHL, UQSHL */
+ if (u) {
+ gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
+ } else {
+ gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
+ }
+ break;
+ case 0xa: /* SRSHL, URSHL */
+ if (u) {
+ gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm);
+ } else {
+ gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm);
+ }
+ break;
+ case 0xb: /* SQRSHL, UQRSHL */
+ if (u) {
+ gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
+ } else {
+ gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
+ }
+ break;
+ case 0x10: /* ADD, SUB */
+ if (u) {
+ tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm);
+ } else {
+ tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm);
+ }
+ break;
+ default:
+ g_assert_not_reached();
+ }
+}
+
+/* Handle the 3-same-operands float operations; shared by the scalar
+ * and vector encodings. The caller must filter out any encodings
+ * not allocated for the encoding it is dealing with.
+ */
+static void handle_3same_float(DisasContext *s, int size, int elements,
+ int fpopcode, int rd, int rn, int rm)
+{
+ int pass;
+ TCGv_ptr fpst = get_fpstatus_ptr();
+
+ for (pass = 0; pass < elements; pass++) {
+ if (size) {
+ /* Double */
+ TCGv_i64 tcg_op1 = tcg_temp_new_i64();
+ TCGv_i64 tcg_op2 = tcg_temp_new_i64();
+ TCGv_i64 tcg_res = tcg_temp_new_i64();
+
+ read_vec_element(s, tcg_op1, rn, pass, MO_64);
+ read_vec_element(s, tcg_op2, rm, pass, MO_64);
+
+ switch (fpopcode) {
+ case 0x39: /* FMLS */
+ /* As usual for ARM, separate negation for fused multiply-add */
+ gen_helper_vfp_negd(tcg_op1, tcg_op1);
+ /* fall through */
+ case 0x19: /* FMLA */
+ read_vec_element(s, tcg_res, rd, pass, MO_64);
+ gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2,
+ tcg_res, fpst);
+ break;
+ case 0x18: /* FMAXNM */
+ gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x1a: /* FADD */
+ gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x1b: /* FMULX */
+ gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x1c: /* FCMEQ */
+ gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x1e: /* FMAX */
+ gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x1f: /* FRECPS */
+ gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x38: /* FMINNM */
+ gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x3a: /* FSUB */
+ gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x3e: /* FMIN */
+ gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x3f: /* FRSQRTS */
+ gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x5b: /* FMUL */
+ gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x5c: /* FCMGE */
+ gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x5d: /* FACGE */
+ gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x5f: /* FDIV */
+ gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x7a: /* FABD */
+ gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
+ gen_helper_vfp_absd(tcg_res, tcg_res);
+ break;
+ case 0x7c: /* FCMGT */
+ gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x7d: /* FACGT */
+ gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ default:
+ g_assert_not_reached();
+ }
+
+ write_vec_element(s, tcg_res, rd, pass, MO_64);
+
+ tcg_temp_free_i64(tcg_res);
+ tcg_temp_free_i64(tcg_op1);
+ tcg_temp_free_i64(tcg_op2);
+ } else {
+ /* Single */
+ TCGv_i32 tcg_op1 = tcg_temp_new_i32();
+ TCGv_i32 tcg_op2 = tcg_temp_new_i32();
+ TCGv_i32 tcg_res = tcg_temp_new_i32();
+
+ read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
+ read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
+
+ switch (fpopcode) {
+ case 0x39: /* FMLS */
+ /* As usual for ARM, separate negation for fused multiply-add */
+ gen_helper_vfp_negs(tcg_op1, tcg_op1);
+ /* fall through */
+ case 0x19: /* FMLA */
+ read_vec_element_i32(s, tcg_res, rd, pass, MO_32);
+ gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2,
+ tcg_res, fpst);
+ break;
+ case 0x1a: /* FADD */
+ gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x1b: /* FMULX */
+ gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x1c: /* FCMEQ */
+ gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x1e: /* FMAX */
+ gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x1f: /* FRECPS */
+ gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x18: /* FMAXNM */
+ gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x38: /* FMINNM */
+ gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x3a: /* FSUB */
+ gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x3e: /* FMIN */
+ gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x3f: /* FRSQRTS */
+ gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x5b: /* FMUL */
+ gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x5c: /* FCMGE */
+ gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x5d: /* FACGE */
+ gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x5f: /* FDIV */
+ gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x7a: /* FABD */
+ gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
+ gen_helper_vfp_abss(tcg_res, tcg_res);
+ break;
+ case 0x7c: /* FCMGT */
+ gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x7d: /* FACGT */
+ gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ default:
+ g_assert_not_reached();
+ }
+
+ if (elements == 1) {
+ /* scalar single so clear high part */
+ TCGv_i64 tcg_tmp = tcg_temp_new_i64();
+
+ tcg_gen_extu_i32_i64(tcg_tmp, tcg_res);
+ write_vec_element(s, tcg_tmp, rd, pass, MO_64);
+ tcg_temp_free_i64(tcg_tmp);
+ } else {
+ write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
+ }
+
+ tcg_temp_free_i32(tcg_res);
+ tcg_temp_free_i32(tcg_op1);
+ tcg_temp_free_i32(tcg_op2);
+ }
+ }
+
+ tcg_temp_free_ptr(fpst);
+
+ if ((elements << size) < 4) {
+ /* scalar, or non-quad vector op */
+ clear_vec_high(s, rd);
+ }
+}
+
+/* C3.6.11 AdvSIMD scalar three same
+ * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
+ * +-----+---+-----------+------+---+------+--------+---+------+------+
+ * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
+ * +-----+---+-----------+------+---+------+--------+---+------+------+
+ */
+static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn)
+{
+ int rd = extract32(insn, 0, 5);
+ int rn = extract32(insn, 5, 5);
+ int opcode = extract32(insn, 11, 5);
+ int rm = extract32(insn, 16, 5);
+ int size = extract32(insn, 22, 2);
+ bool u = extract32(insn, 29, 1);
+ TCGv_i64 tcg_rd;
+
+ if (opcode >= 0x18) {
+ /* Floating point: U, size[1] and opcode indicate operation */
+ int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6);
+ switch (fpopcode) {
+ case 0x1b: /* FMULX */
+ case 0x1f: /* FRECPS */
+ case 0x3f: /* FRSQRTS */
+ case 0x5d: /* FACGE */
+ case 0x7d: /* FACGT */
+ case 0x1c: /* FCMEQ */
+ case 0x5c: /* FCMGE */
+ case 0x7c: /* FCMGT */
+ case 0x7a: /* FABD */
+ break;
+ default:
+ unallocated_encoding(s);
+ return;
+ }
+
+ if (!fp_access_check(s)) {
+ return;
+ }
+
+ handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm);
+ return;
+ }
+
+ switch (opcode) {
+ case 0x1: /* SQADD, UQADD */
+ case 0x5: /* SQSUB, UQSUB */
+ case 0x9: /* SQSHL, UQSHL */
+ case 0xb: /* SQRSHL, UQRSHL */
+ break;
+ case 0x8: /* SSHL, USHL */
+ case 0xa: /* SRSHL, URSHL */
+ case 0x6: /* CMGT, CMHI */
+ case 0x7: /* CMGE, CMHS */
+ case 0x11: /* CMTST, CMEQ */
+ case 0x10: /* ADD, SUB (vector) */
+ if (size != 3) {
+ unallocated_encoding(s);
+ return;
+ }
+ break;
+ case 0x16: /* SQDMULH, SQRDMULH (vector) */
+ if (size != 1 && size != 2) {
+ unallocated_encoding(s);
+ return;
+ }
+ break;
+ default:
+ unallocated_encoding(s);
+ return;
+ }
+
+ if (!fp_access_check(s)) {
+ return;
+ }
+
+ tcg_rd = tcg_temp_new_i64();
+
+ if (size == 3) {
+ TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
+ TCGv_i64 tcg_rm = read_fp_dreg(s, rm);
+
+ handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm);
+ tcg_temp_free_i64(tcg_rn);
+ tcg_temp_free_i64(tcg_rm);
+ } else {
+ /* Do a single operation on the lowest element in the vector.
+ * We use the standard Neon helpers and rely on 0 OP 0 == 0 with
+ * no side effects for all these operations.
+ * OPTME: special-purpose helpers would avoid doing some
+ * unnecessary work in the helper for the 8 and 16 bit cases.
+ */
+ NeonGenTwoOpEnvFn *genenvfn;
+ TCGv_i32 tcg_rn = tcg_temp_new_i32();
+ TCGv_i32 tcg_rm = tcg_temp_new_i32();
+ TCGv_i32 tcg_rd32 = tcg_temp_new_i32();
+
+ read_vec_element_i32(s, tcg_rn, rn, 0, size);
+ read_vec_element_i32(s, tcg_rm, rm, 0, size);
+
+ switch (opcode) {
+ case 0x1: /* SQADD, UQADD */
+ {
+ static NeonGenTwoOpEnvFn * const fns[3][2] = {
+ { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
+ { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
+ { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
+ };
+ genenvfn = fns[size][u];
+ break;
+ }
+ case 0x5: /* SQSUB, UQSUB */
+ {
+ static NeonGenTwoOpEnvFn * const fns[3][2] = {
+ { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
+ { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
+ { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
+ };
+ genenvfn = fns[size][u];
+ break;
+ }
+ case 0x9: /* SQSHL, UQSHL */
+ {
+ static NeonGenTwoOpEnvFn * const fns[3][2] = {
+ { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
+ { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
+ { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
+ };
+ genenvfn = fns[size][u];
+ break;
+ }
+ case 0xb: /* SQRSHL, UQRSHL */
+ {
+ static NeonGenTwoOpEnvFn * const fns[3][2] = {
+ { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
+ { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
+ { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
+ };
+ genenvfn = fns[size][u];
+ break;
+ }
+ case 0x16: /* SQDMULH, SQRDMULH */
+ {
+ static NeonGenTwoOpEnvFn * const fns[2][2] = {
+ { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
+ { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
+ };
+ assert(size == 1 || size == 2);
+ genenvfn = fns[size - 1][u];
+ break;
+ }
+ default:
+ g_assert_not_reached();
+ }
+
+ genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm);
+ tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32);
+ tcg_temp_free_i32(tcg_rd32);
+ tcg_temp_free_i32(tcg_rn);
+ tcg_temp_free_i32(tcg_rm);
+ }
+
+ write_fp_dreg(s, rd, tcg_rd);
+
+ tcg_temp_free_i64(tcg_rd);
+}
+
+static void handle_2misc_64(DisasContext *s, int opcode, bool u,
+ TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
+ TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
+{
+ /* Handle 64->64 opcodes which are shared between the scalar and
+ * vector 2-reg-misc groups. We cover every integer opcode where size == 3
+ * is valid in either group and also the double-precision fp ops.
+ * The caller only need provide tcg_rmode and tcg_fpstatus if the op
+ * requires them.
+ */
+ TCGCond cond;
+
+ switch (opcode) {
+ case 0x4: /* CLS, CLZ */
+ if (u) {
+ gen_helper_clz64(tcg_rd, tcg_rn);
+ } else {
+ gen_helper_cls64(tcg_rd, tcg_rn);
+ }
+ break;
+ case 0x5: /* NOT */
+ /* This opcode is shared with CNT and RBIT but we have earlier
+ * enforced that size == 3 if and only if this is the NOT insn.
+ */
+ tcg_gen_not_i64(tcg_rd, tcg_rn);
+ break;
+ case 0x7: /* SQABS, SQNEG */
+ if (u) {
+ gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn);
+ } else {
+ gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn);
+ }
+ break;
+ case 0xa: /* CMLT */
+ /* 64 bit integer comparison against zero, result is
+ * test ? (2^64 - 1) : 0. We implement via setcond(!test) and
+ * subtracting 1.
+ */
+ cond = TCG_COND_LT;
+ do_cmop:
+ tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0);
+ tcg_gen_neg_i64(tcg_rd, tcg_rd);
+ break;
+ case 0x8: /* CMGT, CMGE */
+ cond = u ? TCG_COND_GE : TCG_COND_GT;
+ goto do_cmop;
+ case 0x9: /* CMEQ, CMLE */
+ cond = u ? TCG_COND_LE : TCG_COND_EQ;
+ goto do_cmop;
+ case 0xb: /* ABS, NEG */
+ if (u) {
+ tcg_gen_neg_i64(tcg_rd, tcg_rn);
+ } else {
+ TCGv_i64 tcg_zero = tcg_const_i64(0);
+ tcg_gen_neg_i64(tcg_rd, tcg_rn);
+ tcg_gen_movcond_i64(TCG_COND_GT, tcg_rd, tcg_rn, tcg_zero,
+ tcg_rn, tcg_rd);
+ tcg_temp_free_i64(tcg_zero);
+ }
+ break;
+ case 0x2f: /* FABS */
+ gen_helper_vfp_absd(tcg_rd, tcg_rn);
+ break;
+ case 0x6f: /* FNEG */
+ gen_helper_vfp_negd(tcg_rd, tcg_rn);
+ break;
+ case 0x7f: /* FSQRT */
+ gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env);
+ break;
+ case 0x1a: /* FCVTNS */
+ case 0x1b: /* FCVTMS */
+ case 0x1c: /* FCVTAS */
+ case 0x3a: /* FCVTPS */
+ case 0x3b: /* FCVTZS */
+ {
+ TCGv_i32 tcg_shift = tcg_const_i32(0);
+ gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
+ tcg_temp_free_i32(tcg_shift);
+ break;
+ }
+ case 0x5a: /* FCVTNU */
+ case 0x5b: /* FCVTMU */
+ case 0x5c: /* FCVTAU */
+ case 0x7a: /* FCVTPU */
+ case 0x7b: /* FCVTZU */
+ {
+ TCGv_i32 tcg_shift = tcg_const_i32(0);
+ gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
+ tcg_temp_free_i32(tcg_shift);
+ break;
+ }
+ case 0x18: /* FRINTN */
+ case 0x19: /* FRINTM */
+ case 0x38: /* FRINTP */
+ case 0x39: /* FRINTZ */
+ case 0x58: /* FRINTA */
+ case 0x79: /* FRINTI */
+ gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
+ break;
+ case 0x59: /* FRINTX */
+ gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
+ break;
+ default:
+ g_assert_not_reached();
+ }
+}
+
+static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
+ bool is_scalar, bool is_u, bool is_q,
+ int size, int rn, int rd)
+{
+ bool is_double = (size == 3);
+ TCGv_ptr fpst;
+
+ if (!fp_access_check(s)) {
+ return;
+ }
+
+ fpst = get_fpstatus_ptr();
+
+ if (is_double) {
+ TCGv_i64 tcg_op = tcg_temp_new_i64();
+ TCGv_i64 tcg_zero = tcg_const_i64(0);
+ TCGv_i64 tcg_res = tcg_temp_new_i64();
+ NeonGenTwoDoubleOPFn *genfn;
+ bool swap = false;
+ int pass;
+
+ switch (opcode) {
+ case 0x2e: /* FCMLT (zero) */
+ swap = true;
+ /* fallthrough */
+ case 0x2c: /* FCMGT (zero) */
+ genfn = gen_helper_neon_cgt_f64;
+ break;
+ case 0x2d: /* FCMEQ (zero) */
+ genfn = gen_helper_neon_ceq_f64;
+ break;
+ case 0x6d: /* FCMLE (zero) */
+ swap = true;
+ /* fall through */
+ case 0x6c: /* FCMGE (zero) */
+ genfn = gen_helper_neon_cge_f64;
+ break;
+ default:
+ g_assert_not_reached();
+ }
+
+ for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
+ read_vec_element(s, tcg_op, rn, pass, MO_64);
+ if (swap) {
+ genfn(tcg_res, tcg_zero, tcg_op, fpst);
+ } else {
+ genfn(tcg_res, tcg_op, tcg_zero, fpst);
+ }
+ write_vec_element(s, tcg_res, rd, pass, MO_64);
+ }
+ if (is_scalar) {
+ clear_vec_high(s, rd);
+ }
+
+ tcg_temp_free_i64(tcg_res);
+ tcg_temp_free_i64(tcg_zero);
+ tcg_temp_free_i64(tcg_op);
+ } else {
+ TCGv_i32 tcg_op = tcg_temp_new_i32();
+ TCGv_i32 tcg_zero = tcg_const_i32(0);
+ TCGv_i32 tcg_res = tcg_temp_new_i32();
+ NeonGenTwoSingleOPFn *genfn;
+ bool swap = false;
+ int pass, maxpasses;
+
+ switch (opcode) {
+ case 0x2e: /* FCMLT (zero) */
+ swap = true;
+ /* fall through */
+ case 0x2c: /* FCMGT (zero) */
+ genfn = gen_helper_neon_cgt_f32;
+ break;
+ case 0x2d: /* FCMEQ (zero) */
+ genfn = gen_helper_neon_ceq_f32;
+ break;
+ case 0x6d: /* FCMLE (zero) */
+ swap = true;
+ /* fall through */
+ case 0x6c: /* FCMGE (zero) */
+ genfn = gen_helper_neon_cge_f32;
+ break;
+ default:
+ g_assert_not_reached();
+ }
+
+ if (is_scalar) {
+ maxpasses = 1;
+ } else {
+ maxpasses = is_q ? 4 : 2;
+ }
+
+ for (pass = 0; pass < maxpasses; pass++) {
+ read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
+ if (swap) {
+ genfn(tcg_res, tcg_zero, tcg_op, fpst);
+ } else {
+ genfn(tcg_res, tcg_op, tcg_zero, fpst);
+ }
+ if (is_scalar) {
+ write_fp_sreg(s, rd, tcg_res);
+ } else {
+ write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
+ }
+ }
+ tcg_temp_free_i32(tcg_res);
+ tcg_temp_free_i32(tcg_zero);
+ tcg_temp_free_i32(tcg_op);
+ if (!is_q && !is_scalar) {
+ clear_vec_high(s, rd);
+ }
+ }
+
+ tcg_temp_free_ptr(fpst);
+}
+
+static void handle_2misc_reciprocal(DisasContext *s, int opcode,
+ bool is_scalar, bool is_u, bool is_q,
+ int size, int rn, int rd)
+{
+ bool is_double = (size == 3);
+ TCGv_ptr fpst = get_fpstatus_ptr();
+
+ if (is_double) {
+ TCGv_i64 tcg_op = tcg_temp_new_i64();
+ TCGv_i64 tcg_res = tcg_temp_new_i64();
+ int pass;
+
+ for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
+ read_vec_element(s, tcg_op, rn, pass, MO_64);
+ switch (opcode) {
+ case 0x3d: /* FRECPE */
+ gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
+ break;
+ case 0x3f: /* FRECPX */
+ gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
+ break;
+ case 0x7d: /* FRSQRTE */
+ gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
+ break;
+ default:
+ g_assert_not_reached();
+ }
+ write_vec_element(s, tcg_res, rd, pass, MO_64);
+ }
+ if (is_scalar) {
+ clear_vec_high(s, rd);
+ }
+
+ tcg_temp_free_i64(tcg_res);
+ tcg_temp_free_i64(tcg_op);
+ } else {
+ TCGv_i32 tcg_op = tcg_temp_new_i32();
+ TCGv_i32 tcg_res = tcg_temp_new_i32();
+ int pass, maxpasses;
+
+ if (is_scalar) {
+ maxpasses = 1;
+ } else {
+ maxpasses = is_q ? 4 : 2;
+ }
+
+ for (pass = 0; pass < maxpasses; pass++) {
+ read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
+
+ switch (opcode) {
+ case 0x3c: /* URECPE */
+ gen_helper_recpe_u32(tcg_res, tcg_op, fpst);
+ break;
+ case 0x3d: /* FRECPE */
+ gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
+ break;
+ case 0x3f: /* FRECPX */
+ gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
+ break;
+ case 0x7d: /* FRSQRTE */
+ gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
+ break;
+ default:
+ g_assert_not_reached();
+ }
+
+ if (is_scalar) {
+ write_fp_sreg(s, rd, tcg_res);
+ } else {
+ write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
+ }
+ }
+ tcg_temp_free_i32(tcg_res);
+ tcg_temp_free_i32(tcg_op);
+ if (!is_q && !is_scalar) {
+ clear_vec_high(s, rd);
+ }
+ }
+ tcg_temp_free_ptr(fpst);
+}
+
+static void handle_2misc_narrow(DisasContext *s, bool scalar,
+ int opcode, bool u, bool is_q,
+ int size, int rn, int rd)
+{
+ /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
+ * in the source becomes a size element in the destination).
