diff options
author | Richard Henderson <richard.henderson@linaro.org> | 2021-02-01 21:27:41 -1000 |
---|---|---|
committer | Richard Henderson <richard.henderson@linaro.org> | 2021-06-19 11:07:56 -0700 |
commit | 650898891837a9772a5410e73c637a55d99e1e50 (patch) | |
tree | 005d15fa17d8b7678dc0d7585929340c719b8926 /tcg/tci/README | |
parent | 7e00a0800051655e6fdd85ad5dd6fcadafc2dc47 (diff) |
tcg/tci: Change encoding to uint32_t units
This removes all of the problems with unaligned accesses
to the bytecode stream.
With an 8-bit opcode at the bottom, we have 24 bits remaining,
which are generally split into 6 4-bit slots. This fits well
with the maximum length opcodes, e.g. INDEX_op_add2_i32, which
have 6 register operands.
We have, in previous patches, rearranged things such that there
are no operations with a label which have more than one other
operand. Which leaves us with a 20-bit field in which to encode
a label, giving us a maximum TB size of 512k -- easily large.
Change the INDEX_op_tci_movi_{i32,i64} opcodes to tci_mov[il].
The former puts the immediate in the upper 20 bits of the insn,
like we do for the label displacement. The later uses a label
to reference an entry in the constant pool. Thus, in the worst
case we still have a single memory reference for any constant,
but now the constants are out-of-line of the bytecode and can
be shared between different moves saving space.
Change INDEX_op_call to use a label to reference a pair of
pointers in the constant pool. This removes the only slightly
dodgy link with the layout of struct TCGHelperInfo.
The re-encode cannot be done in pieces.
Tested-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Diffstat (limited to 'tcg/tci/README')
-rw-r--r-- | tcg/tci/README | 20 |
1 files changed, 5 insertions, 15 deletions
diff --git a/tcg/tci/README b/tcg/tci/README index 9bb7d7a5d3..f72a40a395 100644 --- a/tcg/tci/README +++ b/tcg/tci/README @@ -23,10 +23,12 @@ This is what TCI (Tiny Code Interpreter) does. Like each TCG host frontend, TCI implements the code generator in tcg-target.c.inc, tcg-target.h. Both files are in directory tcg/tci. -The additional file tcg/tci.c adds the interpreter. +The additional file tcg/tci.c adds the interpreter and disassembler. -The bytecode consists of opcodes (same numeric values as those used by -TCG), command length and arguments of variable size and number. +The bytecode consists of opcodes (with only a few exceptions, with +the same same numeric values and semantics as used by TCG), and up +to six arguments packed into a 32-bit integer. See comments in tci.c +for details on the encoding. 3) Usage @@ -39,11 +41,6 @@ suggest using this option. Setting it automatically would need additional code in configure which must be fixed when new native TCG implementations are added. -System emulation should work on any 32 or 64 bit host. -User mode emulation might work. Maybe a new linker script (*.ld) -is needed. Byte order might be wrong (on big endian hosts) -and need fixes in configure. - For hosts with native TCG, the interpreter TCI can be enabled by configure --enable-tcg-interpreter @@ -118,13 +115,6 @@ u1 = linux-user-test works in the interpreter. These opcodes raise a runtime exception, so it is possible to see where code must be added. -* The pseudo code is not optimized and still ugly. For hosts with special - alignment requirements, it needs some fixes (maybe aligned bytecode - would also improve speed for hosts which support byte alignment). - -* A better disassembler for the pseudo code would be nice (a very primitive - disassembler is included in tcg-target.c.inc). - * It might be useful to have a runtime option which selects the native TCG or TCI, so QEMU would have to include two TCGs. Today, selecting TCI is a configure option, so you need two compilations of QEMU. |