aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorStefan Hajnoczi <stefanha@redhat.com>2023-12-20 09:39:45 -0500
committerStefan Hajnoczi <stefanha@redhat.com>2023-12-20 09:39:45 -0500
commit63d663251249c247c7c1de0e3de6cf617e2a1705 (patch)
tree2d1fba8db4d1445c05f946333a8c201fc9048b0f
parentdd7d3e35401f80ffef4e209fa9e27db9087501b0 (diff)
parent6f9c3aaa34e937d8deaab44671e7562e4027436b (diff)
Merge tag 'pull-target-arm-20231219' of https://git.linaro.org/people/pmaydell/qemu-arm into staging
target-arm queue: * arm/kvm: drop the split between "common KVM support" and "64-bit KVM support", since 32-bit Arm KVM no longer exists * arm/kvm: clean up APIs to be consistent about CPU arguments * Don't implement *32_EL2 registers when EL1 is AArch64 only * Restrict DC CVAP & DC CVADP instructions to TCG accel * Restrict TCG specific helpers * Propagate MDCR_EL2.HPMN into PMCR_EL0.N * Include missing 'exec/exec-all.h' header * fsl-imx: add simple RTC emulation for i.MX6 and i.MX7 boards # -----BEGIN PGP SIGNATURE----- # # iQJNBAABCAA3FiEE4aXFk81BneKOgxXPPCUl7RQ2DN4FAmWB6o0ZHHBldGVyLm1h # eWRlbGxAbGluYXJvLm9yZwAKCRA8JSXtFDYM3mxMEACRpRxJ81pLs8fFYC5BgRhU # BCxr+ZqarBygzsH9YWUN2TFFKlEZi7mLu6lzFsfN/qEmYCg8VslPbulQHqcGkx51 # kVxXFp/KuGlKt4zGRagZUJxgYAwwU5mnK6dTZT5/ZF6yWX67dXn8V7MP9lqqEPw5 # 5gut7Mu4f7MiAQbwZY1CWP+iu5uZmdsBuKxA6zkxOWJh/A1SfaqQRO6xVQttLAxS # DPMTpQGmwPS4I+3gGNnqlSu6etp2tdy2K0cW3fhMp6hx70uNMHmFNzRhT/6TaKka # 9AqXQsFHQiFXDGAm6PmCvfQI6KpLljDyNL/TuUkQWi72bGEHjUsJAdG0aXVOa30W # uC7vuJkdZrP/t5P1AkZhWQUrlawDRV2YHNDD+gY4fxJL/STkGyU6M8R1nm1J+InN # n0SeK0VHRC6DRPXCMQhC5QwKUH6ZjFZRs/r2opTu9p+ThQAQRmZBiVfdISCDMYnN # DCiSb78gIFaUkwtiP44qq8MJQjsHnXtTD1Akqyo2fXSKs66jDK9Gnc8gENYdpghe # 7V36bOp6scROHOB2a/r8gT42RKzSN6uh6xByaaToza63/bPgvHnn8vvQQbB01AgX # zJC1xs3dwY8JMyqDefda0K0NDPS8TzNsXYmgxxxcQJpUvB4VVjet9VIMF3T+d8HO # Pas41Z1gsQY+rcaRk/9mPA== # =GWIA # -----END PGP SIGNATURE----- # gpg: Signature made Tue 19 Dec 2023 14:10:05 EST # gpg: using RSA key E1A5C593CD419DE28E8315CF3C2525ED14360CDE # gpg: issuer "peter.maydell@linaro.org" # gpg: Good signature from "Peter Maydell <peter.maydell@linaro.org>" [full] # gpg: aka "Peter Maydell <pmaydell@gmail.com>" [full] # gpg: aka "Peter Maydell <pmaydell@chiark.greenend.org.uk>" [full] # gpg: aka "Peter Maydell <peter@archaic.org.uk>" [unknown] # Primary key fingerprint: E1A5 C593 CD41 9DE2 8E83 15CF 3C25 25ED 1436 0CDE * tag 'pull-target-arm-20231219' of https://git.linaro.org/people/pmaydell/qemu-arm: (43 commits) fsl-imx: add simple RTC emulation for i.MX6 and i.MX7 boards target/arm/helper: Propagate MDCR_EL2.HPMN into PMCR_EL0.N target/arm/tcg: Including missing 'exec/exec-all.h' header target/arm: Restrict DC CVAP & DC CVADP instructions to TCG accel target/arm: Restrict TCG specific helpers target/arm: Don't implement *32_EL2 registers when EL1 is AArch64 only target/arm/kvm: Have kvm_arm_hw_debug_active take a ARMCPU argument target/arm/kvm: Have kvm_arm_handle_debug take a ARMCPU argument target/arm/kvm: Have kvm_arm_handle_dabt_nisv take a ARMCPU argument target/arm/kvm: Have kvm_arm_verify_ext_dabt_pending take a ARMCPU arg target/arm/kvm: Have kvm_arm_[get|put]_virtual_time take ARMCPU argument target/arm/kvm: Have kvm_arm_vcpu_finalize take a ARMCPU argument target/arm/kvm: Have kvm_arm_vcpu_init take a ARMCPU argument target/arm/kvm: Have kvm_arm_pmu_set_irq take a ARMCPU argument target/arm/kvm: Have kvm_arm_pmu_init take a ARMCPU argument target/arm/kvm: Have kvm_arm_pvtime_init take a ARMCPU argument target/arm/kvm: Have kvm_arm_set_device_attr take a ARMCPU argument target/arm/kvm: Have kvm_arm_sve_get_vls take a ARMCPU argument target/arm/kvm: Have kvm_arm_sve_set_vls take a ARMCPU argument target/arm/kvm: Have kvm_arm_add_vcpu_properties take a ARMCPU argument ... Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
-rw-r--r--accel/kvm/kvm-all.c2
-rw-r--r--hw/arm/virt.c9
-rw-r--r--hw/intc/arm_gicv3_its_kvm.c1
-rw-r--r--hw/misc/imx7_snvs.c93
-rw-r--r--hw/misc/trace-events4
-rw-r--r--include/hw/misc/imx7_snvs.h7
-rw-r--r--target/arm/cpu.c2
-rw-r--r--target/arm/cpu64.c2
-rw-r--r--target/arm/debug_helper.c23
-rw-r--r--target/arm/helper.c117
-rw-r--r--target/arm/kvm.c1409
-rw-r--r--target/arm/kvm64.c1290
-rw-r--r--target/arm/kvm_arm.h231
-rw-r--r--target/arm/meson.build2
-rw-r--r--target/arm/tcg/op_helper.c55
-rw-r--r--target/arm/tcg/translate-a64.c1
16 files changed, 1592 insertions, 1656 deletions
diff --git a/accel/kvm/kvm-all.c b/accel/kvm/kvm-all.c
index e39a810a4e..f138e7fefe 100644
--- a/accel/kvm/kvm-all.c
+++ b/accel/kvm/kvm-all.c
@@ -98,7 +98,7 @@ bool kvm_allowed;
bool kvm_readonly_mem_allowed;
bool kvm_vm_attributes_allowed;
bool kvm_msi_use_devid;
-bool kvm_has_guest_debug;
+static bool kvm_has_guest_debug;
static int kvm_sstep_flags;
static bool kvm_immediate_exit;
static hwaddr kvm_max_slot_size = ~0;
diff --git a/hw/arm/virt.c b/hw/arm/virt.c
index be2856c018..040ca2d794 100644
--- a/hw/arm/virt.c
+++ b/hw/arm/virt.c
@@ -1998,13 +1998,14 @@ static void virt_cpu_post_init(VirtMachineState *vms, MemoryRegion *sysmem)
if (pmu) {
assert(arm_feature(&ARM_CPU(cpu)->env, ARM_FEATURE_PMU));
if (kvm_irqchip_in_kernel()) {
- kvm_arm_pmu_set_irq(cpu, VIRTUAL_PMU_IRQ);
+ kvm_arm_pmu_set_irq(ARM_CPU(cpu), VIRTUAL_PMU_IRQ);
}
- kvm_arm_pmu_init(cpu);
+ kvm_arm_pmu_init(ARM_CPU(cpu));
}
if (steal_time) {
- kvm_arm_pvtime_init(cpu, pvtime_reg_base +
- cpu->cpu_index * PVTIME_SIZE_PER_CPU);
+ kvm_arm_pvtime_init(ARM_CPU(cpu), pvtime_reg_base
+ + cpu->cpu_index
+ * PVTIME_SIZE_PER_CPU);
}
}
} else {
diff --git a/hw/intc/arm_gicv3_its_kvm.c b/hw/intc/arm_gicv3_its_kvm.c
index f7df602cff..3befc960db 100644
--- a/hw/intc/arm_gicv3_its_kvm.c
+++ b/hw/intc/arm_gicv3_its_kvm.c
@@ -21,6 +21,7 @@
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "qemu/module.h"
+#include "qemu/error-report.h"
#include "hw/intc/arm_gicv3_its_common.h"
#include "hw/qdev-properties.h"
#include "sysemu/runstate.h"
diff --git a/hw/misc/imx7_snvs.c b/hw/misc/imx7_snvs.c
index a245f96cd4..8e7f43187f 100644
--- a/hw/misc/imx7_snvs.c
+++ b/hw/misc/imx7_snvs.c
@@ -13,28 +13,100 @@
*/
#include "qemu/osdep.h"
+#include "qemu/bitops.h"
+#include "qemu/timer.h"
+#include "migration/vmstate.h"
#include "hw/misc/imx7_snvs.h"
+#include "qemu/cutils.h"
#include "qemu/module.h"
+#include "sysemu/sysemu.h"
+#include "sysemu/rtc.h"
#include "sysemu/runstate.h"
#include "trace.h"
+#define RTC_FREQ 32768ULL
+
+static const VMStateDescription vmstate_imx7_snvs = {
+ .name = TYPE_IMX7_SNVS,
+ .version_id = 1,
+ .minimum_version_id = 1,
+ .fields = (VMStateField[]) {
+ VMSTATE_UINT64(tick_offset, IMX7SNVSState),
+ VMSTATE_UINT64(lpcr, IMX7SNVSState),
+ VMSTATE_END_OF_LIST()
+ }
+};
+
+static uint64_t imx7_snvs_get_count(IMX7SNVSState *s)
+{
+ uint64_t ticks = muldiv64(qemu_clock_get_ns(rtc_clock), RTC_FREQ,
+ NANOSECONDS_PER_SECOND);
+ return s->tick_offset + ticks;
+}
+
static uint64_t imx7_snvs_read(void *opaque, hwaddr offset, unsigned size)
{
- trace_imx7_snvs_read(offset, 0);
+ IMX7SNVSState *s = IMX7_SNVS(opaque);
+ uint64_t ret = 0;
+
+ switch (offset) {
+ case SNVS_LPSRTCMR:
+ ret = extract64(imx7_snvs_get_count(s), 32, 15);
+ break;
+ case SNVS_LPSRTCLR:
+ ret = extract64(imx7_snvs_get_count(s), 0, 32);
+ break;
+ case SNVS_LPCR:
+ ret = s->lpcr;
+ break;
+ }
- return 0;
+ trace_imx7_snvs_read(offset, ret, size);
+
+ return ret;
+}
+
+static void imx7_snvs_reset(DeviceState *dev)
+{
+ IMX7SNVSState *s = IMX7_SNVS(dev);
+
+ s->lpcr = 0;
}
static void imx7_snvs_write(void *opaque, hwaddr offset,
uint64_t v, unsigned size)
{
- const uint32_t value = v;
- const uint32_t mask = SNVS_LPCR_TOP | SNVS_LPCR_DP_EN;
+ trace_imx7_snvs_write(offset, v, size);
+
+ IMX7SNVSState *s = IMX7_SNVS(opaque);
- trace_imx7_snvs_write(offset, value);
+ uint64_t new_value = 0, snvs_count = 0;
- if (offset == SNVS_LPCR && ((value & mask) == mask)) {
- qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
+ if (offset == SNVS_LPSRTCMR || offset == SNVS_LPSRTCLR) {
+ snvs_count = imx7_snvs_get_count(s);
+ }
+
+ switch (offset) {
+ case SNVS_LPSRTCMR:
+ new_value = deposit64(snvs_count, 32, 32, v);
+ break;
+ case SNVS_LPSRTCLR:
+ new_value = deposit64(snvs_count, 0, 32, v);
+ break;
+ case SNVS_LPCR: {
+ s->lpcr = v;
+
+ const uint32_t mask = SNVS_LPCR_TOP | SNVS_LPCR_DP_EN;
+
+ if ((v & mask) == mask) {
+ qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
+ }
+ break;
+ }
+ }
+
+ if (offset == SNVS_LPSRTCMR || offset == SNVS_LPSRTCLR) {
+ s->tick_offset += new_value - snvs_count;
}
}
@@ -59,17 +131,24 @@ static void imx7_snvs_init(Object *obj)
{
SysBusDevice *sd = SYS_BUS_DEVICE(obj);
IMX7SNVSState *s = IMX7_SNVS(obj);
+ struct tm tm;
memory_region_init_io(&s->mmio, obj, &imx7_snvs_ops, s,
TYPE_IMX7_SNVS, 0x1000);
sysbus_init_mmio(sd, &s->mmio);
+
+ qemu_get_timedate(&tm, 0);
+ s->tick_offset = mktimegm(&tm) -
+ qemu_clock_get_ns(rtc_clock) / NANOSECONDS_PER_SECOND;
}
static void imx7_snvs_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
+ dc->reset = imx7_snvs_reset;
+ dc->vmsd = &vmstate_imx7_snvs;
dc->desc = "i.MX7 Secure Non-Volatile Storage Module";
}
diff --git a/hw/misc/trace-events b/hw/misc/trace-events
index 05ff692441..85725506bf 100644
--- a/hw/misc/trace-events
+++ b/hw/misc/trace-events
@@ -116,8 +116,8 @@ imx7_gpr_read(uint64_t offset) "addr 0x%08" PRIx64
imx7_gpr_write(uint64_t offset, uint64_t value) "addr 0x%08" PRIx64 "value 0x%08" PRIx64
# imx7_snvs.c
-imx7_snvs_read(uint64_t offset, uint32_t value) "addr 0x%08" PRIx64 "value 0x%08" PRIx32
-imx7_snvs_write(uint64_t offset, uint32_t value) "addr 0x%08" PRIx64 "value 0x%08" PRIx32
+imx7_snvs_read(uint64_t offset, uint64_t value, unsigned size) "i.MX SNVS read: offset 0x%08" PRIx64 " value 0x%08" PRIx64 " size %u"
+imx7_snvs_write(uint64_t offset, uint64_t value, unsigned size) "i.MX SNVS write: offset 0x%08" PRIx64 " value 0x%08" PRIx64 " size %u"
# mos6522.c
mos6522_set_counter(int index, unsigned int val) "T%d.counter=%d"
diff --git a/include/hw/misc/imx7_snvs.h b/include/hw/misc/imx7_snvs.h
index 14a1d6fe6b..1272076086 100644
--- a/include/hw/misc/imx7_snvs.h
+++ b/include/hw/misc/imx7_snvs.h
@@ -20,7 +20,9 @@