+ */
+ int pass;
+ TCGv_i32 tcg_res[2];
+ int destelt = is_q ? 2 : 0;
+ int passes = scalar ? 1 : 2;
+
+ if (scalar) {
+ tcg_res[1] = tcg_const_i32(0);
+ }
+
+ for (pass = 0; pass < passes; pass++) {
+ TCGv_i64 tcg_op = tcg_temp_new_i64();
+ NeonGenNarrowFn *genfn = NULL;
+ NeonGenNarrowEnvFn *genenvfn = NULL;
+
+ if (scalar) {
+ read_vec_element(s, tcg_op, rn, pass, size + 1);
+ } else {
+ read_vec_element(s, tcg_op, rn, pass, MO_64);
+ }
+ tcg_res[pass] = tcg_temp_new_i32();
+
+ switch (opcode) {
+ case 0x12: /* XTN, SQXTUN */
+ {
+ static NeonGenNarrowFn * const xtnfns[3] = {
+ gen_helper_neon_narrow_u8,
+ gen_helper_neon_narrow_u16,
+ tcg_gen_extrl_i64_i32,
+ };
+ static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
+ gen_helper_neon_unarrow_sat8,
+ gen_helper_neon_unarrow_sat16,
+ gen_helper_neon_unarrow_sat32,
+ };
+ if (u) {
+ genenvfn = sqxtunfns[size];
+ } else {
+ genfn = xtnfns[size];
+ }
+ break;
+ }
+ case 0x14: /* SQXTN, UQXTN */
+ {
+ static NeonGenNarrowEnvFn * const fns[3][2] = {
+ { gen_helper_neon_narrow_sat_s8,
+ gen_helper_neon_narrow_sat_u8 },
+ { gen_helper_neon_narrow_sat_s16,
+ gen_helper_neon_narrow_sat_u16 },
+ { gen_helper_neon_narrow_sat_s32,
+ gen_helper_neon_narrow_sat_u32 },
+ };
+ genenvfn = fns[size][u];
+ break;
+ }
+ case 0x16: /* FCVTN, FCVTN2 */
+ /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
+ if (size == 2) {
+ gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env);
+ } else {
+ TCGv_i32 tcg_lo = tcg_temp_new_i32();
+ TCGv_i32 tcg_hi = tcg_temp_new_i32();
+ tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
+ gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, cpu_env);
+ gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, cpu_env);
+ tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
+ tcg_temp_free_i32(tcg_lo);
+ tcg_temp_free_i32(tcg_hi);
+ }
+ break;
+ case 0x56: /* FCVTXN, FCVTXN2 */
+ /* 64 bit to 32 bit float conversion
+ * with von Neumann rounding (round to odd)
+ */
+ assert(size == 2);
+ gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env);
+ break;
+ default:
+ g_assert_not_reached();
+ }
+
+ if (genfn) {
+ genfn(tcg_res[pass], tcg_op);
+ } else if (genenvfn) {
+ genenvfn(tcg_res[pass], cpu_env, tcg_op);
+ }
+
+ tcg_temp_free_i64(tcg_op);
+ }
+
+ for (pass = 0; pass < 2; pass++) {
+ write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
+ tcg_temp_free_i32(tcg_res[pass]);
+ }
+ if (!is_q) {
+ clear_vec_high(s, rd);
+ }
+}
+
+/* Remaining saturating accumulating ops */
+static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u,
+ bool is_q, int size, int rn, int rd)
+{
+ bool is_double = (size == 3);
+
+ if (is_double) {
+ TCGv_i64 tcg_rn = tcg_temp_new_i64();
+ TCGv_i64 tcg_rd = tcg_temp_new_i64();
+ int pass;
+
+ for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
+ read_vec_element(s, tcg_rn, rn, pass, MO_64);
+ read_vec_element(s, tcg_rd, rd, pass, MO_64);
+
+ if (is_u) { /* USQADD */
+ gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
+ } else { /* SUQADD */
+ gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
+ }
+ write_vec_element(s, tcg_rd, rd, pass, MO_64);
+ }
+ if (is_scalar) {
+ clear_vec_high(s, rd);
+ }
+
+ tcg_temp_free_i64(tcg_rd);
+ tcg_temp_free_i64(tcg_rn);
+ } else {
+ TCGv_i32 tcg_rn = tcg_temp_new_i32();
+ TCGv_i32 tcg_rd = tcg_temp_new_i32();
+ int pass, maxpasses;
+
+ if (is_scalar) {
+ maxpasses = 1;
+ } else {
+ maxpasses = is_q ? 4 : 2;
+ }
+
+ for (pass = 0; pass < maxpasses; pass++) {
+ if (is_scalar) {
+ read_vec_element_i32(s, tcg_rn, rn, pass, size);
+ read_vec_element_i32(s, tcg_rd, rd, pass, size);
+ } else {
+ read_vec_element_i32(s, tcg_rn, rn, pass, MO_32);
+ read_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
+ }
+
+ if (is_u) { /* USQADD */
+ switch (size) {
+ case 0:
+ gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
+ break;
+ case 1:
+ gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
+ break;
+ case 2:
+ gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
+ break;
+ default:
+ g_assert_not_reached();
+ }
+ } else { /* SUQADD */
+ switch (size) {
+ case 0:
+ gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
+ break;
+ case 1:
+ gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
+ break;
+ case 2:
+ gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
+ break;
+ default:
+ g_assert_not_reached();
+ }
+ }
+
+ if (is_scalar) {
+ TCGv_i64 tcg_zero = tcg_const_i64(0);
+ write_vec_element(s, tcg_zero, rd, 0, MO_64);
+ tcg_temp_free_i64(tcg_zero);
+ }
+ write_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
+ }
+
+ if (!is_q) {
+ clear_vec_high(s, rd);
+ }
+
+ tcg_temp_free_i32(tcg_rd);
+ tcg_temp_free_i32(tcg_rn);
+ }
+}
+
+/* C3.6.12 AdvSIMD scalar two reg misc
+ * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
+ * +-----+---+-----------+------+-----------+--------+-----+------+------+
+ * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
+ * +-----+---+-----------+------+-----------+--------+-----+------+------+
+ */
+static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
+{
+ int rd = extract32(insn, 0, 5);
+ int rn = extract32(insn, 5, 5);
+ int opcode = extract32(insn, 12, 5);
+ int size = extract32(insn, 22, 2);
+ bool u = extract32(insn, 29, 1);
+ bool is_fcvt = false;
+ int rmode;
+ TCGv_i32 tcg_rmode;
+ TCGv_ptr tcg_fpstatus;
+
+ switch (opcode) {
+ case 0x3: /* USQADD / SUQADD*/
+ if (!fp_access_check(s)) {
+ return;
+ }
+ handle_2misc_satacc(s, true, u, false, size, rn, rd);
+ return;
+ case 0x7: /* SQABS / SQNEG */
+ break;
+ case 0xa: /* CMLT */
+ if (u) {
+ unallocated_encoding(s);
+ return;
+ }
+ /* fall through */
+ case 0x8: /* CMGT, CMGE */
+ case 0x9: /* CMEQ, CMLE */
+ case 0xb: /* ABS, NEG */
+ if (size != 3) {
+ unallocated_encoding(s);
+ return;
+ }
+ break;
+ case 0x12: /* SQXTUN */
+ if (!u) {
+ unallocated_encoding(s);
+ return;
+ }
+ /* fall through */
+ case 0x14: /* SQXTN, UQXTN */
+ if (size == 3) {
+ unallocated_encoding(s);
+ return;
+ }
+ if (!fp_access_check(s)) {
+ return;
+ }
+ handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
+ return;
+ case 0xc ... 0xf:
+ case 0x16 ... 0x1d:
+ case 0x1f:
+ /* Floating point: U, size[1] and opcode indicate operation;
+ * size[0] indicates single or double precision.
+ */
+ opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
+ size = extract32(size, 0, 1) ? 3 : 2;
+ switch (opcode) {
+ case 0x2c: /* FCMGT (zero) */
+ case 0x2d: /* FCMEQ (zero) */
+ case 0x2e: /* FCMLT (zero) */
+ case 0x6c: /* FCMGE (zero) */
+ case 0x6d: /* FCMLE (zero) */
+ handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
+ return;
+ case 0x1d: /* SCVTF */
+ case 0x5d: /* UCVTF */
+ {
+ bool is_signed = (opcode == 0x1d);
+ if (!fp_access_check(s)) {
+ return;
+ }
+ handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
+ return;
+ }
+ case 0x3d: /* FRECPE */
+ case 0x3f: /* FRECPX */
+ case 0x7d: /* FRSQRTE */
+ if (!fp_access_check(s)) {
+ return;
+ }
+ handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
+ return;
+ case 0x1a: /* FCVTNS */
+ case 0x1b: /* FCVTMS */
+ case 0x3a: /* FCVTPS */
+ case 0x3b: /* FCVTZS */
+ case 0x5a: /* FCVTNU */
+ case 0x5b: /* FCVTMU */
+ case 0x7a: /* FCVTPU */
+ case 0x7b: /* FCVTZU */
+ is_fcvt = true;
+ rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
+ break;
+ case 0x1c: /* FCVTAS */
+ case 0x5c: /* FCVTAU */
+ /* TIEAWAY doesn't fit in the usual rounding mode encoding */
+ is_fcvt = true;
+ rmode = FPROUNDING_TIEAWAY;
+ break;
+ case 0x56: /* FCVTXN, FCVTXN2 */
+ if (size == 2) {
+ unallocated_encoding(s);
+ return;
+ }
+ if (!fp_access_check(s)) {
+ return;
+ }
+ handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
+ return;
+ default:
+ unallocated_encoding(s);
+ return;
+ }
+ break;
+ default:
+ unallocated_encoding(s);
+ return;
+ }
+
+ if (!fp_access_check(s)) {
+ return;
+ }
+
+ if (is_fcvt) {
+ tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
+ gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
+ tcg_fpstatus = get_fpstatus_ptr();
+ } else {
+ TCGV_UNUSED_I32(tcg_rmode);
+ TCGV_UNUSED_PTR(tcg_fpstatus);
+ }
+
+ if (size == 3) {
+ TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
+ TCGv_i64 tcg_rd = tcg_temp_new_i64();
+
+ handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
+ write_fp_dreg(s, rd, tcg_rd);
+ tcg_temp_free_i64(tcg_rd);
+ tcg_temp_free_i64(tcg_rn);
+ } else {
+ TCGv_i32 tcg_rn = tcg_temp_new_i32();
+ TCGv_i32 tcg_rd = tcg_temp_new_i32();
+
+ read_vec_element_i32(s, tcg_rn, rn, 0, size);
+
+ switch (opcode) {
+ case 0x7: /* SQABS, SQNEG */
+ {
+ NeonGenOneOpEnvFn *genfn;
+ static NeonGenOneOpEnvFn * const fns[3][2] = {
+ { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
+ { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
+ { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
+ };
+ genfn = fns[size][u];
+ genfn(tcg_rd, cpu_env, tcg_rn);
+ break;
+ }
+ case 0x1a: /* FCVTNS */
+ case 0x1b: /* FCVTMS */
+ case 0x1c: /* FCVTAS */
+ case 0x3a: /* FCVTPS */
+ case 0x3b: /* FCVTZS */
+ {
+ TCGv_i32 tcg_shift = tcg_const_i32(0);
+ gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
+ tcg_temp_free_i32(tcg_shift);
+ break;
+ }
+ case 0x5a: /* FCVTNU */
+ case 0x5b: /* FCVTMU */
+ case 0x5c: /* FCVTAU */
+ case 0x7a: /* FCVTPU */
+ case 0x7b: /* FCVTZU */
+ {
+ TCGv_i32 tcg_shift = tcg_const_i32(0);
+ gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
+ tcg_temp_free_i32(tcg_shift);
+ break;
+ }
+ default:
+ g_assert_not_reached();
+ }
+
+ write_fp_sreg(s, rd, tcg_rd);
+ tcg_temp_free_i32(tcg_rd);
+ tcg_temp_free_i32(tcg_rn);
+ }
+
+ if (is_fcvt) {
+ gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
+ tcg_temp_free_i32(tcg_rmode);
+ tcg_temp_free_ptr(tcg_fpstatus);
+ }
+}
+
+/* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
+static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
+ int immh, int immb, int opcode, int rn, int rd)
+{
+ int size = 32 - clz32(immh) - 1;
+ int immhb = immh << 3 | immb;
+ int shift = 2 * (8 << size) - immhb;
+ bool accumulate = false;
+ bool round = false;
+ bool insert = false;
+ int dsize = is_q ? 128 : 64;
+ int esize = 8 << size;
+ int elements = dsize/esize;
+ TCGMemOp memop = size | (is_u ? 0 : MO_SIGN);
+ TCGv_i64 tcg_rn = new_tmp_a64(s);
+ TCGv_i64 tcg_rd = new_tmp_a64(s);
+ TCGv_i64 tcg_round;
+ int i;
+
+ if (extract32(immh, 3, 1) && !is_q) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ if (size > 3 && !is_q) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ if (!fp_access_check(s)) {
+ return;
+ }
+
+ switch (opcode) {
+ case 0x02: /* SSRA / USRA (accumulate) */
+ accumulate = true;
+ break;
+ case 0x04: /* SRSHR / URSHR (rounding) */
+ round = true;
+ break;
+ case 0x06: /* SRSRA / URSRA (accum + rounding) */
+ accumulate = round = true;
+ break;
+ case 0x08: /* SRI */
+ insert = true;
+ break;
+ }
+
+ if (round) {
+ uint64_t round_const = 1ULL << (shift - 1);
+ tcg_round = tcg_const_i64(round_const);
+ } else {
+ TCGV_UNUSED_I64(tcg_round);
+ }
+
+ for (i = 0; i < elements; i++) {
+ read_vec_element(s, tcg_rn, rn, i, memop);
+ if (accumulate || insert) {
+ read_vec_element(s, tcg_rd, rd, i, memop);
+ }
+
+ if (insert) {
+ handle_shri_with_ins(tcg_rd, tcg_rn, size, shift);
+ } else {
+ handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
+ accumulate, is_u, size, shift);
+ }
+
+ write_vec_element(s, tcg_rd, rd, i, size);
+ }
+
+ if (!is_q) {
+ clear_vec_high(s, rd);
+ }
+
+ if (round) {
+ tcg_temp_free_i64(tcg_round);
+ }
+}
+
+/* SHL/SLI - Vector shift left */
+static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
+ int immh, int immb, int opcode, int rn, int rd)
+{
+ int size = 32 - clz32(immh) - 1;
+ int immhb = immh << 3 | immb;
+ int shift = immhb - (8 << size);
+ int dsize = is_q ? 128 : 64;
+ int esize = 8 << size;
+ int elements = dsize/esize;
+ TCGv_i64 tcg_rn = new_tmp_a64(s);
+ TCGv_i64 tcg_rd = new_tmp_a64(s);
+ int i;
+
+ if (extract32(immh, 3, 1) && !is_q) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ if (size > 3 && !is_q) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ if (!fp_access_check(s)) {
+ return;
+ }
+
+ for (i = 0; i < elements; i++) {
+ read_vec_element(s, tcg_rn, rn, i, size);
+ if (insert) {
+ read_vec_element(s, tcg_rd, rd, i, size);
+ }
+
+ handle_shli_with_ins(tcg_rd, tcg_rn, insert, shift);
+
+ write_vec_element(s, tcg_rd, rd, i, size);
+ }
+
+ if (!is_q) {
+ clear_vec_high(s, rd);
+ }
+}
+
+/* USHLL/SHLL - Vector shift left with widening */
+static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
+ int immh, int immb, int opcode, int rn, int rd)
+{
+ int size = 32 - clz32(immh) - 1;
+ int immhb = immh << 3 | immb;
+ int shift = immhb - (8 << size);
+ int dsize = 64;
+ int esize = 8 << size;
+ int elements = dsize/esize;
+ TCGv_i64 tcg_rn = new_tmp_a64(s);
+ TCGv_i64 tcg_rd = new_tmp_a64(s);
+ int i;
+
+ if (size >= 3) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ if (!fp_access_check(s)) {
+ return;
+ }
+
+ /* For the LL variants the store is larger than the load,
+ * so if rd == rn we would overwrite parts of our input.
