diff options
Diffstat (limited to 'scripts/simplebench/simplebench.py')
-rw-r--r-- | scripts/simplebench/simplebench.py | 28 |
1 files changed, 26 insertions, 2 deletions
diff --git a/scripts/simplebench/simplebench.py b/scripts/simplebench/simplebench.py index f61513af90..8efca2af98 100644 --- a/scripts/simplebench/simplebench.py +++ b/scripts/simplebench/simplebench.py @@ -19,9 +19,17 @@ # import statistics +import subprocess +import time -def bench_one(test_func, test_env, test_case, count=5, initial_run=True): +def do_drop_caches(): + subprocess.run('sync; echo 3 > /proc/sys/vm/drop_caches', shell=True, + check=True) + + +def bench_one(test_func, test_env, test_case, count=5, initial_run=True, + slow_limit=100, drop_caches=False): """Benchmark one test-case test_func -- benchmarking function with prototype @@ -36,6 +44,9 @@ def bench_one(test_func, test_env, test_case, count=5, initial_run=True): test_case -- test case - opaque second argument for test_func count -- how many times to call test_func, to calculate average initial_run -- do initial run of test_func, which don't get into result + slow_limit -- stop at slow run (that exceedes the slow_limit by seconds). + (initial run is not measured) + drop_caches -- drop caches before each run Returns dict with the following fields: 'runs': list of test_func results @@ -49,15 +60,25 @@ def bench_one(test_func, test_env, test_case, count=5, initial_run=True): """ if initial_run: print(' #initial run:') + do_drop_caches() print(' ', test_func(test_env, test_case)) runs = [] for i in range(count): + t = time.time() + print(' #run {}'.format(i+1)) + do_drop_caches() res = test_func(test_env, test_case) print(' ', res) runs.append(res) + if time.time() - t > slow_limit: + print(' - run is too slow, stop here') + break + + count = len(runs) + result = {'runs': runs} succeeded = [r for r in runs if ('seconds' in r or 'iops' in r)] @@ -71,7 +92,10 @@ def bench_one(test_func, test_env, test_case, count=5, initial_run=True): dim = 'seconds' result['dimension'] = dim result['average'] = statistics.mean(r[dim] for r in succeeded) - result['stdev'] = statistics.stdev(r[dim] for r in succeeded) + if len(succeeded) == 1: + result['stdev'] = 0 + else: + result['stdev'] = statistics.stdev(r[dim] for r in succeeded) if len(succeeded) < count: result['n-failed'] = count - len(succeeded) |