enum IMX7SNVSRegisters {
SNVS_LPCR = 0x38,
SNVS_LPCR_TOP = BIT(6),
- SNVS_LPCR_DP_EN = BIT(5)
+ SNVS_LPCR_DP_EN = BIT(5),
+ SNVS_LPSRTCMR = 0x050, /* Secure Real Time Counter MSB Register */
+ SNVS_LPSRTCLR = 0x054, /* Secure Real Time Counter LSB Register */
};
#define TYPE_IMX7_SNVS "imx7.snvs"
@@ -31,6 +33,9 @@ struct IMX7SNVSState {
SysBusDevice parent_obj;
MemoryRegion mmio;
+
+ uint64_t tick_offset;
+ uint64_t lpcr;
};
#endif /* IMX7_SNVS_H */
diff --git a/target/arm/cpu.c b/target/arm/cpu.c
index efb22a87f9..650e09b29c 100644
--- a/target/arm/cpu.c
+++ b/target/arm/cpu.c
@@ -1686,7 +1686,7 @@ void arm_cpu_post_init(Object *obj)
}
if (kvm_enabled()) {
- kvm_arm_add_vcpu_properties(obj);
+ kvm_arm_add_vcpu_properties(cpu);
}
#ifndef CONFIG_USER_ONLY
diff --git a/target/arm/cpu64.c b/target/arm/cpu64.c
index 1e9c6c85ae..8e30a7993e 100644
--- a/target/arm/cpu64.c
+++ b/target/arm/cpu64.c
@@ -66,7 +66,7 @@ void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp)
*/
if (kvm_enabled()) {
if (kvm_arm_sve_supported()) {
- cpu->sve_vq.supported = kvm_arm_sve_get_vls(CPU(cpu));
+ cpu->sve_vq.supported = kvm_arm_sve_get_vls(cpu);
vq_supported = cpu->sve_vq.supported;
} else {
assert(!cpu_isar_feature(aa64_sve, cpu));
diff --git a/target/arm/debug_helper.c b/target/arm/debug_helper.c
index cbfba532f5..83d2619080 100644
--- a/target/arm/debug_helper.c
+++ b/target/arm/debug_helper.c
@@ -1027,14 +1027,6 @@ static const ARMCPRegInfo debug_cp_reginfo[] = {
.access = PL1_RW, .accessfn = access_tda,
.type = ARM_CP_NOP },
/*
- * Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
- * to save and restore a 32-bit guest's DBGVCR)
- */
- { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
- .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
- .access = PL2_RW, .accessfn = access_tda,
- .type = ARM_CP_NOP | ARM_CP_EL3_NO_EL2_KEEP },
- /*
* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
* Channel but Linux may try to access this register. The 32-bit
* alias is DBGDCCINT.
@@ -1062,6 +1054,18 @@ static const ARMCPRegInfo debug_cp_reginfo[] = {
.fieldoffset = offsetof(CPUARMState, cp15.dbgclaim) },
};
+/* These are present only when EL1 supports AArch32 */
+static const ARMCPRegInfo debug_aa32_el1_reginfo[] = {
+ /*
+ * Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
+ * to save and restore a 32-bit guest's DBGVCR)
+ */
+ { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
+ .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
+ .access = PL2_RW, .accessfn = access_tda,
+ .type = ARM_CP_NOP | ARM_CP_EL3_NO_EL2_KEEP },
+};
+
static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
/* 64 bit access versions of the (dummy) debug registers */
{ .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
@@ -1207,6 +1211,9 @@ void define_debug_regs(ARMCPU *cpu)
assert(ctx_cmps <= brps);
define_arm_cp_regs(cpu, debug_cp_reginfo);
+ if (cpu_isar_feature(aa64_aa32_el1, cpu)) {
+ define_arm_cp_regs(cpu, debug_aa32_el1_reginfo);
+ }
if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
diff --git a/target/arm/helper.c b/target/arm/helper.c
index 2746d3fdac..fc546df5c7 100644
--- a/target/arm/helper.c
+++ b/target/arm/helper.c
@@ -1475,6 +1475,22 @@ static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
pmu_op_finish(env);
}
+static uint64_t pmcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ uint64_t pmcr = env->cp15.c9_pmcr;
+
+ /*
+ * If EL2 is implemented and enabled for the current security state, reads
+ * of PMCR.N from EL1 or EL0 return the value of MDCR_EL2.HPMN or HDCR.HPMN.
+ */
+ if (arm_current_el(env) <= 1 && arm_is_el2_enabled(env)) {
+ pmcr &= ~PMCRN_MASK;
+ pmcr |= (env->cp15.mdcr_el2 & MDCR_HPMN) << PMCRN_SHIFT;
+ }
+
+ return pmcr;
+}
+
static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
@@ -5698,20 +5714,6 @@ static const ARMCPRegInfo v8_cp_reginfo[] = {
.opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
.type = ARM_CP_NO_RAW,
.access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
- { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
- .access = PL2_RW,
- .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP,
- .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) },
- { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
- .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
- .writefn = dacr_write, .raw_writefn = raw_write,
- .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
- { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
- .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
- .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
{ .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
.type = ARM_CP_ALIAS,
.opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
@@ -5746,6 +5748,24 @@ static const ARMCPRegInfo v8_cp_reginfo[] = {
.fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
};
+/* These are present only when EL1 supports AArch32 */
+static const ARMCPRegInfo v8_aa32_el1_reginfo[] = {
+ { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
+ .access = PL2_RW,
+ .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP,
+ .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) },
+ { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
+ .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
+ .writefn = dacr_write, .raw_writefn = raw_write,
+ .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
+ { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
+ .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
+ .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
+};
+
static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
{
ARMCPU *cpu = env_archcpu(env);
@@ -7154,8 +7174,9 @@ static void define_pmu_regs(ARMCPU *cpu)
.fgt = FGT_PMCR_EL0,
.type = ARM_CP_IO | ARM_CP_ALIAS,
.fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
- .accessfn = pmreg_access, .writefn = pmcr_write,
- .raw_writefn = raw_write,
+ .accessfn = pmreg_access,
+ .readfn = pmcr_read, .raw_readfn = raw_read,
+ .writefn = pmcr_write, .raw_writefn = raw_write,
};
ARMCPRegInfo pmcr64 = {
.name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
@@ -7165,6 +7186,7 @@ static void define_pmu_regs(ARMCPU *cpu)
.type = ARM_CP_IO,
.fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
.resetvalue = cpu->isar.reset_pmcr_el0,
+ .readfn = pmcr_read, .raw_readfn = raw_read,
.writefn = pmcr_write, .raw_writefn = raw_write,
};
@@ -7645,6 +7667,7 @@ static const ARMCPRegInfo rndr_reginfo[] = {
static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
uint64_t value)
{
+#ifdef CONFIG_TCG
ARMCPU *cpu = env_archcpu(env);
/* CTR_EL0 System register -> DminLine, bits [19:16] */
uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
@@ -7669,6 +7692,10 @@ static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
}
#endif /*CONFIG_USER_ONLY*/
}
+#else
+ /* Handled by hardware accelerator. */
+ g_assert_not_reached();
+#endif /* CONFIG_TCG */
}
static const ARMCPRegInfo dcpop_reg[] = {
@@ -8716,6 +8743,9 @@ void register_cp_regs_for_features(ARMCPU *cpu)
}
define_arm_cp_regs(cpu, v8_idregs);
define_arm_cp_regs(cpu, v8_cp_reginfo);
+ if (cpu_isar_feature(aa64_aa32_el1, cpu)) {
+ define_arm_cp_regs(cpu, v8_aa32_el1_reginfo);
+ }
for (i = 4; i < 16; i++) {
/*
@@ -10135,61 +10165,6 @@ void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
}
}
-/* Sign/zero extend */
-uint32_t HELPER(sxtb16)(uint32_t x)
-{
- uint32_t res;
- res = (uint16_t)(int8_t)x;
- res |= (uint32_t)(int8_t)(x >> 16) << 16;
- return res;
-}
-
-static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra)
-{
- /*
- * Take a division-by-zero exception if necessary; otherwise return
- * to get the usual non-trapping division behaviour (result of 0)
- */
- if (arm_feature(env, ARM_FEATURE_M)
- && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) {
- raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra);
- }
-}
-
-uint32_t HELPER(uxtb16)(uint32_t x)
-{
- uint32_t res;
- res = (uint16_t)(uint8_t)x;
- res |= (uint32_t)(uint8_t)(x >> 16) << 16;
- return res;
-}
-
-int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den)
-{
- if (den == 0) {
- handle_possible_div0_trap(env, GETPC());
- return 0;
- }
- if (num == INT_MIN && den == -1) {
- return INT_MIN;
- }
- return num / den;
-}
-
-uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den)
-{
- if (den == 0) {
- handle_possible_div0_trap(env, GETPC());
- return 0;
- }
- return num / den;
-}
-
-uint32_t HELPER(rbit)(uint32_t x)
-{
- return revbit32(x);
-}
-
#ifdef CONFIG_USER_ONLY
static void switch_mode(CPUARMState *env, int mode)
diff --git a/target/arm/kvm.c b/target/arm/kvm.c
index 7903e2ddde..c5a3183843 100644
--- a/target/arm/kvm.c
+++ b/target/arm/kvm.c
@@ -2,6 +2,8 @@
* ARM implementation of KVM hooks
*
* Copyright Christoffer Dall 2009-2010
+ * Copyright Mian-M. Hamayun 2013, Virtual Open Systems
+ * Copyright Alex Bennée 2014, Linaro
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
@@ -19,6 +21,7 @@
#include "qom/object.h"
#include "qapi/error.h"
#include "sysemu/sysemu.h"
+#include "sysemu/runstate.h"
#include "sysemu/kvm.h"
#include "sysemu/kvm_int.h"
#include "kvm_arm.h"
@@ -28,10 +31,13 @@
#include "hw/pci/pci.h"
#include "exec/memattrs.h"
#include "exec/address-spaces.h"
+#include "exec/gdbstub.h"
#include "hw/boards.h"
#include "hw/irq.h"
#include "qapi/visitor.h"
#include "qemu/log.h"
+#include "hw/acpi/acpi.h"
+#include "hw/acpi/ghes.h"
const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
KVM_CAP_LAST_INFO
@@ -41,28 +47,54 @@ static bool cap_has_mp_state;
static bool cap_has_inject_serror_esr;
static bool cap_has_inject_ext_dabt;
+/**
+ * ARMHostCPUFeatures: information about the host CPU (identified
+ * by asking the host kernel)
+ */
+typedef struct ARMHostCPUFeatures {
+ ARMISARegisters isar;
+ uint64_t features;
+ uint32_t target;
+ const char *dtb_compatible;
+} ARMHostCPUFeatures;
+
static ARMHostCPUFeatures arm_host_cpu_features;
-int kvm_arm_vcpu_init(CPUState *cs)
+/**
+ * kvm_arm_vcpu_init:
+ * @cpu: ARMCPU
+ *
+ * Initialize (or reinitialize) the VCPU by invoking the
+ * KVM_ARM_VCPU_INIT ioctl with the CPU type and feature
+ * bitmask specified in the CPUState.