+ * So load everything right now and use shifts in the main loop.
+ */
+ read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
+
+ for (i = 0; i < elements; i++) {
+ tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
+ ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
+ tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
+ write_vec_element(s, tcg_rd, rd, i, size + 1);
+ }
+}
+
+/* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
+static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
+ int immh, int immb, int opcode, int rn, int rd)
+{
+ int immhb = immh << 3 | immb;
+ int size = 32 - clz32(immh) - 1;
+ int dsize = 64;
+ int esize = 8 << size;
+ int elements = dsize/esize;
+ int shift = (2 * esize) - immhb;
+ bool round = extract32(opcode, 0, 1);
+ TCGv_i64 tcg_rn, tcg_rd, tcg_final;
+ TCGv_i64 tcg_round;
+ int i;
+
+ if (extract32(immh, 3, 1)) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ if (!fp_access_check(s)) {
+ return;
+ }
+
+ tcg_rn = tcg_temp_new_i64();
+ tcg_rd = tcg_temp_new_i64();
+ tcg_final = tcg_temp_new_i64();
+ read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
+
+ if (round) {
+ uint64_t round_const = 1ULL << (shift - 1);
+ tcg_round = tcg_const_i64(round_const);
+ } else {
+ TCGV_UNUSED_I64(tcg_round);
+ }
+
+ for (i = 0; i < elements; i++) {
+ read_vec_element(s, tcg_rn, rn, i, size+1);
+ handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
+ false, true, size+1, shift);
+
+ tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
+ }
+
+ if (!is_q) {
+ clear_vec_high(s, rd);
+ write_vec_element(s, tcg_final, rd, 0, MO_64);
+ } else {
+ write_vec_element(s, tcg_final, rd, 1, MO_64);
+ }
+
+ if (round) {
+ tcg_temp_free_i64(tcg_round);
+ }
+ tcg_temp_free_i64(tcg_rn);
+ tcg_temp_free_i64(tcg_rd);
+ tcg_temp_free_i64(tcg_final);
+ return;
+}
+
+
+/* C3.6.14 AdvSIMD shift by immediate
+ * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
+ * +---+---+---+-------------+------+------+--------+---+------+------+
+ * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
+ * +---+---+---+-------------+------+------+--------+---+------+------+
+ */
+static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
+{
+ int rd = extract32(insn, 0, 5);
+ int rn = extract32(insn, 5, 5);
+ int opcode = extract32(insn, 11, 5);
+ int immb = extract32(insn, 16, 3);
+ int immh = extract32(insn, 19, 4);
+ bool is_u = extract32(insn, 29, 1);
+ bool is_q = extract32(insn, 30, 1);
+
+ switch (opcode) {
+ case 0x08: /* SRI */
+ if (!is_u) {
+ unallocated_encoding(s);
+ return;
+ }
+ /* fall through */
+ case 0x00: /* SSHR / USHR */
+ case 0x02: /* SSRA / USRA (accumulate) */
+ case 0x04: /* SRSHR / URSHR (rounding) */
+ case 0x06: /* SRSRA / URSRA (accum + rounding) */
+ handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
+ break;
+ case 0x0a: /* SHL / SLI */
+ handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
+ break;
+ case 0x10: /* SHRN */
+ case 0x11: /* RSHRN / SQRSHRUN */
+ if (is_u) {
+ handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
+ opcode, rn, rd);
+ } else {
+ handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
+ }
+ break;
+ case 0x12: /* SQSHRN / UQSHRN */
+ case 0x13: /* SQRSHRN / UQRSHRN */
+ handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
+ opcode, rn, rd);
+ break;
+ case 0x14: /* SSHLL / USHLL */
+ handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
+ break;
+ case 0x1c: /* SCVTF / UCVTF */
+ handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
+ opcode, rn, rd);
+ break;
+ case 0xc: /* SQSHLU */
+ if (!is_u) {
+ unallocated_encoding(s);
+ return;
+ }
+ handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
+ break;
+ case 0xe: /* SQSHL, UQSHL */
+ handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
+ break;
+ case 0x1f: /* FCVTZS/ FCVTZU */
+ handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
+ return;
+ default:
+ unallocated_encoding(s);
+ return;
+ }
+}
+
+/* Generate code to do a "long" addition or subtraction, ie one done in
+ * TCGv_i64 on vector lanes twice the width specified by size.
+ */
+static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res,
+ TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
+{
+ static NeonGenTwo64OpFn * const fns[3][2] = {
+ { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
+ { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
+ { tcg_gen_add_i64, tcg_gen_sub_i64 },
+ };
+ NeonGenTwo64OpFn *genfn;
+ assert(size < 3);
+
+ genfn = fns[size][is_sub];
+ genfn(tcg_res, tcg_op1, tcg_op2);
+}
+
+static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
+ int opcode, int rd, int rn, int rm)
+{
+ /* 3-reg-different widening insns: 64 x 64 -> 128 */
+ TCGv_i64 tcg_res[2];
+ int pass, accop;
+
+ tcg_res[0] = tcg_temp_new_i64();
+ tcg_res[1] = tcg_temp_new_i64();
+
+ /* Does this op do an adding accumulate, a subtracting accumulate,
+ * or no accumulate at all?
+ */
+ switch (opcode) {
+ case 5:
+ case 8:
+ case 9:
+ accop = 1;
+ break;
+ case 10:
+ case 11:
+ accop = -1;
+ break;
+ default:
+ accop = 0;
+ break;
+ }
+
+ if (accop != 0) {
+ read_vec_element(s, tcg_res[0], rd, 0, MO_64);
+ read_vec_element(s, tcg_res[1], rd, 1, MO_64);
+ }
+
+ /* size == 2 means two 32x32->64 operations; this is worth special
+ * casing because we can generally handle it inline.
+ */
+ if (size == 2) {
+ for (pass = 0; pass < 2; pass++) {
+ TCGv_i64 tcg_op1 = tcg_temp_new_i64();
+ TCGv_i64 tcg_op2 = tcg_temp_new_i64();
+ TCGv_i64 tcg_passres;
+ TCGMemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
+
+ int elt = pass + is_q * 2;
+
+ read_vec_element(s, tcg_op1, rn, elt, memop);
+ read_vec_element(s, tcg_op2, rm, elt, memop);
+
+ if (accop == 0) {
+ tcg_passres = tcg_res[pass];
+ } else {
+ tcg_passres = tcg_temp_new_i64();
+ }
+
+ switch (opcode) {
+ case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
+ tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2);
+ break;
+ case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
+ tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2);
+ break;
+ case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
+ case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
+ {
+ TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
+ TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
+
+ tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
+ tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
+ tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
+ tcg_passres,
+ tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
+ tcg_temp_free_i64(tcg_tmp1);
+ tcg_temp_free_i64(tcg_tmp2);
+ break;
+ }
+ case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
+ case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
+ case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
+ tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
+ break;
+ case 9: /* SQDMLAL, SQDMLAL2 */
+ case 11: /* SQDMLSL, SQDMLSL2 */
+ case 13: /* SQDMULL, SQDMULL2 */
+ tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
+ gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
+ tcg_passres, tcg_passres);
+ break;
+ default:
+ g_assert_not_reached();
+ }
+
+ if (opcode == 9 || opcode == 11) {
+ /* saturating accumulate ops */
+ if (accop < 0) {
+ tcg_gen_neg_i64(tcg_passres, tcg_passres);
+ }
+ gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
+ tcg_res[pass], tcg_passres);
+ } else if (accop > 0) {
+ tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
+ } else if (accop < 0) {
+ tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
+ }
+
+ if (accop != 0) {
+ tcg_temp_free_i64(tcg_passres);
+ }
+
+ tcg_temp_free_i64(tcg_op1);
+ tcg_temp_free_i64(tcg_op2);
+ }
+ } else {
+ /* size 0 or 1, generally helper functions */
+ for (pass = 0; pass < 2; pass++) {
+ TCGv_i32 tcg_op1 = tcg_temp_new_i32();
+ TCGv_i32 tcg_op2 = tcg_temp_new_i32();
+ TCGv_i64 tcg_passres;
+ int elt = pass + is_q * 2;
+
+ read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
+ read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
+
+ if (accop == 0) {
+ tcg_passres = tcg_res[pass];
+ } else {
+ tcg_passres = tcg_temp_new_i64();
+ }
+
+ switch (opcode) {
+ case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
+ case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
+ {
+ TCGv_i64 tcg_op2_64 = tcg_temp_new_i64();
+ static NeonGenWidenFn * const widenfns[2][2] = {
+ { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
+ { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
+ };
+ NeonGenWidenFn *widenfn = widenfns[size][is_u];
+
+ widenfn(tcg_op2_64, tcg_op2);
+ widenfn(tcg_passres, tcg_op1);
+ gen_neon_addl(size, (opcode == 2), tcg_passres,
+ tcg_passres, tcg_op2_64);
+ tcg_temp_free_i64(tcg_op2_64);
+ break;
+ }
+ case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
+ case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
+ if (size == 0) {
+ if (is_u) {
+ gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
+ } else {
+ gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
+ }
+ } else {
+ if (is_u) {
+ gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
+ } else {
+ gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
+ }
+ }
+ break;
+ case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
+ case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
+ case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
+ if (size == 0) {
+ if (is_u) {
+ gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
+ } else {
+ gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
+ }
+ } else {
+ if (is_u) {
+ gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
+ } else {
+ gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
+ }
+ }
+ break;
+ case 9: /* SQDMLAL, SQDMLAL2 */
+ case 11: /* SQDMLSL, SQDMLSL2 */
+ case 13: /* SQDMULL, SQDMULL2 */
+ assert(size == 1);
+ gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
+ gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
+ tcg_passres, tcg_passres);
+ break;
+ case 14: /* PMULL */
+ assert(size == 0);
+ gen_helper_neon_mull_p8(tcg_passres, tcg_op1, tcg_op2);
+ break;
+ default:
+ g_assert_not_reached();
+ }
+ tcg_temp_free_i32(tcg_op1);
+ tcg_temp_free_i32(tcg_op2);
+
+ if (accop != 0) {
+ if (opcode == 9 || opcode == 11) {
+ /* saturating accumulate ops */
+ if (accop < 0) {
+ gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
+ }
+ gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
+ tcg_res[pass],
+ tcg_passres);
+ } else {
+ gen_neon_addl(size, (accop < 0), tcg_res[pass],
+ tcg_res[pass], tcg_passres);
+ }
+ tcg_temp_free_i64(tcg_passres);
+ }
+ }
+ }
+
+ write_vec_element(s, tcg_res[0], rd, 0, MO_64);
+ write_vec_element(s, tcg_res[1], rd, 1, MO_64);
+ tcg_temp_free_i64(tcg_res[0]);
+ tcg_temp_free_i64(tcg_res[1]);
+}
+
+static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
+ int opcode, int rd, int rn, int rm)
+{
+ TCGv_i64 tcg_res[2];
+ int part = is_q ? 2 : 0;
+ int pass;
+
+ for (pass = 0; pass < 2; pass++) {
+ TCGv_i64 tcg_op1 = tcg_temp_new_i64();
+ TCGv_i32 tcg_op2 = tcg_temp_new_i32();
+ TCGv_i64 tcg_op2_wide = tcg_temp_new_i64();
+ static NeonGenWidenFn * const widenfns[3][2] = {
+ { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
+ { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
+ { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
+ };
+ NeonGenWidenFn *widenfn = widenfns[size][is_u];
+
+ read_vec_element(s, tcg_op1, rn, pass, MO_64);
+ read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
+ widenfn(tcg_op2_wide, tcg_op2);
+ tcg_temp_free_i32(tcg_op2);
+ tcg_res[pass] = tcg_temp_new_i64();
+ gen_neon_addl(size, (opcode == 3),
+ tcg_res[pass], tcg_op1, tcg_op2_wide);
+ tcg_temp_free_i64(tcg_op1);
+ tcg_temp_free_i64(tcg_op2_wide);
+ }
+
+ for (pass = 0; pass < 2; pass++) {
+ write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
+ tcg_temp_free_i64(tcg_res[pass]);
+ }
+}
+
+static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in)
+{
+ tcg_gen_addi_i64(in, in, 1U << 31);
+ tcg_gen_extrh_i64_i32(res, in);
+}
+
+static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
+ int opcode, int rd, int rn, int rm)
+{
+ TCGv_i32 tcg_res[2];
+ int part = is_q ? 2 : 0;
+ int pass;
+
+ for (pass = 0; pass < 2; pass++) {
+ TCGv_i64 tcg_op1 = tcg_temp_new_i64();
+ TCGv_i64 tcg_op2 = tcg_temp_new_i64();
+ TCGv_i64 tcg_wideres = tcg_temp_new_i64();
+ static NeonGenNarrowFn * const narrowfns[3][2] = {
+ { gen_helper_neon_narrow_high_u8,
+ gen_helper_neon_narrow_round_high_u8 },
+ { gen_helper_neon_narrow_high_u16,
+ gen_helper_neon_narrow_round_high_u16 },
+ { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 },
+ };
+ NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
+
+ read_vec_element(s, tcg_op1, rn, pass, MO_64);
+ read_vec_element(s, tcg_op2, rm, pass, MO_64);
+
+ gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
+
+ tcg_temp_free_i64(tcg_op1);
+ tcg_temp_free_i64(tcg_op2);
+
+ tcg_res[pass] = tcg_temp_new_i32();
+ gennarrow(tcg_res[pass], tcg_wideres);
+ tcg_temp_free_i64(tcg_wideres);
+ }
+
+ for (pass = 0; pass < 2; pass++) {
+ write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
+ tcg_temp_free_i32(tcg_res[pass]);
+ }
+ if (!is_q) {
+ clear_vec_high(s, rd);
+ }
+}
+
+static void handle_pmull_64(DisasContext *s, int is_q, int rd, int rn, int rm)
+{
+ /* PMULL of 64 x 64 -> 128 is an odd special case because it
+ * is the only three-reg-diff instruction which produces a
+ * 128-bit wide result from a single operation. However since
+ * it's possible to calculate the two halves more or less
+ * separately we just use two helper calls.
+ */
+ TCGv_i64 tcg_op1 = tcg_temp_new_i64();
+ TCGv_i64 tcg_op2 = tcg_temp_new_i64();
+ TCGv_i64 tcg_res = tcg_temp_new_i64();
+
+ read_vec_element(s, tcg_op1, rn, is_q, MO_64);
+ read_vec_element(s, tcg_op2, rm, is_q, MO_64);
+ gen_helper_neon_pmull_64_lo(tcg_res, tcg_op1, tcg_op2);
+ write_vec_element(s, tcg_res, rd, 0, MO_64);
+ gen_helper_neon_pmull_64_hi(tcg_res, tcg_op1, tcg_op2);
+ write_vec_element(s, tcg_res, rd, 1, MO_64);
+
+ tcg_temp_free_i64(tcg_op1);
+ tcg_temp_free_i64(tcg_op2);
+ tcg_temp_free_i64(tcg_res);
+}
+
+/* C3.6.15 AdvSIMD three different
+ * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
+ * +---+---+---+-----------+------+---+------+--------+-----+------+------+
+ * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
+ * +---+---+---+-----------+------+---+------+--------+-----+------+------+
+ */
+static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
+{
+ /* Instructions in this group fall into three basic classes
+ * (in each case with the operation working on each element in
+ * the input vectors):
+ * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
+ * 128 bit input)
+ * (2) wide 64 x 128 -> 128
+ * (3) narrowing 128 x 128 -> 64
+ * Here we do initial decode, catch unallocated cases and
+ * dispatch to separate functions for each class.
+ */
+ int is_q = extract32(insn, 30, 1);
+ int is_u = extract32(insn, 29, 1);
+ int size = extract32(insn, 22, 2);
+ int opcode = extract32(insn, 12, 4);
+ int rm = extract32(insn, 16, 5);
+ int rn = extract32(insn, 5, 5);
+ int rd = extract32(insn, 0, 5);
+
+ switch (opcode) {
+ case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
+ case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
+ /* 64 x 128 -> 128 */
+ if (size == 3) {
+ unallocated_encoding(s);
+ return;
+ }
+ if (!fp_access_check(s)) {
+ return;
+ }
+ handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
+ break;
+ case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
+ case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
+ /* 128 x 128 -> 64 */
+ if (size == 3) {
+ unallocated_encoding(s);
+ return;
+ }
+ if (!fp_access_check(s)) {
+ return;
+ }
+ handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
+ break;
+ case 14: /* PMULL, PMULL2 */
+ if (is_u || size == 1 || size == 2) {
+ unallocated_encoding(s);
+ return;
+ }
+ if (size == 3) {
+ if (!arm_dc_feature(s, ARM_FEATURE_V8_PMULL)) {
+ unallocated_encoding(s);
+ return;
+ }
+ if (!fp_access_check(s)) {
+ return;
+ }
+ handle_pmull_64(s, is_q, rd, rn, rm);
+ return;
+ }
+ goto is_widening;
+ case 9: /* SQDMLAL, SQDMLAL2 */
+ case 11: /* SQDMLSL, SQDMLSL2 */
+ case 13: /* SQDMULL, SQDMULL2 */
+ if (is_u || size == 0) {
+ unallocated_encoding(s);
+ return;
+ }
+ /* fall through */
+ case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
+ case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
+ case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
+ case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
+ case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
+ case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
+ case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
+ /* 64 x 64 -> 128 */
+ if (size == 3) {
+ unallocated_encoding(s);
+ return;
+ }
+ is_widening:
+ if (!fp_access_check(s)) {
+ return;
+ }
+
+ handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
+ break;
+ default:
+ /* opcode 15 not allocated */
+ unallocated_encoding(s);
+ break;
+ }
+}
+
+/* Logic op (opcode == 3) subgroup of C3.6.16. */
+static void disas_simd_3same_logic(DisasContext *s, uint32_t insn)
+{
+ int rd = extract32(insn, 0, 5);
+ int rn = extract32(insn, 5, 5);
+ int rm = extract32(insn, 16, 5);
+ int size = extract32(insn, 22, 2);
+ bool is_u = extract32(insn, 29, 1);
+ bool is_q = extract32(insn, 30, 1);
+ TCGv_i64 tcg_op1, tcg_op2, tcg_res[2];
+ int pass;
+
+ if (!fp_access_check(s)) {
+ return;
+ }
+
+ tcg_op1 = tcg_temp_new_i64();
+ tcg_op2 = tcg_temp_new_i64();
+ tcg_res[0] = tcg_temp_new_i64();
+ tcg_res[1] = tcg_temp_new_i64();
+
+ for (pass = 0; pass < (is_q ? 2 : 1); pass++) {
+ read_vec_element(s, tcg_op1, rn, pass, MO_64);
+ read_vec_element(s, tcg_op2, rm, pass, MO_64);
+
+ if (!is_u) {
+ switch (size) {
+ case 0: /* AND */
+ tcg_gen_and_i64(tcg_res[pass], tcg_op1, tcg_op2);
+ break;
+ case 1: /* BIC */
+ tcg_gen_andc_i64(tcg_res[pass], tcg_op1, tcg_op2);
+ break;
+ case 2: /* ORR */
+ tcg_gen_or_i64(tcg_res[pass], tcg_op1, tcg_op2);
+ break;
+ case 3: /* ORN */
+ tcg_gen_orc_i64(tcg_res[pass], tcg_op1, tcg_op2);
+ break;
+ }
+ } else {
+ if (size != 0) {
+ /* B* ops need res loaded to operate on */
+ read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
+ }
+
+ switch (size) {
+ case 0: /* EOR */
+ tcg_gen_xor_i64(tcg_res[pass], tcg_op1, tcg_op2);
+ break;
+ case 1: /* BSL bitwise select */
+ tcg_gen_xor_i64(tcg_op1, tcg_op1, tcg_op2);
+ tcg_gen_and_i64(tcg_op1, tcg_op1, tcg_res[pass]);
+ tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op1);
+ break;
+ case 2: /* BIT, bitwise insert if true */
+ tcg_gen_xor_i64(tcg_op1, tcg_op1, tcg_res[pass]);
+ tcg_gen_and_i64(tcg_op1, tcg_op1, tcg_op2);
+ tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
+ break;
+ case 3: /* BIF, bitwise insert if false */
+ tcg_gen_xor_i64(tcg_op1, tcg_op1, tcg_res[pass]);
+ tcg_gen_andc_i64(tcg_op1, tcg_op1, tcg_op2);
+ tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
+ break;
+ }
+ }
+ }
+
+ write_vec_element(s, tcg_res[0], rd, 0, MO_64);
+ if (!is_q) {
+ tcg_gen_movi_i64(tcg_res[1], 0);
+ }
+ write_vec_element(s, tcg_res[1], rd, 1, MO_64);
+
+ tcg_temp_free_i64(tcg_op1);
+ tcg_temp_free_i64(tcg_op2);
+ tcg_temp_free_i64(tcg_res[0]);
+ tcg_temp_free_i64(tcg_res[1]);
+}
+
+/* Helper functions for 32 bit comparisons */
+static void gen_max_s32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2)
+{
+ tcg_gen_movcond_i32(TCG_COND_GE, res, op1, op2, op1, op2);
+}
+
+static void gen_max_u32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2)
+{
+ tcg_gen_movcond_i32(TCG_COND_GEU, res, op1, op2, op1, op2);
+}
+
+static void gen_min_s32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2)
+{
+ tcg_gen_movcond_i32(TCG_COND_LE, res, op1, op2, op1, op2);
+}
+
+static void gen_min_u32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2)
+{
+ tcg_gen_movcond_i32(TCG_COND_LEU, res, op1, op2, op1, op2);
+}
+
+/* Pairwise op subgroup of C3.6.16.
+ *
+ * This is called directly or via the handle_3same_float for float pairwise
+ * operations where the opcode and size are calculated differently.
+ */
+static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode,
+ int size, int rn, int rm, int rd)
+{
+ TCGv_ptr fpst;
+ int pass;
+
+ /* Floating point operations need fpst */
+ if (opcode >= 0x58) {
+ fpst = get_fpstatus_ptr();
+ } else {
+ TCGV_UNUSED_PTR(fpst);
+ }
+
+ if (!fp_access_check(s)) {
+ return;
+ }
+
+ /* These operations work on the concatenated rm:rn, with each pair of
+ * adjacent elements being operated on to produce an element in the result.
+ */
+ if (size == 3) {
+ TCGv_i64 tcg_res[2];
+
+ for (pass = 0; pass < 2; pass++) {
+ TCGv_i64 tcg_op1 = tcg_temp_new_i64();
+ TCGv_i64 tcg_op2 = tcg_temp_new_i64();
+ int passreg = (pass == 0) ? rn : rm;
+
+ read_vec_element(s, tcg_op1, passreg, 0, MO_64);
+ read_vec_element(s, tcg_op2, passreg, 1, MO_64);
+ tcg_res[pass] = tcg_temp_new_i64();
+
+ switch (opcode) {
+ case 0x17: /* ADDP */
+ tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
+ break;
+ case 0x58: /* FMAXNMP */
+ gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x5a: /* FADDP */
+ gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x5e: /* FMAXP */
+ gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x78: /* FMINNMP */
+ gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x7e: /* FMINP */
+ gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst);
+ break;
+ default:
+ g_assert_not_reached();
+ }
+
+ tcg_temp_free_i64(tcg_op1);
+ tcg_temp_free_i64(tcg_op2);
+ }
+
+ for (pass = 0; pass < 2; pass++) {
+ write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
+ tcg_temp_free_i64(tcg_res[pass]);
+ }
+ } else {
+ int maxpass = is_q ? 4 : 2;
+ TCGv_i32 tcg_res[4];
+
+ for (pass = 0; pass < maxpass; pass++) {
+ TCGv_i32 tcg_op1 = tcg_temp_new_i32();
+ TCGv_i32 tcg_op2 = tcg_temp_new_i32();
+ NeonGenTwoOpFn *genfn = NULL;
+ int passreg = pass < (maxpass / 2) ? rn : rm;
+ int passelt = (is_q && (pass & 1)) ? 2 : 0;
+
+ read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32);
+ read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32);
+ tcg_res[pass] = tcg_temp_new_i32();
+
+ switch (opcode) {
+ case 0x17: /* ADDP */
+ {
+ static NeonGenTwoOpFn * const fns[3] = {
+ gen_helper_neon_padd_u8,
+ gen_helper_neon_padd_u16,
+ tcg_gen_add_i32,
+ };
+ genfn = fns[size];
+ break;
+ }
+ case 0x14: /* SMAXP, UMAXP */
+ {
+ static NeonGenTwoOpFn * const fns[3][2] = {
+ { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 },
+ { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 },
+ { gen_max_s32, gen_max_u32 },
+ };
+ genfn = fns[size][u];
+ break;
+ }
+ case 0x15: /* SMINP, UMINP */
+ {
+ static NeonGenTwoOpFn * const fns[3][2] = {
+ { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 },
+ { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 },
+ { gen_min_s32, gen_min_u32 },
+ };
+ genfn = fns[size][u];
+ break;
+ }
+ /* The FP operations are all on single floats (32 bit) */
+ case 0x58: /* FMAXNMP */
+ gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x5a: /* FADDP */
+ gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x5e: /* FMAXP */
+ gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x78: /* FMINNMP */
+ gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x7e: /* FMINP */
+ gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst);
+ break;
+ default:
+ g_assert_not_reached();
+ }
+
+ /* FP ops called directly, otherwise call now */
+ if (genfn) {
+ genfn(tcg_res[pass], tcg_op1, tcg_op2);
+ }
+
+ tcg_temp_free_i32(tcg_op1);
+ tcg_temp_free_i32(tcg_op2);
+ }
+
+ for (pass = 0; pass < maxpass; pass++) {
+ write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
+ tcg_temp_free_i32(tcg_res[pass]);
+ }
+ if (!is_q) {
+ clear_vec_high(s, rd);
+ }
+ }
+
+ if (!TCGV_IS_UNUSED_PTR(fpst)) {
+ tcg_temp_free_ptr(fpst);
+ }
+}
+
+/* Floating point op subgroup of C3.6.16. */
+static void disas_simd_3same_float(DisasContext *s, uint32_t insn)
+{
+ /* For floating point ops, the U, size[1] and opcode bits
+ * together indicate the operation. size[0] indicates single
+ * or double.