+ *
+ * Returns: 0 if success else < 0 error code
+ */
+static int kvm_arm_vcpu_init(ARMCPU *cpu)
{
- ARMCPU *cpu = ARM_CPU(cs);
struct kvm_vcpu_init init;
init.target = cpu->kvm_target;
memcpy(init.features, cpu->kvm_init_features, sizeof(init.features));
- return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init);
-}
-
-int kvm_arm_vcpu_finalize(CPUState *cs, int feature)
-{
- return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_FINALIZE, &feature);
+ return kvm_vcpu_ioctl(CPU(cpu), KVM_ARM_VCPU_INIT, &init);
}
-void kvm_arm_init_serror_injection(CPUState *cs)
+/**
+ * kvm_arm_vcpu_finalize:
+ * @cpu: ARMCPU
+ * @feature: feature to finalize
+ *
+ * Finalizes the configuration of the specified VCPU feature by
+ * invoking the KVM_ARM_VCPU_FINALIZE ioctl. Features requiring
+ * this are documented in the "KVM_ARM_VCPU_FINALIZE" section of
+ * KVM's API documentation.
+ *
+ * Returns: 0 if success else < 0 error code
+ */
+static int kvm_arm_vcpu_finalize(ARMCPU *cpu, int feature)
{
- cap_has_inject_serror_esr = kvm_check_extension(cs->kvm_state,
- KVM_CAP_ARM_INJECT_SERROR_ESR);
+ return kvm_vcpu_ioctl(CPU(cpu), KVM_ARM_VCPU_FINALIZE, &feature);
}
bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
@@ -167,6 +199,260 @@ void kvm_arm_destroy_scratch_host_vcpu(int *fdarray)
}
}
+static int read_sys_reg32(int fd, uint32_t *pret, uint64_t id)
+{
+ uint64_t ret;
+ struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)&ret };
+ int err;
+
+ assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
+ err = ioctl(fd, KVM_GET_ONE_REG, &idreg);
+ if (err < 0) {
+ return -1;
+ }
+ *pret = ret;
+ return 0;
+}
+
+static int read_sys_reg64(int fd, uint64_t *pret, uint64_t id)
+{
+ struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)pret };
+
+ assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
+ return ioctl(fd, KVM_GET_ONE_REG, &idreg);
+}
+
+static bool kvm_arm_pauth_supported(void)
+{
+ return (kvm_check_extension(kvm_state, KVM_CAP_ARM_PTRAUTH_ADDRESS) &&
+ kvm_check_extension(kvm_state, KVM_CAP_ARM_PTRAUTH_GENERIC));
+}
+
+static bool kvm_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
+{
+ /* Identify the feature bits corresponding to the host CPU, and
+ * fill out the ARMHostCPUClass fields accordingly. To do this
+ * we have to create a scratch VM, create a single CPU inside it,
+ * and then query that CPU for the relevant ID registers.
+ */
+ int fdarray[3];
+ bool sve_supported;
+ bool pmu_supported = false;
+ uint64_t features = 0;
+ int err;
+
+ /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
+ * we know these will only support creating one kind of guest CPU,
+ * which is its preferred CPU type. Fortunately these old kernels
+ * support only a very limited number of CPUs.
+ */
+ static const uint32_t cpus_to_try[] = {
+ KVM_ARM_TARGET_AEM_V8,
+ KVM_ARM_TARGET_FOUNDATION_V8,
+ KVM_ARM_TARGET_CORTEX_A57,
+ QEMU_KVM_ARM_TARGET_NONE
+ };
+ /*
+ * target = -1 informs kvm_arm_create_scratch_host_vcpu()
+ * to use the preferred target
+ */
+ struct kvm_vcpu_init init = { .target = -1, };
+
+ /*
+ * Ask for SVE if supported, so that we can query ID_AA64ZFR0,
+ * which is otherwise RAZ.
+ */
+ sve_supported = kvm_arm_sve_supported();
+ if (sve_supported) {
+ init.features[0] |= 1 << KVM_ARM_VCPU_SVE;
+ }
+
+ /*
+ * Ask for Pointer Authentication if supported, so that we get
+ * the unsanitized field values for AA64ISAR1_EL1.
+ */
+ if (kvm_arm_pauth_supported()) {
+ init.features[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS |
+ 1 << KVM_ARM_VCPU_PTRAUTH_GENERIC);
+ }
+
+ if (kvm_arm_pmu_supported()) {
+ init.features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
+ pmu_supported = true;
+ }
+
+ if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
+ return false;
+ }
+
+ ahcf->target = init.target;
+ ahcf->dtb_compatible = "arm,arm-v8";
+
+ err = read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr0,
+ ARM64_SYS_REG(3, 0, 0, 4, 0));
+ if (unlikely(err < 0)) {
+ /*
+ * Before v4.15, the kernel only exposed a limited number of system
+ * registers, not including any of the interesting AArch64 ID regs.
+ * For the most part we could leave these fields as zero with minimal
+ * effect, since this does not affect the values seen by the guest.
+ *
+ * However, it could cause problems down the line for QEMU,
+ * so provide a minimal v8.0 default.
+ *
+ * ??? Could read MIDR and use knowledge from cpu64.c.
+ * ??? Could map a page of memory into our temp guest and
+ * run the tiniest of hand-crafted kernels to extract
+ * the values seen by the guest.
+ * ??? Either of these sounds like too much effort just
+ * to work around running a modern host kernel.
+ */
+ ahcf->isar.id_aa64pfr0 = 0x00000011; /* EL1&0, AArch64 only */
+ err = 0;
+ } else {
+ err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr1,
+ ARM64_SYS_REG(3, 0, 0, 4, 1));
+ err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64smfr0,
+ ARM64_SYS_REG(3, 0, 0, 4, 5));
+ err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64dfr0,
+ ARM64_SYS_REG(3, 0, 0, 5, 0));
+ err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64dfr1,
+ ARM64_SYS_REG(3, 0, 0, 5, 1));
+ err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar0,
+ ARM64_SYS_REG(3, 0, 0, 6, 0));
+ err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar1,
+ ARM64_SYS_REG(3, 0, 0, 6, 1));
+ err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar2,
+ ARM64_SYS_REG(3, 0, 0, 6, 2));
+ err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr0,
+ ARM64_SYS_REG(3, 0, 0, 7, 0));
+ err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr1,
+ ARM64_SYS_REG(3, 0, 0, 7, 1));
+ err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr2,
+ ARM64_SYS_REG(3, 0, 0, 7, 2));
+
+ /*
+ * Note that if AArch32 support is not present in the host,
+ * the AArch32 sysregs are present to be read, but will
+ * return UNKNOWN values. This is neither better nor worse
+ * than skipping the reads and leaving 0, as we must avoid
+ * considering the values in every case.
+ */
+ err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr0,
+ ARM64_SYS_REG(3, 0, 0, 1, 0));
+ err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr1,
+ ARM64_SYS_REG(3, 0, 0, 1, 1));
+ err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_dfr0,
+ ARM64_SYS_REG(3, 0, 0, 1, 2));
+ err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr0,
+ ARM64_SYS_REG(3, 0, 0, 1, 4));
+ err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr1,
+ ARM64_SYS_REG(3, 0, 0, 1, 5));
+ err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr2,
+ ARM64_SYS_REG(3, 0, 0, 1, 6));
+ err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr3,
+ ARM64_SYS_REG(3, 0, 0, 1, 7));
+ err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar0,
+ ARM64_SYS_REG(3, 0, 0, 2, 0));
+ err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar1,
+ ARM64_SYS_REG(3, 0, 0, 2, 1));
+ err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar2,
+ ARM64_SYS_REG(3, 0, 0, 2, 2));
+ err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar3,
+ ARM64_SYS_REG(3, 0, 0, 2, 3));
+ err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar4,
+ ARM64_SYS_REG(3, 0, 0, 2, 4));
+ err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar5,
+ ARM64_SYS_REG(3, 0, 0, 2, 5));
+ err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr4,
+ ARM64_SYS_REG(3, 0, 0, 2, 6));
+ err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar6,
+ ARM64_SYS_REG(3, 0, 0, 2, 7));
+
+ err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr0,
+ ARM64_SYS_REG(3, 0, 0, 3, 0));
+ err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr1,
+ ARM64_SYS_REG(3, 0, 0, 3, 1));
+ err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr2,
+ ARM64_SYS_REG(3, 0, 0, 3, 2));
+ err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr2,
+ ARM64_SYS_REG(3, 0, 0, 3, 4));
+ err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_dfr1,
+ ARM64_SYS_REG(3, 0, 0, 3, 5));
+ err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr5,
+ ARM64_SYS_REG(3, 0, 0, 3, 6));
+
+ /*
+ * DBGDIDR is a bit complicated because the kernel doesn't
+ * provide an accessor for it in 64-bit mode, which is what this
+ * scratch VM is in, and there's no architected "64-bit sysreg
+ * which reads the same as the 32-bit register" the way there is
+ * for other ID registers. Instead we synthesize a value from the
+ * AArch64 ID_AA64DFR0, the same way the kernel code in
+ * arch/arm64/kvm/sys_regs.c:trap_dbgidr() does.