+ */
+ int fpopcode = extract32(insn, 11, 5)
+ | (extract32(insn, 23, 1) << 5)
+ | (extract32(insn, 29, 1) << 6);
+ int is_q = extract32(insn, 30, 1);
+ int size = extract32(insn, 22, 1);
+ int rm = extract32(insn, 16, 5);
+ int rn = extract32(insn, 5, 5);
+ int rd = extract32(insn, 0, 5);
+
+ int datasize = is_q ? 128 : 64;
+ int esize = 32 << size;
+ int elements = datasize / esize;
+
+ if (size == 1 && !is_q) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ switch (fpopcode) {
+ case 0x58: /* FMAXNMP */
+ case 0x5a: /* FADDP */
+ case 0x5e: /* FMAXP */
+ case 0x78: /* FMINNMP */
+ case 0x7e: /* FMINP */
+ if (size && !is_q) {
+ unallocated_encoding(s);
+ return;
+ }
+ handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32,
+ rn, rm, rd);
+ return;
+ case 0x1b: /* FMULX */
+ case 0x1f: /* FRECPS */
+ case 0x3f: /* FRSQRTS */
+ case 0x5d: /* FACGE */
+ case 0x7d: /* FACGT */
+ case 0x19: /* FMLA */
+ case 0x39: /* FMLS */
+ case 0x18: /* FMAXNM */
+ case 0x1a: /* FADD */
+ case 0x1c: /* FCMEQ */
+ case 0x1e: /* FMAX */
+ case 0x38: /* FMINNM */
+ case 0x3a: /* FSUB */
+ case 0x3e: /* FMIN */
+ case 0x5b: /* FMUL */
+ case 0x5c: /* FCMGE */
+ case 0x5f: /* FDIV */
+ case 0x7a: /* FABD */
+ case 0x7c: /* FCMGT */
+ if (!fp_access_check(s)) {
+ return;
+ }
+
+ handle_3same_float(s, size, elements, fpopcode, rd, rn, rm);
+ return;
+ default:
+ unallocated_encoding(s);
+ return;
+ }
+}
+
+/* Integer op subgroup of C3.6.16. */
+static void disas_simd_3same_int(DisasContext *s, uint32_t insn)
+{
+ int is_q = extract32(insn, 30, 1);
+ int u = extract32(insn, 29, 1);
+ int size = extract32(insn, 22, 2);
+ int opcode = extract32(insn, 11, 5);
+ int rm = extract32(insn, 16, 5);
+ int rn = extract32(insn, 5, 5);
+ int rd = extract32(insn, 0, 5);
+ int pass;
+
+ switch (opcode) {
+ case 0x13: /* MUL, PMUL */
+ if (u && size != 0) {
+ unallocated_encoding(s);
+ return;
+ }
+ /* fall through */
+ case 0x0: /* SHADD, UHADD */
+ case 0x2: /* SRHADD, URHADD */
+ case 0x4: /* SHSUB, UHSUB */
+ case 0xc: /* SMAX, UMAX */
+ case 0xd: /* SMIN, UMIN */
+ case 0xe: /* SABD, UABD */
+ case 0xf: /* SABA, UABA */
+ case 0x12: /* MLA, MLS */
+ if (size == 3) {
+ unallocated_encoding(s);
+ return;
+ }
+ break;
+ case 0x16: /* SQDMULH, SQRDMULH */
+ if (size == 0 || size == 3) {
+ unallocated_encoding(s);
+ return;
+ }
+ break;
+ default:
+ if (size == 3 && !is_q) {
+ unallocated_encoding(s);
+ return;
+ }
+ break;
+ }
+
+ if (!fp_access_check(s)) {
+ return;
+ }
+
+ if (size == 3) {
+ assert(is_q);
+ for (pass = 0; pass < 2; pass++) {
+ TCGv_i64 tcg_op1 = tcg_temp_new_i64();
+ TCGv_i64 tcg_op2 = tcg_temp_new_i64();
+ TCGv_i64 tcg_res = tcg_temp_new_i64();
+
+ read_vec_element(s, tcg_op1, rn, pass, MO_64);
+ read_vec_element(s, tcg_op2, rm, pass, MO_64);
+
+ handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2);
+
+ write_vec_element(s, tcg_res, rd, pass, MO_64);
+
+ tcg_temp_free_i64(tcg_res);
+ tcg_temp_free_i64(tcg_op1);
+ tcg_temp_free_i64(tcg_op2);
+ }
+ } else {
+ for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
+ TCGv_i32 tcg_op1 = tcg_temp_new_i32();
+ TCGv_i32 tcg_op2 = tcg_temp_new_i32();
+ TCGv_i32 tcg_res = tcg_temp_new_i32();
+ NeonGenTwoOpFn *genfn = NULL;
+ NeonGenTwoOpEnvFn *genenvfn = NULL;
+
+ read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
+ read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
+
+ switch (opcode) {
+ case 0x0: /* SHADD, UHADD */
+ {
+ static NeonGenTwoOpFn * const fns[3][2] = {
+ { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 },
+ { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 },
+ { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 },
+ };
+ genfn = fns[size][u];
+ break;
+ }
+ case 0x1: /* SQADD, UQADD */
+ {
+ static NeonGenTwoOpEnvFn * const fns[3][2] = {
+ { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
+ { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
+ { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
+ };
+ genenvfn = fns[size][u];
+ break;
+ }
+ case 0x2: /* SRHADD, URHADD */
+ {
+ static NeonGenTwoOpFn * const fns[3][2] = {
+ { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 },
+ { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 },
+ { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 },
+ };
+ genfn = fns[size][u];
+ break;
+ }
+ case 0x4: /* SHSUB, UHSUB */
+ {
+ static NeonGenTwoOpFn * const fns[3][2] = {
+ { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 },
+ { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 },
+ { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 },
+ };
+ genfn = fns[size][u];
+ break;
+ }
+ case 0x5: /* SQSUB, UQSUB */
+ {
+ static NeonGenTwoOpEnvFn * const fns[3][2] = {
+ { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
+ { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
+ { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
+ };
+ genenvfn = fns[size][u];
+ break;
+ }
+ case 0x6: /* CMGT, CMHI */
+ {
+ static NeonGenTwoOpFn * const fns[3][2] = {
+ { gen_helper_neon_cgt_s8, gen_helper_neon_cgt_u8 },
+ { gen_helper_neon_cgt_s16, gen_helper_neon_cgt_u16 },
+ { gen_helper_neon_cgt_s32, gen_helper_neon_cgt_u32 },
+ };
+ genfn = fns[size][u];
+ break;
+ }
+ case 0x7: /* CMGE, CMHS */
+ {
+ static NeonGenTwoOpFn * const fns[3][2] = {
+ { gen_helper_neon_cge_s8, gen_helper_neon_cge_u8 },
+ { gen_helper_neon_cge_s16, gen_helper_neon_cge_u16 },
+ { gen_helper_neon_cge_s32, gen_helper_neon_cge_u32 },
+ };
+ genfn = fns[size][u];
+ break;
+ }
+ case 0x8: /* SSHL, USHL */
+ {
+ static NeonGenTwoOpFn * const fns[3][2] = {
+ { gen_helper_neon_shl_s8, gen_helper_neon_shl_u8 },
+ { gen_helper_neon_shl_s16, gen_helper_neon_shl_u16 },
+ { gen_helper_neon_shl_s32, gen_helper_neon_shl_u32 },
+ };
+ genfn = fns[size][u];
+ break;
+ }
+ case 0x9: /* SQSHL, UQSHL */
+ {
+ static NeonGenTwoOpEnvFn * const fns[3][2] = {
+ { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
+ { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
+ { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
+ };
+ genenvfn = fns[size][u];
+ break;
+ }
+ case 0xa: /* SRSHL, URSHL */
+ {
+ static NeonGenTwoOpFn * const fns[3][2] = {
+ { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 },
+ { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 },
+ { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 },
+ };
+ genfn = fns[size][u];
+ break;
+ }
+ case 0xb: /* SQRSHL, UQRSHL */
+ {
+ static NeonGenTwoOpEnvFn * const fns[3][2] = {
+ { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
+ { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
+ { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
+ };
+ genenvfn = fns[size][u];
+ break;
+ }
+ case 0xc: /* SMAX, UMAX */
+ {
+ static NeonGenTwoOpFn * const fns[3][2] = {
+ { gen_helper_neon_max_s8, gen_helper_neon_max_u8 },
+ { gen_helper_neon_max_s16, gen_helper_neon_max_u16 },
+ { gen_max_s32, gen_max_u32 },
+ };
+ genfn = fns[size][u];
+ break;
+ }
+
+ case 0xd: /* SMIN, UMIN */
+ {
+ static NeonGenTwoOpFn * const fns[3][2] = {
+ { gen_helper_neon_min_s8, gen_helper_neon_min_u8 },
+ { gen_helper_neon_min_s16, gen_helper_neon_min_u16 },
+ { gen_min_s32, gen_min_u32 },
+ };
+ genfn = fns[size][u];
+ break;
+ }
+ case 0xe: /* SABD, UABD */
+ case 0xf: /* SABA, UABA */
+ {
+ static NeonGenTwoOpFn * const fns[3][2] = {
+ { gen_helper_neon_abd_s8, gen_helper_neon_abd_u8 },
+ { gen_helper_neon_abd_s16, gen_helper_neon_abd_u16 },
+ { gen_helper_neon_abd_s32, gen_helper_neon_abd_u32 },
+ };
+ genfn = fns[size][u];
+ break;
+ }
+ case 0x10: /* ADD, SUB */
+ {
+ static NeonGenTwoOpFn * const fns[3][2] = {
+ { gen_helper_neon_add_u8, gen_helper_neon_sub_u8 },
+ { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
+ { tcg_gen_add_i32, tcg_gen_sub_i32 },
+ };
+ genfn = fns[size][u];
+ break;
+ }
+ case 0x11: /* CMTST, CMEQ */
+ {
+ static NeonGenTwoOpFn * const fns[3][2] = {
+ { gen_helper_neon_tst_u8, gen_helper_neon_ceq_u8 },
+ { gen_helper_neon_tst_u16, gen_helper_neon_ceq_u16 },
+ { gen_helper_neon_tst_u32, gen_helper_neon_ceq_u32 },
+ };
+ genfn = fns[size][u];
+ break;
+ }
+ case 0x13: /* MUL, PMUL */
+ if (u) {
+ /* PMUL */
+ assert(size == 0);
+ genfn = gen_helper_neon_mul_p8;
+ break;
+ }
+ /* fall through : MUL */
+ case 0x12: /* MLA, MLS */
+ {
+ static NeonGenTwoOpFn * const fns[3] = {
+ gen_helper_neon_mul_u8,
+ gen_helper_neon_mul_u16,
+ tcg_gen_mul_i32,
+ };
+ genfn = fns[size];
+ break;
+ }
+ case 0x16: /* SQDMULH, SQRDMULH */
+ {
+ static NeonGenTwoOpEnvFn * const fns[2][2] = {
+ { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
+ { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
+ };
+ assert(size == 1 || size == 2);
+ genenvfn = fns[size - 1][u];
+ break;
+ }
+ default:
+ g_assert_not_reached();
+ }
+
+ if (genenvfn) {
+ genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2);
+ } else {
+ genfn(tcg_res, tcg_op1, tcg_op2);
+ }
+
+ if (opcode == 0xf || opcode == 0x12) {
+ /* SABA, UABA, MLA, MLS: accumulating ops */
+ static NeonGenTwoOpFn * const fns[3][2] = {
+ { gen_helper_neon_add_u8, gen_helper_neon_sub_u8 },
+ { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
+ { tcg_gen_add_i32, tcg_gen_sub_i32 },
+ };
+ bool is_sub = (opcode == 0x12 && u); /* MLS */
+
+ genfn = fns[size][is_sub];
+ read_vec_element_i32(s, tcg_op1, rd, pass, MO_32);
+ genfn(tcg_res, tcg_op1, tcg_res);
+ }
+
+ write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
+
+ tcg_temp_free_i32(tcg_res);
+ tcg_temp_free_i32(tcg_op1);
+ tcg_temp_free_i32(tcg_op2);
+ }
+ }
+
+ if (!is_q) {
+ clear_vec_high(s, rd);
+ }
+}
+
+/* C3.6.16 AdvSIMD three same
+ * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
+ * +---+---+---+-----------+------+---+------+--------+---+------+------+
+ * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
+ * +---+---+---+-----------+------+---+------+--------+---+------+------+
+ */
+static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn)
+{
+ int opcode = extract32(insn, 11, 5);
+
+ switch (opcode) {
+ case 0x3: /* logic ops */
+ disas_simd_3same_logic(s, insn);
+ break;
+ case 0x17: /* ADDP */
+ case 0x14: /* SMAXP, UMAXP */
+ case 0x15: /* SMINP, UMINP */
+ {
+ /* Pairwise operations */
+ int is_q = extract32(insn, 30, 1);
+ int u = extract32(insn, 29, 1);
+ int size = extract32(insn, 22, 2);
+ int rm = extract32(insn, 16, 5);
+ int rn = extract32(insn, 5, 5);
+ int rd = extract32(insn, 0, 5);
+ if (opcode == 0x17) {
+ if (u || (size == 3 && !is_q)) {
+ unallocated_encoding(s);
+ return;
+ }
+ } else {
+ if (size == 3) {
+ unallocated_encoding(s);
+ return;
+ }
+ }
+ handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd);
+ break;
+ }
+ case 0x18 ... 0x31:
+ /* floating point ops, sz[1] and U are part of opcode */
+ disas_simd_3same_float(s, insn);
+ break;
+ default:
+ disas_simd_3same_int(s, insn);
+ break;
+ }
+}
+
+static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
+ int size, int rn, int rd)
+{
+ /* Handle 2-reg-misc ops which are widening (so each size element
+ * in the source becomes a 2*size element in the destination.
+ * The only instruction like this is FCVTL.
+ */
+ int pass;
+
+ if (size == 3) {
+ /* 32 -> 64 bit fp conversion */
+ TCGv_i64 tcg_res[2];
+ int srcelt = is_q ? 2 : 0;
+
+ for (pass = 0; pass < 2; pass++) {
+ TCGv_i32 tcg_op = tcg_temp_new_i32();
+ tcg_res[pass] = tcg_temp_new_i64();
+
+ read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
+ gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env);
+ tcg_temp_free_i32(tcg_op);
+ }
+ for (pass = 0; pass < 2; pass++) {
+ write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
+ tcg_temp_free_i64(tcg_res[pass]);
+ }
+ } else {
+ /* 16 -> 32 bit fp conversion */
+ int srcelt = is_q ? 4 : 0;
+ TCGv_i32 tcg_res[4];
+
+ for (pass = 0; pass < 4; pass++) {
+ tcg_res[pass] = tcg_temp_new_i32();
+
+ read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
+ gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
+ cpu_env);
+ }
+ for (pass = 0; pass < 4; pass++) {
+ write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
+ tcg_temp_free_i32(tcg_res[pass]);
+ }
+ }
+}
+
+static void handle_rev(DisasContext *s, int opcode, bool u,
+ bool is_q, int size, int rn, int rd)
+{
+ int op = (opcode << 1) | u;
+ int opsz = op + size;
+ int grp_size = 3 - opsz;
+ int dsize = is_q ? 128 : 64;
+ int i;
+
+ if (opsz >= 3) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ if (!fp_access_check(s)) {
+ return;
+ }
+
+ if (size == 0) {
+ /* Special case bytes, use bswap op on each group of elements */
+ int groups = dsize / (8 << grp_size);
+
+ for (i = 0; i < groups; i++) {
+ TCGv_i64 tcg_tmp = tcg_temp_new_i64();
+
+ read_vec_element(s, tcg_tmp, rn, i, grp_size);
+ switch (grp_size) {
+ case MO_16:
+ tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp);
+ break;
+ case MO_32:
+ tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp);
+ break;
+ case MO_64:
+ tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
+ break;
+ default:
+ g_assert_not_reached();
+ }
+ write_vec_element(s, tcg_tmp, rd, i, grp_size);
+ tcg_temp_free_i64(tcg_tmp);
+ }
+ if (!is_q) {
+ clear_vec_high(s, rd);
+ }
+ } else {
+ int revmask = (1 << grp_size) - 1;
+ int esize = 8 << size;
+ int elements = dsize / esize;
+ TCGv_i64 tcg_rn = tcg_temp_new_i64();
+ TCGv_i64 tcg_rd = tcg_const_i64(0);
+ TCGv_i64 tcg_rd_hi = tcg_const_i64(0);
+
+ for (i = 0; i < elements; i++) {
+ int e_rev = (i & 0xf) ^ revmask;
+ int off = e_rev * esize;
+ read_vec_element(s, tcg_rn, rn, i, size);
+ if (off >= 64) {
+ tcg_gen_deposit_i64(tcg_rd_hi, tcg_rd_hi,
+ tcg_rn, off - 64, esize);
+ } else {
+ tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, off, esize);
+ }
+ }
+ write_vec_element(s, tcg_rd, rd, 0, MO_64);
+ write_vec_element(s, tcg_rd_hi, rd, 1, MO_64);
+
+ tcg_temp_free_i64(tcg_rd_hi);
+ tcg_temp_free_i64(tcg_rd);
+ tcg_temp_free_i64(tcg_rn);
+ }
+}
+
+static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
+ bool is_q, int size, int rn, int rd)
+{
+ /* Implement the pairwise operations from 2-misc:
+ * SADDLP, UADDLP, SADALP, UADALP.
+ * These all add pairs of elements in the input to produce a
+ * double-width result element in the output (possibly accumulating).