+ * We only do this if the CPU supports AArch32 at EL1.
+ */
+ if (FIELD_EX32(ahcf->isar.id_aa64pfr0, ID_AA64PFR0, EL1) >= 2) {
+ int wrps = FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, WRPS);
+ int brps = FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, BRPS);
+ int ctx_cmps =
+ FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS);
+ int version = 6; /* ARMv8 debug architecture */
+ bool has_el3 =
+ !!FIELD_EX32(ahcf->isar.id_aa64pfr0, ID_AA64PFR0, EL3);
+ uint32_t dbgdidr = 0;
+
+ dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, WRPS, wrps);
+ dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, BRPS, brps);
+ dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, CTX_CMPS, ctx_cmps);
+ dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, VERSION, version);
+ dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, NSUHD_IMP, has_el3);
+ dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, SE_IMP, has_el3);
+ dbgdidr |= (1 << 15); /* RES1 bit */
+ ahcf->isar.dbgdidr = dbgdidr;
+ }
+
+ if (pmu_supported) {
+ /* PMCR_EL0 is only accessible if the vCPU has feature PMU_V3 */
+ err |= read_sys_reg64(fdarray[2], &ahcf->isar.reset_pmcr_el0,
+ ARM64_SYS_REG(3, 3, 9, 12, 0));
+ }
+
+ if (sve_supported) {
+ /*
+ * There is a range of kernels between kernel commit 73433762fcae
+ * and f81cb2c3ad41 which have a bug where the kernel doesn't
+ * expose SYS_ID_AA64ZFR0_EL1 via the ONE_REG API unless the VM has
+ * enabled SVE support, which resulted in an error rather than RAZ.
+ * So only read the register if we set KVM_ARM_VCPU_SVE above.
+ */
+ err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64zfr0,
+ ARM64_SYS_REG(3, 0, 0, 4, 4));
+ }
+ }
+
+ kvm_arm_destroy_scratch_host_vcpu(fdarray);
+
+ if (err < 0) {
+ return false;
+ }
+
+ /*
+ * We can assume any KVM supporting CPU is at least a v8
+ * with VFPv4+Neon; this in turn implies most of the other
+ * feature bits.
+ */
+ features |= 1ULL << ARM_FEATURE_V8;
+ features |= 1ULL << ARM_FEATURE_NEON;
+ features |= 1ULL << ARM_FEATURE_AARCH64;
+ features |= 1ULL << ARM_FEATURE_PMU;
+ features |= 1ULL << ARM_FEATURE_GENERIC_TIMER;
+
+ ahcf->features = features;
+
+ return true;
+}
+
void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu)
{
CPUARMState *env = &cpu->env;
@@ -210,10 +496,10 @@ static void kvm_steal_time_set(Object *obj, bool value, Error **errp)
}
/* KVM VCPU properties should be prefixed with "kvm-". */
-void kvm_arm_add_vcpu_properties(Object *obj)
+void kvm_arm_add_vcpu_properties(ARMCPU *cpu)
{
- ARMCPU *cpu = ARM_CPU(obj);
CPUARMState *env = &cpu->env;
+ Object *obj = OBJECT(cpu);
if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
cpu->kvm_adjvtime = true;
@@ -271,6 +557,10 @@ int kvm_arch_init(MachineState *ms, KVMState *s)
cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);
+ /* Check whether user space can specify guest syndrome value */
+ cap_has_inject_serror_esr =
+ kvm_check_extension(s, KVM_CAP_ARM_INJECT_SERROR_ESR);
+
if (ms->smp.cpus > 256 &&
!kvm_check_extension(s, KVM_CAP_ARM_IRQ_LINE_LAYOUT_2)) {
error_report("Using more than 256 vcpus requires a host kernel "
@@ -308,7 +598,13 @@ int kvm_arch_init(MachineState *ms, KVMState *s)
}
}
- kvm_arm_init_debug(s);
+ max_hw_wps = kvm_check_extension(s, KVM_CAP_GUEST_DEBUG_HW_WPS);
+ hw_watchpoints = g_array_sized_new(true, true,
+ sizeof(HWWatchpoint), max_hw_wps);
+
+ max_hw_bps = kvm_check_extension(s, KVM_CAP_GUEST_DEBUG_HW_BPS);
+ hw_breakpoints = g_array_sized_new(true, true,
+ sizeof(HWBreakpoint), max_hw_bps);
return ret;
}
@@ -469,11 +765,36 @@ static uint64_t *kvm_arm_get_cpreg_ptr(ARMCPU *cpu, uint64_t regidx)
return &cpu->cpreg_values[res - cpu->cpreg_indexes];
}
-/* Initialize the ARMCPU cpreg list according to the kernel's
+/**
+ * kvm_arm_reg_syncs_via_cpreg_list:
+ * @regidx: KVM register index
+ *
+ * Return true if this KVM register should be synchronized via the
+ * cpreg list of arbitrary system registers, false if it is synchronized
+ * by hand using code in kvm_arch_get/put_registers().
+ */
+static bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
+{
+ switch (regidx & KVM_REG_ARM_COPROC_MASK) {
+ case KVM_REG_ARM_CORE:
+ case KVM_REG_ARM64_SVE:
+ return false;
+ default:
+ return true;
+ }
+}
+
+/**
+ * kvm_arm_init_cpreg_list:
+ * @cpu: ARMCPU
+ *
+ * Initialize the ARMCPU cpreg list according to the kernel's
* definition of what CPU registers it knows about (and throw away
* the previous TCG-created cpreg list).
+ *
+ * Returns: 0 if success, else < 0 error code
*/
-int kvm_arm_init_cpreg_list(ARMCPU *cpu)
+static int kvm_arm_init_cpreg_list(ARMCPU *cpu)
{
struct kvm_reg_list rl;
struct kvm_reg_list *rlp;
@@ -546,6 +867,28 @@ out:
return ret;
}
+/**
+ * kvm_arm_cpreg_level:
+ * @regidx: KVM register index
+ *
+ * Return the level of this coprocessor/system register. Return value is
+ * either KVM_PUT_RUNTIME_STATE, KVM_PUT_RESET_STATE, or KVM_PUT_FULL_STATE.
+ */
+static int kvm_arm_cpreg_level(uint64_t regidx)
+{
+ /*
+ * All system registers are assumed to be level KVM_PUT_RUNTIME_STATE.
+ * If a register should be written less often, you must add it here
+ * with a state of either KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
+ */
+ switch (regidx) {
+ case KVM_REG_ARM_TIMER_CNT:
+ case KVM_REG_ARM_PTIMER_CNT:
+ return KVM_PUT_FULL_STATE;
+ }
+ return KVM_PUT_RUNTIME_STATE;
+}
+
bool write_kvmstate_to_list(ARMCPU *cpu)
{
CPUState *cs = CPU(cpu);
@@ -638,7 +981,7 @@ void kvm_arm_reset_vcpu(ARMCPU *cpu)
/* Re-init VCPU so that all registers are set to
* their respective reset values.
*/
- ret = kvm_arm_vcpu_init(CPU(cpu));
+ ret = kvm_arm_vcpu_init(cpu);
if (ret < 0) {
fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret));
abort();
@@ -660,54 +1003,50 @@ void kvm_arm_reset_vcpu(ARMCPU *cpu)
/*
* Update KVM's MP_STATE based on what QEMU thinks it is
*/
-int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
+static int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
{
if (cap_has_mp_state) {
struct kvm_mp_state mp_state = {
.mp_state = (cpu->power_state == PSCI_OFF) ?
KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE
};
- int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
- if (ret) {
- fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n",
- __func__, ret, strerror(-ret));
- return -1;
- }
+ return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
}
-
return 0;
}
/*
* Sync the KVM MP_STATE into QEMU
*/
-int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
+static int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
{
if (cap_has_mp_state) {
struct kvm_mp_state mp_state;
int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
if (ret) {
- fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n",
- __func__, ret, strerror(-ret));
- abort();
+ return ret;
}
cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ?
PSCI_OFF : PSCI_ON;
}
-
return 0;
}
-void kvm_arm_get_virtual_time(CPUState *cs)
+/**
+ * kvm_arm_get_virtual_time:
+ * @cpu: ARMCPU
+ *
+ * Gets the VCPU's virtual counter and stores it in the KVM CPU state.
+ */
+static void kvm_arm_get_virtual_time(ARMCPU *cpu)
{
- ARMCPU *cpu = ARM_CPU(cs);
int ret;
if (cpu->kvm_vtime_dirty) {
return;
}
- ret = kvm_get_one_reg(cs, KVM_REG_ARM_TIMER_CNT, &cpu->kvm_vtime);
+ ret = kvm_get_one_reg(CPU(cpu), KVM_REG_ARM_TIMER_CNT, &cpu->kvm_vtime);
if (ret) {
error_report("Failed to get KVM_REG_ARM_TIMER_CNT");
abort();
@@ -716,16 +1055,21 @@ void kvm_arm_get_virtual_time(CPUState *cs)
cpu->kvm_vtime_dirty = true;
}
-void kvm_arm_put_virtual_time(CPUState *cs)
+/**
+ * kvm_arm_put_virtual_time:
+ * @cpu: ARMCPU
+ *
+ * Sets the VCPU's virtual counter to the value stored in the KVM CPU state.
+ */
+static void kvm_arm_put_virtual_time(ARMCPU *cpu)
{
- ARMCPU *cpu = ARM_CPU(cs);
int ret;
if (!cpu->kvm_vtime_dirty) {
return;
}
- ret = kvm_set_one_reg(cs, KVM_REG_ARM_TIMER_CNT, &cpu->kvm_vtime);
+ ret = kvm_set_one_reg(CPU(cpu), KVM_REG_ARM_TIMER_CNT, &cpu->kvm_vtime);
if (ret) {
error_report("Failed to set KVM_REG_ARM_TIMER_CNT");
abort();
@@ -734,7 +1078,15 @@ void kvm_arm_put_virtual_time(CPUState *cs)
cpu->kvm_vtime_dirty = false;
}
-int kvm_put_vcpu_events(ARMCPU *cpu)
+/**
+ * kvm_put_vcpu_events:
+ * @cpu: ARMCPU
+ *
+ * Put VCPU related state to kvm.
+ *
+ * Returns: 0 if success else < 0 error code
+ */
+static int kvm_put_vcpu_events(ARMCPU *cpu)
{
CPUARMState *env = &cpu->env;
struct kvm_vcpu_events events;
@@ -763,7 +1115,15 @@ int kvm_put_vcpu_events(ARMCPU *cpu)
return ret;
}
-int kvm_get_vcpu_events(ARMCPU *cpu)
+/**
+ * kvm_get_vcpu_events:
+ * @cpu: ARMCPU
+ *
+ * Get VCPU related state from kvm.