+ */
+ bool accum = (opcode == 0x6);
+ int maxpass = is_q ? 2 : 1;
+ int pass;
+ TCGv_i64 tcg_res[2];
+
+ if (size == 2) {
+ /* 32 + 32 -> 64 op */
+ TCGMemOp memop = size + (u ? 0 : MO_SIGN);
+
+ for (pass = 0; pass < maxpass; pass++) {
+ TCGv_i64 tcg_op1 = tcg_temp_new_i64();
+ TCGv_i64 tcg_op2 = tcg_temp_new_i64();
+
+ tcg_res[pass] = tcg_temp_new_i64();
+
+ read_vec_element(s, tcg_op1, rn, pass * 2, memop);
+ read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
+ tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
+ if (accum) {
+ read_vec_element(s, tcg_op1, rd, pass, MO_64);
+ tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
+ }
+
+ tcg_temp_free_i64(tcg_op1);
+ tcg_temp_free_i64(tcg_op2);
+ }
+ } else {
+ for (pass = 0; pass < maxpass; pass++) {
+ TCGv_i64 tcg_op = tcg_temp_new_i64();
+ NeonGenOneOpFn *genfn;
+ static NeonGenOneOpFn * const fns[2][2] = {
+ { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 },
+ { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 },
+ };
+
+ genfn = fns[size][u];
+
+ tcg_res[pass] = tcg_temp_new_i64();
+
+ read_vec_element(s, tcg_op, rn, pass, MO_64);
+ genfn(tcg_res[pass], tcg_op);
+
+ if (accum) {
+ read_vec_element(s, tcg_op, rd, pass, MO_64);
+ if (size == 0) {
+ gen_helper_neon_addl_u16(tcg_res[pass],
+ tcg_res[pass], tcg_op);
+ } else {
+ gen_helper_neon_addl_u32(tcg_res[pass],
+ tcg_res[pass], tcg_op);
+ }
+ }
+ tcg_temp_free_i64(tcg_op);
+ }
+ }
+ if (!is_q) {
+ tcg_res[1] = tcg_const_i64(0);
+ }
+ for (pass = 0; pass < 2; pass++) {
+ write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
+ tcg_temp_free_i64(tcg_res[pass]);
+ }
+}
+
+static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
+{
+ /* Implement SHLL and SHLL2 */
+ int pass;
+ int part = is_q ? 2 : 0;
+ TCGv_i64 tcg_res[2];
+
+ for (pass = 0; pass < 2; pass++) {
+ static NeonGenWidenFn * const widenfns[3] = {
+ gen_helper_neon_widen_u8,
+ gen_helper_neon_widen_u16,
+ tcg_gen_extu_i32_i64,
+ };
+ NeonGenWidenFn *widenfn = widenfns[size];
+ TCGv_i32 tcg_op = tcg_temp_new_i32();
+
+ read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
+ tcg_res[pass] = tcg_temp_new_i64();
+ widenfn(tcg_res[pass], tcg_op);
+ tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
+
+ tcg_temp_free_i32(tcg_op);
+ }
+
+ for (pass = 0; pass < 2; pass++) {
+ write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
+ tcg_temp_free_i64(tcg_res[pass]);
+ }
+}
+
+/* C3.6.17 AdvSIMD two reg misc
+ * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
+ * +---+---+---+-----------+------+-----------+--------+-----+------+------+
+ * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
+ * +---+---+---+-----------+------+-----------+--------+-----+------+------+
+ */
+static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
+{
+ int size = extract32(insn, 22, 2);
+ int opcode = extract32(insn, 12, 5);
+ bool u = extract32(insn, 29, 1);
+ bool is_q = extract32(insn, 30, 1);
+ int rn = extract32(insn, 5, 5);
+ int rd = extract32(insn, 0, 5);
+ bool need_fpstatus = false;
+ bool need_rmode = false;
+ int rmode = -1;
+ TCGv_i32 tcg_rmode;
+ TCGv_ptr tcg_fpstatus;
+
+ switch (opcode) {
+ case 0x0: /* REV64, REV32 */
+ case 0x1: /* REV16 */
+ handle_rev(s, opcode, u, is_q, size, rn, rd);
+ return;
+ case 0x5: /* CNT, NOT, RBIT */
+ if (u && size == 0) {
+ /* NOT: adjust size so we can use the 64-bits-at-a-time loop. */
+ size = 3;
+ break;
+ } else if (u && size == 1) {
+ /* RBIT */
+ break;
+ } else if (!u && size == 0) {
+ /* CNT */
+ break;
+ }
+ unallocated_encoding(s);
+ return;
+ case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
+ case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
+ if (size == 3) {
+ unallocated_encoding(s);
+ return;
+ }
+ if (!fp_access_check(s)) {
+ return;
+ }
+
+ handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
+ return;
+ case 0x4: /* CLS, CLZ */
+ if (size == 3) {
+ unallocated_encoding(s);
+ return;
+ }
+ break;
+ case 0x2: /* SADDLP, UADDLP */
+ case 0x6: /* SADALP, UADALP */
+ if (size == 3) {
+ unallocated_encoding(s);
+ return;
+ }
+ if (!fp_access_check(s)) {
+ return;
+ }
+ handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
+ return;
+ case 0x13: /* SHLL, SHLL2 */
+ if (u == 0 || size == 3) {
+ unallocated_encoding(s);
+ return;
+ }
+ if (!fp_access_check(s)) {
+ return;
+ }
+ handle_shll(s, is_q, size, rn, rd);
+ return;
+ case 0xa: /* CMLT */
+ if (u == 1) {
+ unallocated_encoding(s);
+ return;
+ }
+ /* fall through */
+ case 0x8: /* CMGT, CMGE */
+ case 0x9: /* CMEQ, CMLE */
+ case 0xb: /* ABS, NEG */
+ if (size == 3 && !is_q) {
+ unallocated_encoding(s);
+ return;
+ }
+ break;
+ case 0x3: /* SUQADD, USQADD */
+ if (size == 3 && !is_q) {
+ unallocated_encoding(s);
+ return;
+ }
+ if (!fp_access_check(s)) {
+ return;
+ }
+ handle_2misc_satacc(s, false, u, is_q, size, rn, rd);
+ return;
+ case 0x7: /* SQABS, SQNEG */
+ if (size == 3 && !is_q) {
+ unallocated_encoding(s);
+ return;
+ }
+ break;
+ case 0xc ... 0xf:
+ case 0x16 ... 0x1d:
+ case 0x1f:
+ {
+ /* Floating point: U, size[1] and opcode indicate operation;
+ * size[0] indicates single or double precision.
+ */
+ int is_double = extract32(size, 0, 1);
+ opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
+ size = is_double ? 3 : 2;
+ switch (opcode) {
+ case 0x2f: /* FABS */
+ case 0x6f: /* FNEG */
+ if (size == 3 && !is_q) {
+ unallocated_encoding(s);
+ return;
+ }
+ break;
+ case 0x1d: /* SCVTF */
+ case 0x5d: /* UCVTF */
+ {
+ bool is_signed = (opcode == 0x1d) ? true : false;
+ int elements = is_double ? 2 : is_q ? 4 : 2;
+ if (is_double && !is_q) {
+ unallocated_encoding(s);
+ return;
+ }
+ if (!fp_access_check(s)) {
+ return;
+ }
+ handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
+ return;
+ }
+ case 0x2c: /* FCMGT (zero) */
+ case 0x2d: /* FCMEQ (zero) */
+ case 0x2e: /* FCMLT (zero) */
+ case 0x6c: /* FCMGE (zero) */
+ case 0x6d: /* FCMLE (zero) */
+ if (size == 3 && !is_q) {
+ unallocated_encoding(s);
+ return;
+ }
+ handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
+ return;
+ case 0x7f: /* FSQRT */
+ if (size == 3 && !is_q) {
+ unallocated_encoding(s);
+ return;
+ }
+ break;
+ case 0x1a: /* FCVTNS */
+ case 0x1b: /* FCVTMS */
+ case 0x3a: /* FCVTPS */
+ case 0x3b: /* FCVTZS */
+ case 0x5a: /* FCVTNU */
+ case 0x5b: /* FCVTMU */
+ case 0x7a: /* FCVTPU */
+ case 0x7b: /* FCVTZU */
+ need_fpstatus = true;
+ need_rmode = true;
+ rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
+ if (size == 3 && !is_q) {
+ unallocated_encoding(s);
+ return;
+ }
+ break;
+ case 0x5c: /* FCVTAU */
+ case 0x1c: /* FCVTAS */
+ need_fpstatus = true;
+ need_rmode = true;
+ rmode = FPROUNDING_TIEAWAY;
+ if (size == 3 && !is_q) {
+ unallocated_encoding(s);
+ return;
+ }
+ break;
+ case 0x3c: /* URECPE */
+ if (size == 3) {
+ unallocated_encoding(s);
+ return;
+ }
+ /* fall through */
+ case 0x3d: /* FRECPE */
+ case 0x7d: /* FRSQRTE */
+ if (size == 3 && !is_q) {
+ unallocated_encoding(s);
+ return;
+ }
+ if (!fp_access_check(s)) {
+ return;
+ }
+ handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
+ return;
+ case 0x56: /* FCVTXN, FCVTXN2 */
+ if (size == 2) {
+ unallocated_encoding(s);
+ return;
+ }
+ /* fall through */
+ case 0x16: /* FCVTN, FCVTN2 */
+ /* handle_2misc_narrow does a 2*size -> size operation, but these
+ * instructions encode the source size rather than dest size.
+ */
+ if (!fp_access_check(s)) {
+ return;
+ }
+ handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
+ return;
+ case 0x17: /* FCVTL, FCVTL2 */
+ if (!fp_access_check(s)) {
+ return;
+ }
+ handle_2misc_widening(s, opcode, is_q, size, rn, rd);
+ return;
+ case 0x18: /* FRINTN */
+ case 0x19: /* FRINTM */
+ case 0x38: /* FRINTP */
+ case 0x39: /* FRINTZ */
+ need_rmode = true;
+ rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
+ /* fall through */
+ case 0x59: /* FRINTX */
+ case 0x79: /* FRINTI */
+ need_fpstatus = true;
+ if (size == 3 && !is_q) {
+ unallocated_encoding(s);
+ return;
+ }
+ break;
+ case 0x58: /* FRINTA */
+ need_rmode = true;
+ rmode = FPROUNDING_TIEAWAY;
+ need_fpstatus = true;
+ if (size == 3 && !is_q) {
+ unallocated_encoding(s);
+ return;
+ }
+ break;
+ case 0x7c: /* URSQRTE */
+ if (size == 3) {
+ unallocated_encoding(s);
+ return;
+ }
+ need_fpstatus = true;
+ break;
+ default:
+ unallocated_encoding(s);
+ return;
+ }
+ break;
+ }
+ default:
+ unallocated_encoding(s);
+ return;
+ }
+
+ if (!fp_access_check(s)) {
+ return;
+ }
+
+ if (need_fpstatus) {
+ tcg_fpstatus = get_fpstatus_ptr();
+ } else {
+ TCGV_UNUSED_PTR(tcg_fpstatus);
+ }
+ if (need_rmode) {
+ tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
+ gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
+ } else {
+ TCGV_UNUSED_I32(tcg_rmode);
+ }
+
+ if (size == 3) {
+ /* All 64-bit element operations can be shared with scalar 2misc */
+ int pass;
+
+ for (pass = 0; pass < (is_q ? 2 : 1); pass++) {
+ TCGv_i64 tcg_op = tcg_temp_new_i64();
+ TCGv_i64 tcg_res = tcg_temp_new_i64();
+
+ read_vec_element(s, tcg_op, rn, pass, MO_64);
+
+ handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
+ tcg_rmode, tcg_fpstatus);
+
+ write_vec_element(s, tcg_res, rd, pass, MO_64);
+
+ tcg_temp_free_i64(tcg_res);
+ tcg_temp_free_i64(tcg_op);
+ }
+ } else {
+ int pass;
+
+ for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
+ TCGv_i32 tcg_op = tcg_temp_new_i32();
+ TCGv_i32 tcg_res = tcg_temp_new_i32();
+ TCGCond cond;
+
+ read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
+
+ if (size == 2) {
+ /* Special cases for 32 bit elements */
+ switch (opcode) {
+ case 0xa: /* CMLT */
+ /* 32 bit integer comparison against zero, result is
+ * test ? (2^32 - 1) : 0. We implement via setcond(test)
+ * and inverting.
+ */
+ cond = TCG_COND_LT;
+ do_cmop:
+ tcg_gen_setcondi_i32(cond, tcg_res, tcg_op, 0);
+ tcg_gen_neg_i32(tcg_res, tcg_res);
+ break;
+ case 0x8: /* CMGT, CMGE */
+ cond = u ? TCG_COND_GE : TCG_COND_GT;
+ goto do_cmop;
+ case 0x9: /* CMEQ, CMLE */
+ cond = u ? TCG_COND_LE : TCG_COND_EQ;
+ goto do_cmop;
+ case 0x4: /* CLS */
+ if (u) {
+ gen_helper_clz32(tcg_res, tcg_op);
+ } else {
+ gen_helper_cls32(tcg_res, tcg_op);
+ }
+ break;
+ case 0x7: /* SQABS, SQNEG */
+ if (u) {
+ gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op);
+ } else {
+ gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op);
+ }
+ break;
+ case 0xb: /* ABS, NEG */
+ if (u) {
+ tcg_gen_neg_i32(tcg_res, tcg_op);
+ } else {
+ TCGv_i32 tcg_zero = tcg_const_i32(0);
+ tcg_gen_neg_i32(tcg_res, tcg_op);
+ tcg_gen_movcond_i32(TCG_COND_GT, tcg_res, tcg_op,
+ tcg_zero, tcg_op, tcg_res);
+ tcg_temp_free_i32(tcg_zero);
+ }
+ break;
+ case 0x2f: /* FABS */
+ gen_helper_vfp_abss(tcg_res, tcg_op);
+ break;
+ case 0x6f: /* FNEG */
+ gen_helper_vfp_negs(tcg_res, tcg_op);
+ break;
+ case 0x7f: /* FSQRT */
+ gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
+ break;
+ case 0x1a: /* FCVTNS */
+ case 0x1b: /* FCVTMS */
+ case 0x1c: /* FCVTAS */
+ case 0x3a: /* FCVTPS */
+ case 0x3b: /* FCVTZS */
+ {
+ TCGv_i32 tcg_shift = tcg_const_i32(0);
+ gen_helper_vfp_tosls(tcg_res, tcg_op,
+ tcg_shift, tcg_fpstatus);
+ tcg_temp_free_i32(tcg_shift);
+ break;
+ }
+ case 0x5a: /* FCVTNU */
+ case 0x5b: /* FCVTMU */
+ case 0x5c: /* FCVTAU */
+ case 0x7a: /* FCVTPU */
+ case 0x7b: /* FCVTZU */
+ {
+ TCGv_i32 tcg_shift = tcg_const_i32(0);
+ gen_helper_vfp_touls(tcg_res, tcg_op,
+ tcg_shift, tcg_fpstatus);
+ tcg_temp_free_i32(tcg_shift);
+ break;
+ }
+ case 0x18: /* FRINTN */
+ case 0x19: /* FRINTM */
+ case 0x38: /* FRINTP */
+ case 0x39: /* FRINTZ */
+ case 0x58: /* FRINTA */
+ case 0x79: /* FRINTI */
+ gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
+ break;
+ case 0x59: /* FRINTX */
+ gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
+ break;
+ case 0x7c: /* URSQRTE */
+ gen_helper_rsqrte_u32(tcg_res, tcg_op, tcg_fpstatus);
+ break;
+ default:
+ g_assert_not_reached();
+ }
+ } else {
+ /* Use helpers for 8 and 16 bit elements */
+ switch (opcode) {
+ case 0x5: /* CNT, RBIT */
+ /* For these two insns size is part of the opcode specifier
+ * (handled earlier); they always operate on byte elements.