+ *
+ * Returns: 0 if success else < 0 error code
+ */
+static int kvm_get_vcpu_events(ARMCPU *cpu)
{
CPUARMState *env = &cpu->env;
struct kvm_vcpu_events events;
@@ -787,6 +1147,63 @@ int kvm_get_vcpu_events(ARMCPU *cpu)
return 0;
}
+#define ARM64_REG_ESR_EL1 ARM64_SYS_REG(3, 0, 5, 2, 0)
+#define ARM64_REG_TCR_EL1 ARM64_SYS_REG(3, 0, 2, 0, 2)
+
+/*
+ * ESR_EL1
+ * ISS encoding
+ * AARCH64: DFSC, bits [5:0]
+ * AARCH32:
+ * TTBCR.EAE == 0
+ * FS[4] - DFSR[10]
+ * FS[3:0] - DFSR[3:0]
+ * TTBCR.EAE == 1
+ * FS, bits [5:0]
+ */
+#define ESR_DFSC(aarch64, lpae, v) \
+ ((aarch64 || (lpae)) ? ((v) & 0x3F) \
+ : (((v) >> 6) | ((v) & 0x1F)))
+
+#define ESR_DFSC_EXTABT(aarch64, lpae) \
+ ((aarch64) ? 0x10 : (lpae) ? 0x10 : 0x8)
+
+/**
+ * kvm_arm_verify_ext_dabt_pending:
+ * @cpu: ARMCPU
+ *
+ * Verify the fault status code wrt the Ext DABT injection
+ *
+ * Returns: true if the fault status code is as expected, false otherwise
+ */
+static bool kvm_arm_verify_ext_dabt_pending(ARMCPU *cpu)
+{
+ CPUState *cs = CPU(cpu);
+ uint64_t dfsr_val;
+
+ if (!kvm_get_one_reg(cs, ARM64_REG_ESR_EL1, &dfsr_val)) {
+ CPUARMState *env = &cpu->env;
+ int aarch64_mode = arm_feature(env, ARM_FEATURE_AARCH64);
+ int lpae = 0;
+
+ if (!aarch64_mode) {
+ uint64_t ttbcr;
+
+ if (!kvm_get_one_reg(cs, ARM64_REG_TCR_EL1, &ttbcr)) {
+ lpae = arm_feature(env, ARM_FEATURE_LPAE)
+ && (ttbcr & TTBCR_EAE);
+ }
+ }
+ /*
+ * The verification here is based on the DFSC bits
+ * of the ESR_EL1 reg only
+ */
+ return (ESR_DFSC(aarch64_mode, lpae, dfsr_val) ==
+ ESR_DFSC_EXTABT(aarch64_mode, lpae));
+ }
+ return false;
+}
+
void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
{
ARMCPU *cpu = ARM_CPU(cs);
@@ -801,7 +1218,7 @@ void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
* an IMPLEMENTATION DEFINED exception (for 32-bit EL1)
*/
if (!arm_feature(env, ARM_FEATURE_AARCH64) &&
- unlikely(!kvm_arm_verify_ext_dabt_pending(cs))) {
+ unlikely(!kvm_arm_verify_ext_dabt_pending(cpu))) {
error_report("Data abort exception with no valid ISS generated by "
"guest memory access. KVM unable to emulate faulting "
@@ -868,35 +1285,33 @@ MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
return MEMTXATTRS_UNSPECIFIED;
}
-void kvm_arm_vm_state_change(void *opaque, bool running, RunState state)
+static void kvm_arm_vm_state_change(void *opaque, bool running, RunState state)
{
- CPUState *cs = opaque;
- ARMCPU *cpu = ARM_CPU(cs);
+ ARMCPU *cpu = opaque;
if (running) {
if (cpu->kvm_adjvtime) {
- kvm_arm_put_virtual_time(cs);
+ kvm_arm_put_virtual_time(cpu);
}
} else {
if (cpu->kvm_adjvtime) {
- kvm_arm_get_virtual_time(cs);
+ kvm_arm_get_virtual_time(cpu);
}
}
}
/**
* kvm_arm_handle_dabt_nisv:
- * @cs: CPUState
+ * @cpu: ARMCPU
* @esr_iss: ISS encoding (limited) for the exception from Data Abort
* ISV bit set to '0b0' -> no valid instruction syndrome
* @fault_ipa: faulting address for the synchronous data abort
*
* Returns: 0 if the exception has been handled, < 0 otherwise
*/
-static int kvm_arm_handle_dabt_nisv(CPUState *cs, uint64_t esr_iss,
+static int kvm_arm_handle_dabt_nisv(ARMCPU *cpu, uint64_t esr_iss,
uint64_t fault_ipa)
{
- ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
/*
* Request KVM to inject the external data abort into the guest
@@ -912,7 +1327,7 @@ static int kvm_arm_handle_dabt_nisv(CPUState *cs, uint64_t esr_iss,
*/
events.exception.ext_dabt_pending = 1;
/* KVM_CAP_ARM_INJECT_EXT_DABT implies KVM_CAP_VCPU_EVENTS */
- if (!kvm_vcpu_ioctl(cs, KVM_SET_VCPU_EVENTS, &events)) {
+ if (!kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events)) {
env->ext_dabt_raised = 1;
return 0;
}
@@ -925,19 +1340,97 @@ static int kvm_arm_handle_dabt_nisv(CPUState *cs, uint64_t esr_iss,
return -1;
}
+/**
+ * kvm_arm_handle_debug:
+ * @cpu: ARMCPU
+ * @debug_exit: debug part of the KVM exit structure
+ *
+ * Returns: TRUE if the debug exception was handled.
+ *
+ * See v8 ARM ARM D7.2.27 ESR_ELx, Exception Syndrome Register
+ *
+ * To minimise translating between kernel and user-space the kernel
+ * ABI just provides user-space with the full exception syndrome
+ * register value to be decoded in QEMU.
+ */
+static bool kvm_arm_handle_debug(ARMCPU *cpu,
+ struct kvm_debug_exit_arch *debug_exit)
+{
+ int hsr_ec = syn_get_ec(debug_exit->hsr);
+ CPUState *cs = CPU(cpu);
+ CPUARMState *env = &cpu->env;
+
+ /* Ensure PC is synchronised */
+ kvm_cpu_synchronize_state(cs);
+
+ switch (hsr_ec) {
+ case EC_SOFTWARESTEP:
+ if (cs->singlestep_enabled) {
+ return true;
+ } else {
+ /*
+ * The kernel should have suppressed the guest's ability to
+ * single step at this point so something has gone wrong.
+ */
+ error_report("%s: guest single-step while debugging unsupported"
+ " (%"PRIx64", %"PRIx32")",
+ __func__, env->pc, debug_exit->hsr);
+ return false;
+ }
+ break;
+ case EC_AA64_BKPT:
+ if (kvm_find_sw_breakpoint(cs, env->pc)) {
+ return true;
+ }
+ break;
+ case EC_BREAKPOINT:
+ if (find_hw_breakpoint(cs, env->pc)) {
+ return true;
+ }
+ break;
+ case EC_WATCHPOINT:
+ {
+ CPUWatchpoint *wp = find_hw_watchpoint(cs, debug_exit->far);
+ if (wp) {
+ cs->watchpoint_hit = wp;
+ return true;
+ }
+ break;
+ }
+ default:
+ error_report("%s: unhandled debug exit (%"PRIx32", %"PRIx64")",
+ __func__, debug_exit->hsr, env->pc);
+ }
+
+ /* If we are not handling the debug exception it must belong to
+ * the guest. Let's re-use the existing TCG interrupt code to set
+ * everything up properly.
+ */
+ cs->exception_index = EXCP_BKPT;
+ env->exception.syndrome = debug_exit->hsr;
+ env->exception.vaddress = debug_exit->far;
+ env->exception.target_el = 1;
+ qemu_mutex_lock_iothread();
+ arm_cpu_do_interrupt(cs);
+ qemu_mutex_unlock_iothread();
+
+ return false;
+}
+
int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
{
+ ARMCPU *cpu = ARM_CPU(cs);
int ret = 0;
switch (run->exit_reason) {
case KVM_EXIT_DEBUG:
- if (kvm_arm_handle_debug(cs, &run->debug.arch)) {
+ if (kvm_arm_handle_debug(cpu, &run->debug.arch)) {
ret = EXCP_DEBUG;
} /* otherwise return to guest */
break;
case KVM_EXIT_ARM_NISV:
/* External DABT with no valid iss to decode */
- ret = kvm_arm_handle_dabt_nisv(cs, run->arm_nisv.esr_iss,
+ ret = kvm_arm_handle_dabt_nisv(cpu, run->arm_nisv.esr_iss,
run->arm_nisv.fault_ipa);
break;
default:
@@ -958,12 +1451,47 @@ int kvm_arch_process_async_events(CPUState *cs)
return 0;
}
+/**
+ * kvm_arm_hw_debug_active:
+ * @cpu: ARMCPU
+ *
+ * Return: TRUE if any hardware breakpoints in use.
+ */
+static bool kvm_arm_hw_debug_active(ARMCPU *cpu)
+{
+ return ((cur_hw_wps > 0) || (cur_hw_bps > 0));
+}
+
+/**
+ * kvm_arm_copy_hw_debug_data:
+ * @ptr: kvm_guest_debug_arch structure
+ *
+ * Copy the architecture specific debug registers into the
+ * kvm_guest_debug ioctl structure.
+ */
+static void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr)
+{
+ int i;
+ memset(ptr, 0, sizeof(struct kvm_guest_debug_arch));
+
+ for (i = 0; i < max_hw_wps; i++) {
+ HWWatchpoint *wp = get_hw_wp(i);
+ ptr->dbg_wcr[i] = wp->wcr;
+ ptr->dbg_wvr[i] = wp->wvr;
+ }
+ for (i = 0; i < max_hw_bps; i++) {
+ HWBreakpoint *bp = get_hw_bp(i);
+ ptr->dbg_bcr[i] = bp->bcr;
+ ptr->dbg_bvr[i] = bp->bvr;
+ }
+}
+
void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
{
if (kvm_sw_breakpoints_active(cs)) {
dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
}
- if (kvm_arm_hw_debug_active(cs)) {
+ if (kvm_arm_hw_debug_active(ARM_CPU(cs))) {
dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW;
kvm_arm_copy_hw_debug_data(&dbg->arch);
}
@@ -1117,3 +1645,782 @@ void kvm_arch_accel_class_init(ObjectClass *oc)
object_class_property_set_description(oc, "eager-split-size",
"Eager Page Split chunk size for hugepages. (default: 0, disabled)");
}
+
+int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
+{
+ switch (type) {
+ case GDB_BREAKPOINT_HW:
+ return insert_hw_breakpoint(addr);
+ break;
+ case GDB_WATCHPOINT_READ:
+ case GDB_WATCHPOINT_WRITE:
+ case GDB_WATCHPOINT_ACCESS:
+ return insert_hw_watchpoint(addr, len, type);
+ default:
+ return -ENOSYS;
+ }
+}
+
+int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
+{
+ switch (type) {
+ case GDB_BREAKPOINT_HW:
+ return delete_hw_breakpoint(addr);
+ case GDB_WATCHPOINT_READ:
+ case GDB_WATCHPOINT_WRITE:
+ case GDB_WATCHPOINT_ACCESS:
+ return delete_hw_watchpoint(addr, len, type);
+ default:
+ return -ENOSYS;
+ }
+}
+
+void kvm_arch_remove_all_hw_breakpoints(void)
+{
+ if (cur_hw_wps > 0) {
+ g_array_remove_range(hw_watchpoints, 0, cur_hw_wps);
+ }
+ if (cur_hw_bps > 0) {
+ g_array_remove_range(hw_breakpoints, 0, cur_hw_bps);
+ }
+}
+
+static bool kvm_arm_set_device_attr(ARMCPU *cpu, struct kvm_device_attr *attr,
+ const char *name)
+{
+ int err;
+
+ err = kvm_vcpu_ioctl(CPU(cpu), KVM_HAS_DEVICE_ATTR, attr);
+ if (err != 0) {
+ error_report("%s: KVM_HAS_DEVICE_ATTR: %s", name, strerror(-err));
+ return false;
+ }
+
+ err = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEVICE_ATTR, attr);
+ if (err != 0) {
+ error_report("%s: KVM_SET_DEVICE_ATTR: %s", name, strerror(-err));
+ return false;
+ }
+
+ return true;
+}
+
+void kvm_arm_pmu_init(ARMCPU *cpu)
+{
+ struct kvm_device_attr attr = {
+ .group = KVM_ARM_VCPU_PMU_V3_CTRL,
+ .attr = KVM_ARM_VCPU_PMU_V3_INIT,
+ };
+
+ if (!cpu->has_pmu) {
+ return;
+ }
+ if (!kvm_arm_set_device_attr(cpu, &attr, "PMU")) {
+ error_report("failed to init PMU");
+ abort();
+ }
+}
+
+void kvm_arm_pmu_set_irq(ARMCPU *cpu, int irq)
+{
+ struct kvm_device_attr attr = {
+ .group = KVM_ARM_VCPU_PMU_V3_CTRL,
+ .addr = (intptr_t)&irq,
+ .attr = KVM_ARM_VCPU_PMU_V3_IRQ,
+ };
+
+ if (!cpu->has_pmu) {
+ return;
+ }
+ if (!kvm_arm_set_device_attr(cpu, &attr, "PMU")) {
+ error_report("failed to set irq for PMU");
+ abort();
+ }
+}
+
+void kvm_arm_pvtime_init(ARMCPU *cpu, uint64_t ipa)
+{
+ struct kvm_device_attr attr = {
+ .group = KVM_ARM_VCPU_PVTIME_CTRL,
+ .attr = KVM_ARM_VCPU_PVTIME_IPA,
+ .addr = (uint64_t)&ipa,
+ };
+
+ if (cpu->kvm_steal_time == ON_OFF_AUTO_OFF) {
+ return;
+ }
+ if (!kvm_arm_set_device_attr(cpu, &attr, "PVTIME IPA")) {
+ error_report("failed to init PVTIME IPA");
+ abort();
+ }
+}
+
+void kvm_arm_steal_time_finalize(ARMCPU *cpu, Error **errp)
+{
+ bool has_steal_time = kvm_check_extension(kvm_state, KVM_CAP_STEAL_TIME);
+
+ if (cpu->kvm_steal_time == ON_OFF_AUTO_AUTO) {
+ if (!has_steal_time || !arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
+ cpu->kvm_steal_time = ON_OFF_AUTO_OFF;
+ } else {
+ cpu->kvm_steal_time = ON_OFF_AUTO_ON;
+ }
+ } else if (cpu->kvm_steal_time == ON_OFF_AUTO_ON) {
+ if (!has_steal_time) {
+ error_setg(errp, "'kvm-steal-time' cannot be enabled "
+ "on this host");
+ return;
+ } else if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
+ /*
+ * DEN0057A chapter 2 says "This specification only covers
+ * systems in which the Execution state of the hypervisor
+ * as well as EL1 of virtual machines is AArch64.". And,
+ * to ensure that, the smc/hvc calls are only specified as
+ * smc64/hvc64.