+ */
+ if (u) {
+ gen_helper_neon_rbit_u8(tcg_res, tcg_op);
+ } else {
+ gen_helper_neon_cnt_u8(tcg_res, tcg_op);
+ }
+ break;
+ case 0x7: /* SQABS, SQNEG */
+ {
+ NeonGenOneOpEnvFn *genfn;
+ static NeonGenOneOpEnvFn * const fns[2][2] = {
+ { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
+ { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
+ };
+ genfn = fns[size][u];
+ genfn(tcg_res, cpu_env, tcg_op);
+ break;
+ }
+ case 0x8: /* CMGT, CMGE */
+ case 0x9: /* CMEQ, CMLE */
+ case 0xa: /* CMLT */
+ {
+ static NeonGenTwoOpFn * const fns[3][2] = {
+ { gen_helper_neon_cgt_s8, gen_helper_neon_cgt_s16 },
+ { gen_helper_neon_cge_s8, gen_helper_neon_cge_s16 },
+ { gen_helper_neon_ceq_u8, gen_helper_neon_ceq_u16 },
+ };
+ NeonGenTwoOpFn *genfn;
+ int comp;
+ bool reverse;
+ TCGv_i32 tcg_zero = tcg_const_i32(0);
+
+ /* comp = index into [CMGT, CMGE, CMEQ, CMLE, CMLT] */
+ comp = (opcode - 0x8) * 2 + u;
+ /* ...but LE, LT are implemented as reverse GE, GT */
+ reverse = (comp > 2);
+ if (reverse) {
+ comp = 4 - comp;
+ }
+ genfn = fns[comp][size];
+ if (reverse) {
+ genfn(tcg_res, tcg_zero, tcg_op);
+ } else {
+ genfn(tcg_res, tcg_op, tcg_zero);
+ }
+ tcg_temp_free_i32(tcg_zero);
+ break;
+ }
+ case 0xb: /* ABS, NEG */
+ if (u) {
+ TCGv_i32 tcg_zero = tcg_const_i32(0);
+ if (size) {
+ gen_helper_neon_sub_u16(tcg_res, tcg_zero, tcg_op);
+ } else {
+ gen_helper_neon_sub_u8(tcg_res, tcg_zero, tcg_op);
+ }
+ tcg_temp_free_i32(tcg_zero);
+ } else {
+ if (size) {
+ gen_helper_neon_abs_s16(tcg_res, tcg_op);
+ } else {
+ gen_helper_neon_abs_s8(tcg_res, tcg_op);
+ }
+ }
+ break;
+ case 0x4: /* CLS, CLZ */
+ if (u) {
+ if (size == 0) {
+ gen_helper_neon_clz_u8(tcg_res, tcg_op);
+ } else {
+ gen_helper_neon_clz_u16(tcg_res, tcg_op);
+ }
+ } else {
+ if (size == 0) {
+ gen_helper_neon_cls_s8(tcg_res, tcg_op);
+ } else {
+ gen_helper_neon_cls_s16(tcg_res, tcg_op);
+ }
+ }
+ break;
+ default:
+ g_assert_not_reached();
+ }
+ }
+
+ write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
+
+ tcg_temp_free_i32(tcg_res);
+ tcg_temp_free_i32(tcg_op);
+ }
+ }
+ if (!is_q) {
+ clear_vec_high(s, rd);
+ }
+
+ if (need_rmode) {
+ gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
+ tcg_temp_free_i32(tcg_rmode);
+ }
+ if (need_fpstatus) {
+ tcg_temp_free_ptr(tcg_fpstatus);
+ }
+}
+
+/* C3.6.13 AdvSIMD scalar x indexed element
+ * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
+ * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
+ * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
+ * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
+ * C3.6.18 AdvSIMD vector x indexed element
+ * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
+ * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
+ * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
+ * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
+ */
+static void disas_simd_indexed(DisasContext *s, uint32_t insn)
+{
+ /* This encoding has two kinds of instruction:
+ * normal, where we perform elt x idxelt => elt for each
+ * element in the vector
+ * long, where we perform elt x idxelt and generate a result of
+ * double the width of the input element
+ * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
+ */
+ bool is_scalar = extract32(insn, 28, 1);
+ bool is_q = extract32(insn, 30, 1);
+ bool u = extract32(insn, 29, 1);
+ int size = extract32(insn, 22, 2);
+ int l = extract32(insn, 21, 1);
+ int m = extract32(insn, 20, 1);
+ /* Note that the Rm field here is only 4 bits, not 5 as it usually is */
+ int rm = extract32(insn, 16, 4);
+ int opcode = extract32(insn, 12, 4);
+ int h = extract32(insn, 11, 1);
+ int rn = extract32(insn, 5, 5);
+ int rd = extract32(insn, 0, 5);
+ bool is_long = false;
+ bool is_fp = false;
+ int index;
+ TCGv_ptr fpst;
+
+ switch (opcode) {
+ case 0x0: /* MLA */
+ case 0x4: /* MLS */
+ if (!u || is_scalar) {
+ unallocated_encoding(s);
+ return;
+ }
+ break;
+ case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
+ case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
+ case 0xa: /* SMULL, SMULL2, UMULL, UMULL2 */
+ if (is_scalar) {
+ unallocated_encoding(s);
+ return;
+ }
+ is_long = true;
+ break;
+ case 0x3: /* SQDMLAL, SQDMLAL2 */
+ case 0x7: /* SQDMLSL, SQDMLSL2 */
+ case 0xb: /* SQDMULL, SQDMULL2 */
+ is_long = true;
+ /* fall through */
+ case 0xc: /* SQDMULH */
+ case 0xd: /* SQRDMULH */
+ if (u) {
+ unallocated_encoding(s);
+ return;
+ }
+ break;
+ case 0x8: /* MUL */
+ if (u || is_scalar) {
+ unallocated_encoding(s);
+ return;
+ }
+ break;
+ case 0x1: /* FMLA */
+ case 0x5: /* FMLS */
+ if (u) {
+ unallocated_encoding(s);
+ return;
+ }
+ /* fall through */
+ case 0x9: /* FMUL, FMULX */
+ if (!extract32(size, 1, 1)) {
+ unallocated_encoding(s);
+ return;
+ }
+ is_fp = true;
+ break;
+ default:
+ unallocated_encoding(s);
+ return;
+ }
+
+ if (is_fp) {
+ /* low bit of size indicates single/double */
+ size = extract32(size, 0, 1) ? 3 : 2;
+ if (size == 2) {
+ index = h << 1 | l;
+ } else {
+ if (l || !is_q) {
+ unallocated_encoding(s);
+ return;
+ }
+ index = h;
+ }
+ rm |= (m << 4);
+ } else {
+ switch (size) {
+ case 1:
+ index = h << 2 | l << 1 | m;
+ break;
+ case 2:
+ index = h << 1 | l;
+ rm |= (m << 4);
+ break;
+ default:
+ unallocated_encoding(s);
+ return;
+ }
+ }
+
+ if (!fp_access_check(s)) {
+ return;
+ }
+
+ if (is_fp) {
+ fpst = get_fpstatus_ptr();
+ } else {
+ TCGV_UNUSED_PTR(fpst);
+ }
+
+ if (size == 3) {
+ TCGv_i64 tcg_idx = tcg_temp_new_i64();
+ int pass;
+
+ assert(is_fp && is_q && !is_long);
+
+ read_vec_element(s, tcg_idx, rm, index, MO_64);
+
+ for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
+ TCGv_i64 tcg_op = tcg_temp_new_i64();
+ TCGv_i64 tcg_res = tcg_temp_new_i64();
+
+ read_vec_element(s, tcg_op, rn, pass, MO_64);
+
+ switch (opcode) {
+ case 0x5: /* FMLS */
+ /* As usual for ARM, separate negation for fused multiply-add */
+ gen_helper_vfp_negd(tcg_op, tcg_op);
+ /* fall through */
+ case 0x1: /* FMLA */
+ read_vec_element(s, tcg_res, rd, pass, MO_64);
+ gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst);
+ break;
+ case 0x9: /* FMUL, FMULX */
+ if (u) {
+ gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst);
+ } else {
+ gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst);
+ }
+ break;
+ default:
+ g_assert_not_reached();
+ }
+
+ write_vec_element(s, tcg_res, rd, pass, MO_64);
+ tcg_temp_free_i64(tcg_op);
+ tcg_temp_free_i64(tcg_res);
+ }
+
+ if (is_scalar) {
+ clear_vec_high(s, rd);
+ }
+
+ tcg_temp_free_i64(tcg_idx);
+ } else if (!is_long) {
+ /* 32 bit floating point, or 16 or 32 bit integer.
+ * For the 16 bit scalar case we use the usual Neon helpers and
+ * rely on the fact that 0 op 0 == 0 with no side effects.
+ */
+ TCGv_i32 tcg_idx = tcg_temp_new_i32();
+ int pass, maxpasses;
+
+ if (is_scalar) {
+ maxpasses = 1;
+ } else {
+ maxpasses = is_q ? 4 : 2;
+ }
+
+ read_vec_element_i32(s, tcg_idx, rm, index, size);
+
+ if (size == 1 && !is_scalar) {
+ /* The simplest way to handle the 16x16 indexed ops is to duplicate
+ * the index into both halves of the 32 bit tcg_idx and then use
+ * the usual Neon helpers.
+ */
+ tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
+ }
+
+ for (pass = 0; pass < maxpasses; pass++) {
+ TCGv_i32 tcg_op = tcg_temp_new_i32();
+ TCGv_i32 tcg_res = tcg_temp_new_i32();
+
+ read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
+
+ switch (opcode) {
+ case 0x0: /* MLA */
+ case 0x4: /* MLS */
+ case 0x8: /* MUL */
+ {
+ static NeonGenTwoOpFn * const fns[2][2] = {
+ { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
+ { tcg_gen_add_i32, tcg_gen_sub_i32 },
+ };
+ NeonGenTwoOpFn *genfn;
+ bool is_sub = opcode == 0x4;
+
+ if (size == 1) {
+ gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx);
+ } else {
+ tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx);
+ }
+ if (opcode == 0x8) {
+ break;
+ }
+ read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
+ genfn = fns[size - 1][is_sub];
+ genfn(tcg_res, tcg_op, tcg_res);
+ break;
+ }
+ case 0x5: /* FMLS */
+ /* As usual for ARM, separate negation for fused multiply-add */
+ gen_helper_vfp_negs(tcg_op, tcg_op);
+ /* fall through */
+ case 0x1: /* FMLA */
+ read_vec_element_i32(s, tcg_res, rd, pass, MO_32);
+ gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx, tcg_res, fpst);
+ break;
+ case 0x9: /* FMUL, FMULX */
+ if (u) {
+ gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst);
+ } else {
+ gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst);
+ }
+ break;
+ case 0xc: /* SQDMULH */
+ if (size == 1) {
+ gen_helper_neon_qdmulh_s16(tcg_res, cpu_env,
+ tcg_op, tcg_idx);
+ } else {
+ gen_helper_neon_qdmulh_s32(tcg_res, cpu_env,
+ tcg_op, tcg_idx);
+ }
+ break;
+ case 0xd: /* SQRDMULH */
+ if (size == 1) {
+ gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env,
+ tcg_op, tcg_idx);
+ } else {
+ gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env,
+ tcg_op, tcg_idx);
+ }
+ break;
+ default:
+ g_assert_not_reached();
+ }
+
+ if (is_scalar) {
+ write_fp_sreg(s, rd, tcg_res);
+ } else {
+ write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
+ }
+
+ tcg_temp_free_i32(tcg_op);
+ tcg_temp_free_i32(tcg_res);
+ }
+
+ tcg_temp_free_i32(tcg_idx);
+
+ if (!is_q) {
+ clear_vec_high(s, rd);
+ }
+ } else {
+ /* long ops: 16x16->32 or 32x32->64 */
+ TCGv_i64 tcg_res[2];
+ int pass;
+ bool satop = extract32(opcode, 0, 1);
+ TCGMemOp memop = MO_32;
+
+ if (satop || !u) {
+ memop |= MO_SIGN;
+ }
+
+ if (size == 2) {
+ TCGv_i64 tcg_idx = tcg_temp_new_i64();
+
+ read_vec_element(s, tcg_idx, rm, index, memop);
+
+ for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
+ TCGv_i64 tcg_op = tcg_temp_new_i64();
+ TCGv_i64 tcg_passres;
+ int passelt;
+
+ if (is_scalar) {
+ passelt = 0;
+ } else {
+ passelt = pass + (is_q * 2);
+ }
+
+ read_vec_element(s, tcg_op, rn, passelt, memop);
+
+ tcg_res[pass] = tcg_temp_new_i64();
+
+ if (opcode == 0xa || opcode == 0xb) {
+ /* Non-accumulating ops */
+ tcg_passres = tcg_res[pass];
+ } else {
+ tcg_passres = tcg_temp_new_i64();
+ }
+
+ tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
+ tcg_temp_free_i64(tcg_op);
+
+ if (satop) {
+ /* saturating, doubling */
+ gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
+ tcg_passres, tcg_passres);
+ }
+
+ if (opcode == 0xa || opcode == 0xb) {
+ continue;
+ }
+
+ /* Accumulating op: handle accumulate step */
+ read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
+
+ switch (opcode) {
+ case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
+ tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
+ break;
+ case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
+ tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
+ break;
+ case 0x7: /* SQDMLSL, SQDMLSL2 */
+ tcg_gen_neg_i64(tcg_passres, tcg_passres);
+ /* fall through */
+ case 0x3: /* SQDMLAL, SQDMLAL2 */
+ gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
+ tcg_res[pass],
+ tcg_passres);
+ break;
+ default:
+ g_assert_not_reached();
+ }
+ tcg_temp_free_i64(tcg_passres);
+ }
+ tcg_temp_free_i64(tcg_idx);
+
+ if (is_scalar) {
+ clear_vec_high(s, rd);
+ }
+ } else {
+ TCGv_i32 tcg_idx = tcg_temp_new_i32();
+
+ assert(size == 1);
+ read_vec_element_i32(s, tcg_idx, rm, index, size);
+
+ if (!is_scalar) {
+ /* The simplest way to handle the 16x16 indexed ops is to
+ * duplicate the index into both halves of the 32 bit tcg_idx
+ * and then use the usual Neon helpers.
+ */
+ tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
+ }
+
+ for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
+ TCGv_i32 tcg_op = tcg_temp_new_i32();
+ TCGv_i64 tcg_passres;
+
+ if (is_scalar) {
+ read_vec_element_i32(s, tcg_op, rn, pass, size);
+ } else {
+ read_vec_element_i32(s, tcg_op, rn,
+ pass + (is_q * 2), MO_32);
+ }
+
+ tcg_res[pass] = tcg_temp_new_i64();
+
+ if (opcode == 0xa || opcode == 0xb) {
+ /* Non-accumulating ops */
+ tcg_passres = tcg_res[pass];
+ } else {
+ tcg_passres = tcg_temp_new_i64();
+ }
+
+ if (memop & MO_SIGN) {
+ gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
+ } else {
+ gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
+ }
+ if (satop) {
+ gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
+ tcg_passres, tcg_passres);
+ }
+ tcg_temp_free_i32(tcg_op);
+
+ if (opcode == 0xa || opcode == 0xb) {
+ continue;
+ }
+
+ /* Accumulating op: handle accumulate step */
+ read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
+
+ switch (opcode) {
+ case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
+ gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
+ tcg_passres);
+ break;
+ case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
+ gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
+ tcg_passres);
+ break;
+ case 0x7: /* SQDMLSL, SQDMLSL2 */
+ gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
+ /* fall through */
+ case 0x3: /* SQDMLAL, SQDMLAL2 */
+ gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
+ tcg_res[pass],
+ tcg_passres);
+ break;
+ default:
+ g_assert_not_reached();
+ }
+ tcg_temp_free_i64(tcg_passres);
+ }
+ tcg_temp_free_i32(tcg_idx);
+
+ if (is_scalar) {
+ tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
+ }
+ }
+
+ if (is_scalar) {
+ tcg_res[1] = tcg_const_i64(0);
+ }
+
+ for (pass = 0; pass < 2; pass++) {
+ write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
+ tcg_temp_free_i64(tcg_res[pass]);
+ }
+ }
+
+ if (!TCGV_IS_UNUSED_PTR(fpst)) {
+ tcg_temp_free_ptr(fpst);
+ }
+}
+
+/* C3.6.19 Crypto AES
+ * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
+ * +-----------------+------+-----------+--------+-----+------+------+
+ * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
+ * +-----------------+------+-----------+--------+-----+------+------+
+ */
+static void disas_crypto_aes(DisasContext *s, uint32_t insn)
+{
+ int size = extract32(insn, 22, 2);
+ int opcode = extract32(insn, 12, 5);
+ int rn = extract32(insn, 5, 5);
+ int rd = extract32(insn, 0, 5);
+ int decrypt;
+ TCGv_i32 tcg_rd_regno, tcg_rn_regno, tcg_decrypt;
+ CryptoThreeOpEnvFn *genfn;
+
+ if (!arm_dc_feature(s, ARM_FEATURE_V8_AES)
+ || size != 0) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ switch (opcode) {
+ case 0x4: /* AESE */
+ decrypt = 0;
+ genfn = gen_helper_crypto_aese;
+ break;
+ case 0x6: /* AESMC */
+ decrypt = 0;
+ genfn = gen_helper_crypto_aesmc;
+ break;
+ case 0x5: /* AESD */
+ decrypt = 1;
+ genfn = gen_helper_crypto_aese;
+ break;
+ case 0x7: /* AESIMC */
+ decrypt = 1;
+ genfn = gen_helper_crypto_aesmc;
+ break;
+ default:
+ unallocated_encoding(s);
+ return;
+ }
+
+ /* Note that we convert the Vx register indexes into the
+ * index within the vfp.regs[] array, so we can share the
+ * helper with the AArch32 instructions.