+ */
+ error_setg(errp, "'kvm-steal-time' cannot be enabled "
+ "for AArch32 guests");
+ return;
+ }
+ }
+}
+
+bool kvm_arm_aarch32_supported(void)
+{
+ return kvm_check_extension(kvm_state, KVM_CAP_ARM_EL1_32BIT);
+}
+
+bool kvm_arm_sve_supported(void)
+{
+ return kvm_check_extension(kvm_state, KVM_CAP_ARM_SVE);
+}
+
+QEMU_BUILD_BUG_ON(KVM_ARM64_SVE_VQ_MIN != 1);
+
+uint32_t kvm_arm_sve_get_vls(ARMCPU *cpu)
+{
+ /* Only call this function if kvm_arm_sve_supported() returns true. */
+ static uint64_t vls[KVM_ARM64_SVE_VLS_WORDS];
+ static bool probed;
+ uint32_t vq = 0;
+ int i;
+
+ /*
+ * KVM ensures all host CPUs support the same set of vector lengths.
+ * So we only need to create the scratch VCPUs once and then cache
+ * the results.
+ */
+ if (!probed) {
+ struct kvm_vcpu_init init = {
+ .target = -1,
+ .features[0] = (1 << KVM_ARM_VCPU_SVE),
+ };
+ struct kvm_one_reg reg = {
+ .id = KVM_REG_ARM64_SVE_VLS,
+ .addr = (uint64_t)&vls[0],
+ };
+ int fdarray[3], ret;
+
+ probed = true;
+
+ if (!kvm_arm_create_scratch_host_vcpu(NULL, fdarray, &init)) {
+ error_report("failed to create scratch VCPU with SVE enabled");
+ abort();
+ }
+ ret = ioctl(fdarray[2], KVM_GET_ONE_REG, &reg);
+ kvm_arm_destroy_scratch_host_vcpu(fdarray);
+ if (ret) {
+ error_report("failed to get KVM_REG_ARM64_SVE_VLS: %s",
+ strerror(errno));
+ abort();
+ }
+
+ for (i = KVM_ARM64_SVE_VLS_WORDS - 1; i >= 0; --i) {
+ if (vls[i]) {
+ vq = 64 - clz64(vls[i]) + i * 64;
+ break;
+ }
+ }
+ if (vq > ARM_MAX_VQ) {
+ warn_report("KVM supports vector lengths larger than "
+ "QEMU can enable");
+ vls[0] &= MAKE_64BIT_MASK(0, ARM_MAX_VQ);
+ }
+ }
+
+ return vls[0];
+}
+
+static int kvm_arm_sve_set_vls(ARMCPU *cpu)
+{
+ uint64_t vls[KVM_ARM64_SVE_VLS_WORDS] = { cpu->sve_vq.map };
+
+ assert(cpu->sve_max_vq <= KVM_ARM64_SVE_VQ_MAX);
+
+ return kvm_set_one_reg(CPU(cpu), KVM_REG_ARM64_SVE_VLS, &vls[0]);
+}
+
+#define ARM_CPU_ID_MPIDR 3, 0, 0, 0, 5
+
+int kvm_arch_init_vcpu(CPUState *cs)
+{
+ int ret;
+ uint64_t mpidr;
+ ARMCPU *cpu = ARM_CPU(cs);
+ CPUARMState *env = &cpu->env;
+ uint64_t psciver;
+
+ if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE ||
+ !object_dynamic_cast(OBJECT(cpu), TYPE_AARCH64_CPU)) {
+ error_report("KVM is not supported for this guest CPU type");
+ return -EINVAL;
+ }
+
+ qemu_add_vm_change_state_handler(kvm_arm_vm_state_change, cpu);
+
+ /* Determine init features for this CPU */
+ memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
+ if (cs->start_powered_off) {
+ cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
+ }
+ if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
+ cpu->psci_version = QEMU_PSCI_VERSION_0_2;
+ cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
+ }
+ if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
+ cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT;
+ }
+ if (!kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PMU_V3)) {
+ cpu->has_pmu = false;
+ }
+ if (cpu->has_pmu) {
+ cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
+ } else {
+ env->features &= ~(1ULL << ARM_FEATURE_PMU);
+ }
+ if (cpu_isar_feature(aa64_sve, cpu)) {
+ assert(kvm_arm_sve_supported());
+ cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_SVE;
+ }
+ if (cpu_isar_feature(aa64_pauth, cpu)) {
+ cpu->kvm_init_features[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS |
+ 1 << KVM_ARM_VCPU_PTRAUTH_GENERIC);
+ }
+
+ /* Do KVM_ARM_VCPU_INIT ioctl */
+ ret = kvm_arm_vcpu_init(cpu);
+ if (ret) {
+ return ret;
+ }
+
+ if (cpu_isar_feature(aa64_sve, cpu)) {
+ ret = kvm_arm_sve_set_vls(cpu);
+ if (ret) {
+ return ret;
+ }
+ ret = kvm_arm_vcpu_finalize(cpu, KVM_ARM_VCPU_SVE);
+ if (ret) {
+ return ret;
+ }
+ }
+
+ /*
+ * KVM reports the exact PSCI version it is implementing via a
+ * special sysreg. If it is present, use its contents to determine
+ * what to report to the guest in the dtb (it is the PSCI version,
+ * in the same 15-bits major 16-bits minor format that PSCI_VERSION
+ * returns).
+ */
+ if (!kvm_get_one_reg(cs, KVM_REG_ARM_PSCI_VERSION, &psciver)) {
+ cpu->psci_version = psciver;
+ }
+
+ /*
+ * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
+ * Currently KVM has its own idea about MPIDR assignment, so we
+ * override our defaults with what we get from KVM.
+ */
+ ret = kvm_get_one_reg(cs, ARM64_SYS_REG(ARM_CPU_ID_MPIDR), &mpidr);
+ if (ret) {
+ return ret;
+ }
+ cpu->mp_affinity = mpidr & ARM64_AFFINITY_MASK;
+
+ return kvm_arm_init_cpreg_list(cpu);
+}
+
+int kvm_arch_destroy_vcpu(CPUState *cs)
+{
+ return 0;
+}
+
+/* Callers must hold the iothread mutex lock */
+static void kvm_inject_arm_sea(CPUState *c)
+{
+ ARMCPU *cpu = ARM_CPU(c);
+ CPUARMState *env = &cpu->env;
+ uint32_t esr;
+ bool same_el;
+
+ c->exception_index = EXCP_DATA_ABORT;
+ env->exception.target_el = 1;
+
+ /*
+ * Set the DFSC to synchronous external abort and set FnV to not valid,
+ * this will tell guest the FAR_ELx is UNKNOWN for this abort.
+ */
+ same_el = arm_current_el(env) == env->exception.target_el;
+ esr = syn_data_abort_no_iss(same_el, 1, 0, 0, 0, 0, 0x10);
+
+ env->exception.syndrome = esr;
+
+ arm_cpu_do_interrupt(c);
+}
+
+#define AARCH64_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \
+ KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
+
+#define AARCH64_SIMD_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \
+ KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
+
+#define AARCH64_SIMD_CTRL_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \
+ KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
+
+static int kvm_arch_put_fpsimd(CPUState *cs)
+{
+ CPUARMState *env = &ARM_CPU(cs)->env;
+ int i, ret;
+
+ for (i = 0; i < 32; i++) {
+ uint64_t *q = aa64_vfp_qreg(env, i);
+#if HOST_BIG_ENDIAN
+ uint64_t fp_val[2] = { q[1], q[0] };
+ ret = kvm_set_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]),
+ fp_val);
+#else
+ ret = kvm_set_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]), q);
+#endif
+ if (ret) {
+ return ret;
+ }
+ }
+
+ return 0;
+}
+
+/*
+ * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
+ * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
+ * code the slice index to zero for now as it's unlikely we'll need more than
+ * one slice for quite some time.
+ */
+static int kvm_arch_put_sve(CPUState *cs)
+{
+ ARMCPU *cpu = ARM_CPU(cs);
+ CPUARMState *env = &cpu->env;
+ uint64_t tmp[ARM_MAX_VQ * 2];
+ uint64_t *r;
+ int n, ret;
+
+ for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
+ r = sve_bswap64(tmp, &env->vfp.zregs[n].d[0], cpu->sve_max_vq * 2);
+ ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_ZREG(n, 0), r);
+ if (ret) {
+ return ret;
+ }
+ }
+
+ for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
+ r = sve_bswap64(tmp, r = &env->vfp.pregs[n].p[0],
+ DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
+ ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_PREG(n, 0), r);
+ if (ret) {
+ return ret;
+ }
+ }
+
+ r = sve_bswap64(tmp, &env->vfp.pregs[FFR_PRED_NUM].p[0],
+ DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
+ ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_FFR(0), r);
+ if (ret) {
+ return ret;
+ }
+
+ return 0;
+}
+
+int kvm_arch_put_registers(CPUState *cs, int level)
+{
+ uint64_t val;
+ uint32_t fpr;
+ int i, ret;
+ unsigned int el;
+
+ ARMCPU *cpu = ARM_CPU(cs);
+ CPUARMState *env = &cpu->env;
+
+ /* If we are in AArch32 mode then we need to copy the AArch32 regs to the
+ * AArch64 registers before pushing them out to 64-bit KVM.