+ */
+ tcg_rd_regno = tcg_const_i32(rd << 1);
+ tcg_rn_regno = tcg_const_i32(rn << 1);
+ tcg_decrypt = tcg_const_i32(decrypt);
+
+ genfn(cpu_env, tcg_rd_regno, tcg_rn_regno, tcg_decrypt);
+
+ tcg_temp_free_i32(tcg_rd_regno);
+ tcg_temp_free_i32(tcg_rn_regno);
+ tcg_temp_free_i32(tcg_decrypt);
+}
+
+/* C3.6.20 Crypto three-reg SHA
+ * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
+ * +-----------------+------+---+------+---+--------+-----+------+------+
+ * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd |
+ * +-----------------+------+---+------+---+--------+-----+------+------+
+ */
+static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn)
+{
+ int size = extract32(insn, 22, 2);
+ int opcode = extract32(insn, 12, 3);
+ int rm = extract32(insn, 16, 5);
+ int rn = extract32(insn, 5, 5);
+ int rd = extract32(insn, 0, 5);
+ CryptoThreeOpEnvFn *genfn;
+ TCGv_i32 tcg_rd_regno, tcg_rn_regno, tcg_rm_regno;
+ int feature = ARM_FEATURE_V8_SHA256;
+
+ if (size != 0) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ switch (opcode) {
+ case 0: /* SHA1C */
+ case 1: /* SHA1P */
+ case 2: /* SHA1M */
+ case 3: /* SHA1SU0 */
+ genfn = NULL;
+ feature = ARM_FEATURE_V8_SHA1;
+ break;
+ case 4: /* SHA256H */
+ genfn = gen_helper_crypto_sha256h;
+ break;
+ case 5: /* SHA256H2 */
+ genfn = gen_helper_crypto_sha256h2;
+ break;
+ case 6: /* SHA256SU1 */
+ genfn = gen_helper_crypto_sha256su1;
+ break;
+ default:
+ unallocated_encoding(s);
+ return;
+ }
+
+ if (!arm_dc_feature(s, feature)) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ tcg_rd_regno = tcg_const_i32(rd << 1);
+ tcg_rn_regno = tcg_const_i32(rn << 1);
+ tcg_rm_regno = tcg_const_i32(rm << 1);
+
+ if (genfn) {
+ genfn(cpu_env, tcg_rd_regno, tcg_rn_regno, tcg_rm_regno);
+ } else {
+ TCGv_i32 tcg_opcode = tcg_const_i32(opcode);
+
+ gen_helper_crypto_sha1_3reg(cpu_env, tcg_rd_regno,
+ tcg_rn_regno, tcg_rm_regno, tcg_opcode);
+ tcg_temp_free_i32(tcg_opcode);
+ }
+
+ tcg_temp_free_i32(tcg_rd_regno);
+ tcg_temp_free_i32(tcg_rn_regno);
+ tcg_temp_free_i32(tcg_rm_regno);
+}
+
+/* C3.6.21 Crypto two-reg SHA
+ * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
+ * +-----------------+------+-----------+--------+-----+------+------+
+ * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
+ * +-----------------+------+-----------+--------+-----+------+------+
+ */
+static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn)
+{
+ int size = extract32(insn, 22, 2);
+ int opcode = extract32(insn, 12, 5);
+ int rn = extract32(insn, 5, 5);
+ int rd = extract32(insn, 0, 5);
+ CryptoTwoOpEnvFn *genfn;
+ int feature;
+ TCGv_i32 tcg_rd_regno, tcg_rn_regno;
+
+ if (size != 0) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ switch (opcode) {
+ case 0: /* SHA1H */
+ feature = ARM_FEATURE_V8_SHA1;
+ genfn = gen_helper_crypto_sha1h;
+ break;
+ case 1: /* SHA1SU1 */
+ feature = ARM_FEATURE_V8_SHA1;
+ genfn = gen_helper_crypto_sha1su1;
+ break;
+ case 2: /* SHA256SU0 */
+ feature = ARM_FEATURE_V8_SHA256;
+ genfn = gen_helper_crypto_sha256su0;
+ break;
+ default:
+ unallocated_encoding(s);
+ return;
+ }
+
+ if (!arm_dc_feature(s, feature)) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ tcg_rd_regno = tcg_const_i32(rd << 1);
+ tcg_rn_regno = tcg_const_i32(rn << 1);
+
+ genfn(cpu_env, tcg_rd_regno, tcg_rn_regno);
+
+ tcg_temp_free_i32(tcg_rd_regno);
+ tcg_temp_free_i32(tcg_rn_regno);
+}
+
+/* C3.6 Data processing - SIMD, inc Crypto
+ *
+ * As the decode gets a little complex we are using a table based
+ * approach for this part of the decode.
+ */
+static const AArch64DecodeTable data_proc_simd[] = {
+ /* pattern , mask , fn */
+ { 0x0e200400, 0x9f200400, disas_simd_three_reg_same },
+ { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
+ { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
+ { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
+ { 0x0e000400, 0x9fe08400, disas_simd_copy },
+ { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
+ /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
+ { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
+ { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
+ { 0x0e000000, 0xbf208c00, disas_simd_tb },
+ { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
+ { 0x2e000000, 0xbf208400, disas_simd_ext },
+ { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same },
+ { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
+ { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
+ { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise },
+ { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy },
+ { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
+ { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
+ { 0x4e280800, 0xff3e0c00, disas_crypto_aes },
+ { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha },
+ { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha },
+ { 0x00000000, 0x00000000, NULL }
+};
+
+static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
+{
+ /* Note that this is called with all non-FP cases from
+ * table C3-6 so it must UNDEF for entries not specifically
+ * allocated to instructions in that table.
+ */
+ AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
+ if (fn) {
+ fn(s, insn);
+ } else {
+ unallocated_encoding(s);
+ }
+}
+
+/* C3.6 Data processing - SIMD and floating point */
+static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
+{
+ if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
+ disas_data_proc_fp(s, insn);
+ } else {
+ /* SIMD, including crypto */
+ disas_data_proc_simd(s, insn);
+ }
+}
+
+/* C3.1 A64 instruction index by encoding */
+static void disas_a64_insn(CPUARMState *env, DisasContext *s)
+{
+ uint32_t insn;
+
+ insn = arm_ldl_code(env, s->pc, s->sctlr_b);
+ s->insn = insn;
+ s->pc += 4;
+
+ s->fp_access_checked = false;
+
+ switch (extract32(insn, 25, 4)) {
+ case 0x0: case 0x1: case 0x2: case 0x3: /* UNALLOCATED */
+ unallocated_encoding(s);
+ break;
+ case 0x8: case 0x9: /* Data processing - immediate */
+ disas_data_proc_imm(s, insn);
+ break;
+ case 0xa: case 0xb: /* Branch, exception generation and system insns */
+ disas_b_exc_sys(s, insn);
+ break;
+ case 0x4:
+ case 0x6:
+ case 0xc:
+ case 0xe: /* Loads and stores */
+ disas_ldst(s, insn);
+ break;
+ case 0x5:
+ case 0xd: /* Data processing - register */
+ disas_data_proc_reg(s, insn);
+ break;
+ case 0x7:
+ case 0xf: /* Data processing - SIMD and floating point */
+ disas_data_proc_simd_fp(s, insn);
+ break;
+ default:
+ assert(FALSE); /* all 15 cases should be handled above */
+ break;
+ }
+
+ /* if we allocated any temporaries, free them here */
+ free_tmp_a64(s);
+}
+
+void gen_intermediate_code_a64(ARMCPU *cpu, TranslationBlock *tb)
+{
+ CPUState *cs = CPU(cpu);
+ CPUARMState *env = &cpu->env;
+ DisasContext dc1, *dc = &dc1;
+ target_ulong pc_start;
+ target_ulong next_page_start;
+ int num_insns;
+ int max_insns;
+
+ pc_start = tb->pc;
+
+ dc->tb = tb;
+
+ dc->is_jmp = DISAS_NEXT;
+ dc->pc = pc_start;
+ dc->singlestep_enabled = cs->singlestep_enabled;
+ dc->condjmp = 0;
+
+ dc->aarch64 = 1;
+ /* If we are coming from secure EL0 in a system with a 32-bit EL3, then
+ * there is no secure EL1, so we route exceptions to EL3.
+ */
+ dc->secure_routed_to_el3 = arm_feature(env, ARM_FEATURE_EL3) &&
+ !arm_el_is_aa64(env, 3);
+ dc->thumb = 0;
+ dc->sctlr_b = 0;
+ dc->be_data = ARM_TBFLAG_BE_DATA(tb->flags) ? MO_BE : MO_LE;
+ dc->condexec_mask = 0;
+ dc->condexec_cond = 0;
+ dc->mmu_idx = ARM_TBFLAG_MMUIDX(tb->flags);
+ dc->tbi0 = ARM_TBFLAG_TBI0(tb->flags);
+ dc->tbi1 = ARM_TBFLAG_TBI1(tb->flags);
+ dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
+#if !defined(CONFIG_USER_ONLY)
+ dc->user = (dc->current_el == 0);
+#endif
+ dc->fp_excp_el = ARM_TBFLAG_FPEXC_EL(tb->flags);
+ dc->vec_len = 0;
+ dc->vec_stride = 0;
+ dc->cp_regs = cpu->cp_regs;
+ dc->features = env->features;
+
+ /* Single step state. The code-generation logic here is:
+ * SS_ACTIVE == 0:
+ * generate code with no special handling for single-stepping (except
+ * that anything that can make us go to SS_ACTIVE == 1 must end the TB;
+ * this happens anyway because those changes are all system register or
+ * PSTATE writes).
+ * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
+ * emit code for one insn
+ * emit code to clear PSTATE.SS
+ * emit code to generate software step exception for completed step
+ * end TB (as usual for having generated an exception)
+ * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
+ * emit code to generate a software step exception
+ * end the TB
+ */
+ dc->ss_active = ARM_TBFLAG_SS_ACTIVE(tb->flags);
+ dc->pstate_ss = ARM_TBFLAG_PSTATE_SS(tb->flags);
+ dc->is_ldex = false;
+ dc->ss_same_el = (arm_debug_target_el(env) == dc->current_el);
+
+ init_tmp_a64_array(dc);
+
+ next_page_start = (pc_start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
+ num_insns = 0;
+ max_insns = tb->cflags & CF_COUNT_MASK;
+ if (max_insns == 0) {
+ max_insns = CF_COUNT_MASK;
+ }
+ if (max_insns > TCG_MAX_INSNS) {
+ max_insns = TCG_MAX_INSNS;
+ }
+
+ gen_tb_start(tb);
+
+ tcg_clear_temp_count();
+
+ do {
+ dc->insn_start_idx = tcg_op_buf_count();
+ tcg_gen_insn_start(dc->pc, 0, 0);
+ num_insns++;
+
+ if (unlikely(!QTAILQ_EMPTY(&cs->breakpoints))) {
+ CPUBreakpoint *bp;
+ QTAILQ_FOREACH(bp, &cs->breakpoints, entry) {
+ if (bp->pc == dc->pc) {
+ if (bp->flags & BP_CPU) {
+ gen_a64_set_pc_im(dc->pc);
+ gen_helper_check_breakpoints(cpu_env);
+ /* End the TB early; it likely won't be executed */
+ dc->is_jmp = DISAS_UPDATE;
+ } else {
+ gen_exception_internal_insn(dc, 0, EXCP_DEBUG);
+ /* The address covered by the breakpoint must be
+ included in [tb->pc, tb->pc + tb->size) in order
+ to for it to be properly cleared -- thus we
+ increment the PC here so that the logic setting
+ tb->size below does the right thing. */
+ dc->pc += 4;
+ goto done_generating;
+ }
+ break;
+ }
+ }
+ }
+
+ if (num_insns == max_insns && (tb->cflags & CF_LAST_IO)) {
+ gen_io_start();
+ }
+
+ if (dc->ss_active && !dc->pstate_ss) {
+ /* Singlestep state is Active-pending.
+ * If we're in this state at the start of a TB then either
+ * a) we just took an exception to an EL which is being debugged
+ * and this is the first insn in the exception handler
+ * b) debug exceptions were masked and we just unmasked them
+ * without changing EL (eg by clearing PSTATE.D)
+ * In either case we're going to take a swstep exception in the
+ * "did not step an insn" case, and so the syndrome ISV and EX
+ * bits should be zero.
+ */
+ assert(num_insns == 1);
+ gen_exception(EXCP_UDEF, syn_swstep(dc->ss_same_el, 0, 0),
+ default_exception_el(dc));
+ dc->is_jmp = DISAS_EXC;
+ break;
+ }
+
+ disas_a64_insn(env, dc);
+
+ if (tcg_check_temp_count()) {
+ fprintf(stderr, "TCG temporary leak before "TARGET_FMT_lx"\n",
+ dc->pc);
+ }
+
+ /* Translation stops when a conditional branch is encountered.
+ * Otherwise the subsequent code could get translated several times.
+ * Also stop translation when a page boundary is reached. This
+ * ensures prefetch aborts occur at the right place.
+ */
+ } while (!dc->is_jmp && !tcg_op_buf_full() &&
+ !cs->singlestep_enabled &&
+ !singlestep &&
+ !dc->ss_active &&
+ dc->pc < next_page_start &&
+ num_insns < max_insns);
+
+ if (tb->cflags & CF_LAST_IO) {
+ gen_io_end();
+ }
+
+ if (unlikely(cs->singlestep_enabled || dc->ss_active)
+ && dc->is_jmp != DISAS_EXC) {
+ /* Note that this means single stepping WFI doesn't halt the CPU.
+ * For conditional branch insns this is harmless unreachable code as
+ * gen_goto_tb() has already handled emitting the debug exception
+ * (and thus a tb-jump is not possible when singlestepping).
+ */
+ assert(dc->is_jmp != DISAS_TB_JUMP);
+ if (dc->is_jmp != DISAS_JUMP) {
+ gen_a64_set_pc_im(dc->pc);
+ }
+ if (cs->singlestep_enabled) {
+ gen_exception_internal(EXCP_DEBUG);
+ } else {
+ gen_step_complete_exception(dc);
+ }
+ } else {
+ switch (dc->is_jmp) {
+ case DISAS_NEXT:
+ gen_goto_tb(dc, 1, dc->pc);
+ break;
+ default:
+ case DISAS_UPDATE:
+ gen_a64_set_pc_im(dc->pc);
+ /* fall through */
+ case DISAS_JUMP:
+ /* indicate that the hash table must be used to find the next TB */
+ tcg_gen_exit_tb(0);
+ break;
+ case DISAS_TB_JUMP:
+ case DISAS_EXC:
+ case DISAS_SWI:
+ break;
+ case DISAS_WFE:
+ gen_a64_set_pc_im(dc->pc);
+ gen_helper_wfe(cpu_env);
+ break;
+ case DISAS_YIELD:
+ gen_a64_set_pc_im(dc->pc);
+ gen_helper_yield(cpu_env);
+ break;
+ case DISAS_WFI:
+ /* This is a special case because we don't want to just halt the CPU
+ * if trying to debug across a WFI.
+ */
+ gen_a64_set_pc_im(dc->pc);
+ gen_helper_wfi(cpu_env);
+ /* The helper doesn't necessarily throw an exception, but we
+ * must go back to the main loop to check for interrupts anyway.
+ */
+ tcg_gen_exit_tb(0);
+ break;
+ }
+ }
+
+done_generating:
+ gen_tb_end(tb, num_insns);
+
+#ifdef DEBUG_DISAS
+ if (qemu_loglevel_mask(CPU_LOG_TB_IN_ASM) &&
+ qemu_log_in_addr_range(pc_start)) {
+ qemu_log_lock();
+ qemu_log("----------------\n");
+ qemu_log("IN: %s\n", lookup_symbol(pc_start));
+ log_target_disas(cs, pc_start, dc->pc - pc_start,
+ 4 | (bswap_code(dc->sctlr_b) ? 2 : 0));
+ qemu_log("\n");
+ qemu_log_unlock();
+ }
+#endif
+ tb->size = dc->pc - pc_start;
+ tb->icount = num_insns;
+}