+ */
+ if (!is_a64(env)) {
+ aarch64_sync_32_to_64(env);
+ }
+
+ for (i = 0; i < 31; i++) {
+ ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.regs[i]),
+ &env->xregs[i]);
+ if (ret) {
+ return ret;
+ }
+ }
+
+ /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
+ * QEMU side we keep the current SP in xregs[31] as well.
+ */
+ aarch64_save_sp(env, 1);
+
+ ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.sp), &env->sp_el[0]);
+ if (ret) {
+ return ret;
+ }
+
+ ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(sp_el1), &env->sp_el[1]);
+ if (ret) {
+ return ret;
+ }
+
+ /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */
+ if (is_a64(env)) {
+ val = pstate_read(env);
+ } else {
+ val = cpsr_read(env);
+ }
+ ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.pstate), &val);
+ if (ret) {
+ return ret;
+ }
+
+ ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.pc), &env->pc);
+ if (ret) {
+ return ret;
+ }
+
+ ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(elr_el1), &env->elr_el[1]);
+ if (ret) {
+ return ret;
+ }
+
+ /* Saved Program State Registers
+ *
+ * Before we restore from the banked_spsr[] array we need to
+ * ensure that any modifications to env->spsr are correctly
+ * reflected in the banks.
+ */
+ el = arm_current_el(env);
+ if (el > 0 && !is_a64(env)) {
+ i = bank_number(env->uncached_cpsr & CPSR_M);
+ env->banked_spsr[i] = env->spsr;
+ }
+
+ /* KVM 0-4 map to QEMU banks 1-5 */
+ for (i = 0; i < KVM_NR_SPSR; i++) {
+ ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(spsr[i]),
+ &env->banked_spsr[i + 1]);
+ if (ret) {
+ return ret;
+ }
+ }
+
+ if (cpu_isar_feature(aa64_sve, cpu)) {
+ ret = kvm_arch_put_sve(cs);
+ } else {
+ ret = kvm_arch_put_fpsimd(cs);
+ }
+ if (ret) {
+ return ret;
+ }
+
+ fpr = vfp_get_fpsr(env);
+ ret = kvm_set_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpsr), &fpr);
+ if (ret) {
+ return ret;
+ }
+
+ fpr = vfp_get_fpcr(env);
+ ret = kvm_set_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpcr), &fpr);
+ if (ret) {
+ return ret;
+ }
+
+ write_cpustate_to_list(cpu, true);
+
+ if (!write_list_to_kvmstate(cpu, level)) {
+ return -EINVAL;
+ }
+
+ /*
+ * Setting VCPU events should be triggered after syncing the registers
+ * to avoid overwriting potential changes made by KVM upon calling
+ * KVM_SET_VCPU_EVENTS ioctl
+ */
+ ret = kvm_put_vcpu_events(cpu);
+ if (ret) {
+ return ret;
+ }
+
+ return kvm_arm_sync_mpstate_to_kvm(cpu);
+}
+
+static int kvm_arch_get_fpsimd(CPUState *cs)
+{
+ CPUARMState *env = &ARM_CPU(cs)->env;
+ int i, ret;
+
+ for (i = 0; i < 32; i++) {
+ uint64_t *q = aa64_vfp_qreg(env, i);
+ ret = kvm_get_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]), q);
+ if (ret) {
+ return ret;
+ } else {
+#if HOST_BIG_ENDIAN
+ uint64_t t;
+ t = q[0], q[0] = q[1], q[1] = t;
+#endif
+ }
+ }
+
+ return 0;
+}
+
+/*
+ * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
+ * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
+ * code the slice index to zero for now as it's unlikely we'll need more than
+ * one slice for quite some time.
+ */
+static int kvm_arch_get_sve(CPUState *cs)
+{
+ ARMCPU *cpu = ARM_CPU(cs);
+ CPUARMState *env = &cpu->env;
+ uint64_t *r;
+ int n, ret;
+
+ for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
+ r = &env->vfp.zregs[n].d[0];
+ ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_ZREG(n, 0), r);
+ if (ret) {
+ return ret;
+ }
+ sve_bswap64(r, r, cpu->sve_max_vq * 2);
+ }
+
+ for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
+ r = &env->vfp.pregs[n].p[0];
+ ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_PREG(n, 0), r);
+ if (ret) {
+ return ret;
+ }
+ sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
+ }
+
+ r = &env->vfp.pregs[FFR_PRED_NUM].p[0];
+ ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_FFR(0), r);
+ if (ret) {
+ return ret;
+ }
+ sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
+
+ return 0;
+}
+
+int kvm_arch_get_registers(CPUState *cs)
+{
+ uint64_t val;
+ unsigned int el;
+ uint32_t fpr;
+ int i, ret;
+
+ ARMCPU *cpu = ARM_CPU(cs);
+ CPUARMState *env = &cpu->env;
+
+ for (i = 0; i < 31; i++) {
+ ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.regs[i]),
+ &env->xregs[i]);
+ if (ret) {
+ return ret;
+ }
+ }
+
+ ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.sp), &env->sp_el[0]);
+ if (ret) {
+ return ret;
+ }
+
+ ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(sp_el1), &env->sp_el[1]);
+ if (ret) {
+ return ret;
+ }
+
+ ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.pstate), &val);
+ if (ret) {
+ return ret;
+ }
+
+ env->aarch64 = ((val & PSTATE_nRW) == 0);
+ if (is_a64(env)) {
+ pstate_write(env, val);
+ } else {
+ cpsr_write(env, val, 0xffffffff, CPSRWriteRaw);
+ }
+
+ /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
+ * QEMU side we keep the current SP in xregs[31] as well.
+ */
+ aarch64_restore_sp(env, 1);
+
+ ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.pc), &env->pc);
+ if (ret) {
+ return ret;
+ }
+
+ /* If we are in AArch32 mode then we need to sync the AArch32 regs with the
+ * incoming AArch64 regs received from 64-bit KVM.
+ * We must perform this after all of the registers have been acquired from
+ * the kernel.
+ */
+ if (!is_a64(env)) {
+ aarch64_sync_64_to_32(env);
+ }
+
+ ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(elr_el1), &env->elr_el[1]);
+ if (ret) {
+ return ret;
+ }
+
+ /* Fetch the SPSR registers
+ *
+ * KVM SPSRs 0-4 map to QEMU banks 1-5
+ */
+ for (i = 0; i < KVM_NR_SPSR; i++) {
+ ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(spsr[i]),
+ &env->banked_spsr[i + 1]);
+ if (ret) {
+ return ret;
+ }
+ }
+
+ el = arm_current_el(env);
+ if (el > 0 && !is_a64(env)) {
+ i = bank_number(env->uncached_cpsr & CPSR_M);
+ env->spsr = env->banked_spsr[i];
+ }
+
+ if (cpu_isar_feature(aa64_sve, cpu)) {
+ ret = kvm_arch_get_sve(cs);
+ } else {
+ ret = kvm_arch_get_fpsimd(cs);
+ }
+ if (ret) {
+ return ret;
+ }
+
+ ret = kvm_get_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpsr), &fpr);
+ if (ret) {
+ return ret;
+ }
+ vfp_set_fpsr(env, fpr);
+
+ ret = kvm_get_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpcr), &fpr);
+ if (ret) {
+ return ret;
+ }
+ vfp_set_fpcr(env, fpr);
+
+ ret = kvm_get_vcpu_events(cpu);
+ if (ret) {
+ return ret;
+ }
+
+ if (!write_kvmstate_to_list(cpu)) {
+ return -EINVAL;
+ }
+ /* Note that it's OK to have registers which aren't in CPUState,
+ * so we can ignore a failure return here.
+ */
+ write_list_to_cpustate(cpu);
+
+ ret = kvm_arm_sync_mpstate_to_qemu(cpu);
+
+ /* TODO: other registers */
+ return ret;
+}
+
+void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
+{
+ ram_addr_t ram_addr;
+ hwaddr paddr;
+
+ assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
+
+ if (acpi_ghes_present() && addr) {
+ ram_addr = qemu_ram_addr_from_host(addr);
+ if (ram_addr != RAM_ADDR_INVALID &&
+ kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
+ kvm_hwpoison_page_add(ram_addr);
+ /*
+ * If this is a BUS_MCEERR_AR, we know we have been called
+ * synchronously from the vCPU thread, so we can easily
+ * synchronize the state and inject an error.
+ *
+ * TODO: we currently don't tell the guest at all about
+ * BUS_MCEERR_AO. In that case we might either be being
+ * called synchronously from the vCPU thread, or a bit
+ * later from the main thread, so doing the injection of
+ * the error would be more complicated.
+ */
+ if (code == BUS_MCEERR_AR) {
+ kvm_cpu_synchronize_state(c);
+ if (!acpi_ghes_record_errors(ACPI_HEST_SRC_ID_SEA, paddr)) {
+ kvm_inject_arm_sea(c);
+ } else {
+ error_report("failed to record the error");
+ abort();
+ }
+ }
+ return;
+ }
+ if (code == BUS_MCEERR_AO) {
+ error_report("Hardware memory error at addr %p for memory used by "
+ "QEMU itself instead of guest system!", addr);
+ }
+ }
+
+ if (code == BUS_MCEERR_AR) {
+ error_report("Hardware memory error!");
+ exit(1);
+ }
+}
+
+/* C6.6.29 BRK instruction */
+static const uint32_t brk_insn = 0xd4200000;
+
+int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
+{
+ if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
+ cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk_insn, 4, 1)) {
+ return -EINVAL;
+ }
+ return 0;
+}
+
+int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
+{
+ static uint32_t brk;
+
+ if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk, 4, 0) ||
+ brk != brk_insn ||
+ cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
+ return -EINVAL;
+ }
+ return 0;
+}
diff --git a/target/arm/kvm64.c b/target/arm/kvm64.c
deleted file mode 100644
index 3c175c93a7..0000000000
--- a/target/arm/kvm64.c
+++ /dev/null
@@ -1,1290 +0,0 @@
-/*
- * ARM implementation of KVM hooks, 64 bit specific code
- *
- * Copyright Mian-M. Hamayun 2013, Virtual Open Systems
- * Copyright Alex Bennée 2014, Linaro
- *
- * This work is licensed under the terms of the GNU GPL, version 2 or later.
- * See the COPYING file in the top-level directory.
- *
- */
-
-#include "qemu/osdep.h"
-#include <sys/ioctl.h>
-#include <sys/ptrace.h>
-
-#include <linux/elf.h>
-#include <linux/kvm.h>
-
-#include "qapi/error.h"
-#include "cpu.h"
-#include "qemu/timer.h"
-#include "qemu/error-report.h"
-#include "qemu/host-utils.h"
-#include "qemu/main-loop.h"
-#include "exec/gdbstub.h"
-#include "sysemu/runstate.h"
-#include "sysemu/kvm.h"
-#include "sysemu/kvm_int.h"
-#include "kvm_arm.h"
-#include "internals.h"
-#include "cpu-features.h"
-#include "hw/acpi/acpi.h"
-#include "hw/acpi/ghes.h"
-
-static bool have_guest_debug;
-
-void kvm_arm_init_debug(KVMState *s)
-{
- have_guest_debug = kvm_check_extension(s,
- KVM_CAP_SET_GUEST_DEBUG);
-
- max_hw_wps = kvm_check_extension(s, KVM_CAP_GUEST_DEBUG_HW_WPS);
- hw_watchpoints = g_array_sized_new(true, true,
- sizeof(HWWatchpoint), max_hw_wps);
-
- max_hw_bps = kvm_check_extension(s, KVM_CAP_GUEST_DEBUG_HW_BPS);
- hw_breakpoints = g_array_sized_new(true, true,
- sizeof(HWBreakpoint), max_hw_bps);
- return;
-}
-
-int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
-{
- switch (type) {
- case GDB_BREAKPOINT_HW:
- return insert_hw_breakpoint(addr);
- break;
- case GDB_WATCHPOINT_READ:
- case GDB_WATCHPOINT_WRITE:
- case GDB_WATCHPOINT_ACCESS:
- return insert_hw_watchpoint(addr, len, type);
- default:
- return -ENOSYS;
- }
-}
-
-int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
-{
- switch (type) {
- case GDB_BREAKPOINT_HW:
- return delete_hw_breakpoint(addr);
- case GDB_WATCHPOINT_READ:
- case GDB_WATCHPOINT_WRITE:
- case GDB_WATCHPOINT_ACCESS:
- return delete_hw_watchpoint(addr, len, type);
- default:
- return -ENOSYS;
- }
-}
-
-
-void kvm_arch_remove_all_hw_breakpoints(void)
-{
- if (cur_hw_wps > 0) {
- g_array_remove_range(hw_watchpoints, 0, cur_hw_wps);
- }
- if (cur_hw_bps > 0) {
- g_array_remove_range(hw_breakpoints, 0, cur_hw_bps);
- }
-}
-
-void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr)
-{
- int i;
- memset(ptr, 0, sizeof(struct kvm_guest_debug_arch));
-
- for (i = 0; i < max_hw_wps; i++) {
- HWWatchpoint *wp = get_hw_wp(i);
- ptr->dbg_wcr[i] = wp->wcr;
- ptr->dbg_wvr[i] = wp->wvr;
- }
- for (i = 0; i < max_hw_bps; i++) {
- HWBreakpoint *bp = get_hw_bp(i);
- ptr->dbg_bcr[i] = bp->bcr;
- ptr->dbg_bvr[i] = bp->bvr;
- }
-}
-
-bool kvm_arm_hw_debug_active(CPUState *cs)
-{
- return ((cur_hw_wps > 0) || (cur_hw_bps > 0));
-}
-
-static bool kvm_arm_set_device_attr(CPUState *cs, struct kvm_device_attr *attr,
- const char *name)
-{
- int err;
-
- err = kvm_vcpu_ioctl(cs, KVM_HAS_DEVICE_ATTR, attr);
- if (err != 0) {
- error_report("%s: KVM_HAS_DEVICE_ATTR: %s", name, strerror(-err));
- return false;
- }
-
- err = kvm_vcpu_ioctl(cs, KVM_SET_DEVICE_ATTR, attr);
- if (err != 0) {
- error_report("%s: KVM_SET_DEVICE_ATTR: %s", name, strerror(-err));
- return false;
- }
-
- return true;
-}
-
-void kvm_arm_pmu_init(CPUState *cs)
-{
- struct kvm_device_attr attr = {
- .group = KVM_ARM_VCPU_PMU_V3_CTRL,
- .attr = KVM_ARM_VCPU_PMU_V3_INIT,
- };
-
- if (!ARM_CPU(cs)->has_pmu) {
- return;
- }
- if (!kvm_arm_set_device_attr(cs, &attr, "PMU")) {
- error_report("failed to init PMU");
- abort();
- }
-}
-
-void kvm_arm_pmu_set_irq(CPUState *cs, int irq)
-{
- struct kvm_device_attr attr = {
- .group = KVM_ARM_VCPU_PMU_V3_CTRL,
- .addr = (intptr_t)&irq,
- .attr = KVM_ARM_VCPU_PMU_V3_IRQ,
- };
-
- if (!ARM_CPU(cs)->has_pmu) {
- return;
- }
- if (!kvm_arm_set_device_attr(cs, &attr, "PMU")) {
- error_report("failed to set irq for PMU");
- abort();
- }
-}
-
-void kvm_arm_pvtime_init(CPUState *cs, uint64_t ipa)
-{
- struct kvm_device_attr attr = {
- .group = KVM_ARM_VCPU_PVTIME_CTRL,
- .attr = KVM_ARM_VCPU_PVTIME_IPA,
- .addr = (uint64_t)&ipa,
- };
-
- if (ARM_CPU(cs)->kvm_steal_time == ON_OFF_AUTO_OFF) {
- return;
- }
- if (!kvm_arm_set_device_attr(cs, &attr, "PVTIME IPA")) {
- error_report("failed to init PVTIME IPA");
- abort();
- }
-}
-
-static int read_sys_reg32(int fd, uint32_t *pret, uint64_t id)
-{
- uint64_t ret;
- struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)&ret };
- int err;
-
- assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
- err = ioctl(fd, KVM_GET_ONE_REG, &idreg);
- if (err < 0) {
- return -1;
- }
- *pret = ret;
- return 0;
-}
-
-static int read_sys_reg64(int fd, uint64_t *pret, uint64_t id)
-{
- struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)pret };
-
- assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
- return ioctl(fd, KVM_GET_ONE_REG, &idreg);
-}
-
-static bool kvm_arm_pauth_supported(void)
-{
- return (kvm_check_extension(kvm_state, KVM_CAP_ARM_PTRAUTH_ADDRESS) &&
- kvm_check_extension(kvm_state, KVM_CAP_ARM_PTRAUTH_GENERIC));
-}
-
-bool kvm_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
-{
- /* Identify the feature bits corresponding to the host CPU, and
- * fill out the ARMHostCPUClass fields accordingly. To do this
- * we have to create a scratch VM, create a single CPU inside it,
- * and then query that CPU for the relevant ID registers.
- */
- int fdarray[3];
- bool sve_supported;
- bool pmu_supported = false;
- uint64_t features = 0;
- int err;
-
- /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
- * we know these will only support creating one kind of guest CPU,
- * which is its preferred CPU type. Fortunately these old kernels
- * support only a very limited number of CPUs.
- */
- static const uint32_t cpus_to_try[] = {
- KVM_ARM_TARGET_AEM_V8,
- KVM_ARM_TARGET_FOUNDATION_V8,
- KVM_ARM_TARGET_CORTEX_A57,
- QEMU_KVM_ARM_TARGET_NONE
- };
- /*
- * target = -1 informs kvm_arm_create_scratch_host_vcpu()
- * to use the preferred target
- */
- struct kvm_vcpu_init init = { .target = -1, };
-
- /*
- * Ask for SVE if supported, so that we can query ID_AA64ZFR0,
- * which is otherwise RAZ.
- */
- sve_supported = kvm_arm_sve_supported();
- if (sve_supported) {
- init.features[0] |= 1 << KVM_ARM_VCPU_SVE;
- }
-
- /*
- * Ask for Pointer Authentication if supported, so that we get
- * the unsanitized field values for AA64ISAR1_EL1.
- */
- if (kvm_arm_pauth_supported()) {
- init.features[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS |
- 1 << KVM_ARM_VCPU_PTRAUTH_GENERIC);
- }
-
- if (kvm_arm_pmu_supported()) {
- init.features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
- pmu_supported = true;
- }
-
- if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
- return false;
- }
-
- ahcf->target = init.target;
- ahcf->dtb_compatible = "arm,arm-v8";
-
- err = read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr0,
- ARM64_SYS_REG(3, 0, 0, 4, 0));
- if (unlikely(err < 0)) {
- /*
- * Before v4.15, the kernel only exposed a limited number of system
- * registers, not including any of the interesting AArch64 ID regs.
- * For the most part we could leave these fields as zero with minimal
- * effect, since this does not affect the values seen by the guest.
- *
- * However, it could cause problems down the line for QEMU,
- * so provide a minimal v8.0 default.
- *
- * ??? Could read MIDR and use knowledge from cpu64.c.
- * ??? Could map a page of memory into our temp guest and
- * run the tiniest of hand-crafted kernels to extract
- * the values seen by the guest.
- * ??? Either of these sounds like too much effort just
- * to work around running a modern host kernel.
- */
- ahcf->isar.id_aa64pfr0 = 0x00000011; /* EL1&0, AArch64 only */
- err = 0;
- } else {
- err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr1,
- ARM64_SYS_REG(3, 0, 0, 4, 1));
- err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64smfr0,
- ARM64_SYS_REG(3, 0, 0, 4, 5));
- err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64dfr0,
- ARM64_SYS_REG(3, 0, 0, 5, 0));
- err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64dfr1,
- ARM64_SYS_REG(3, 0, 0, 5, 1));
- err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar0,
- ARM64_SYS_REG(3, 0, 0, 6, 0));
- err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar1,
- ARM64_SYS_REG(3, 0, 0, 6, 1));
- err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar2,
- ARM64_SYS_REG(3, 0, 0, 6, 2));
- err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr0,
- ARM64_SYS_REG(3, 0, 0, 7, 0));
- err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr1,
- ARM64_SYS_REG(3, 0, 0, 7, 1));
- err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr2,
- ARM64_SYS_REG(3, 0, 0, 7, 2));
-
- /*
- * Note that if AArch32 support is not present in the host,
- * the AArch32 sysregs are present to be read, but will
- * return UNKNOWN values. This is neither better nor worse
- * than skipping the reads and leaving 0, as we must avoid
- * considering the values in every case.
- */
- err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr0,
- ARM64_SYS_REG(3, 0, 0, 1, 0));
- err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr1,
- ARM64_SYS_REG(3, 0, 0, 1, 1));
- err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_dfr0,
- ARM64_SYS_REG(3, 0, 0, 1, 2));
- err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr0,
- ARM64_SYS_REG(3, 0, 0, 1, 4));
- err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr1,
- ARM64_SYS_REG(3, 0, 0, 1, 5));
- err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr2,
- ARM64_SYS_REG(3, 0, 0, 1, 6));
- err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr3,
- ARM64_SYS_REG(3, 0, 0, 1, 7));
- err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar0,
- ARM64_SYS_REG(3, 0, 0, 2, 0));
- err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar1,
- ARM64_SYS_REG(3, 0, 0, 2, 1));
- err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar2,
- ARM64_SYS_REG(3, 0, 0, 2, 2));
- err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar3,
- ARM64_SYS_REG(3, 0, 0, 2, 3));
- err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar4,
- ARM64_SYS_REG(3, 0, 0, 2, 4));
- err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar5,
- ARM64_SYS_REG(3, 0, 0, 2, 5));
- err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr4,
- ARM64_SYS_REG(3, 0, 0, 2, 6));
- err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar6,
- ARM64_SYS_REG(3, 0, 0, 2, 7));
-
- err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr0,
- ARM64_SYS_REG(3, 0, 0, 3, 0));
- err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr1,
- ARM64_SYS_REG(3, 0, 0, 3, 1));
- err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr2,
- ARM64_SYS_REG(3, 0, 0, 3, 2));
- err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr2,
- ARM64_SYS_REG(3, 0, 0, 3, 4));
- err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_dfr1,
- ARM64_SYS_REG(3, 0, 0, 3, 5));
- err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr5,
- ARM64_SYS_REG(3, 0, 0, 3, 6));
-
- /*
- * DBGDIDR is a bit complicated because the kernel doesn't
- * provide an accessor for it in 64-bit mode, which is what this
- * scratch VM is in, and there's no architected "64-bit sysreg
- * which reads the same as the 32-bit register" the way there is
- * for other ID registers. Instead we synthesize a value from the
- * AArch64 ID_AA64DFR0, the same way the kernel code in
- * arch/arm64/kvm/sys_regs.c:trap_dbgidr() does.
- * We only do this if the CPU supports AArch32 at EL1.
- */
- if (FIELD_EX32(ahcf->isar.id_aa64pfr0, ID_AA64PFR0, EL1) >= 2) {
- int wrps = FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, WRPS);
- int brps = FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, BRPS);
- int ctx_cmps =
- FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS);
- int version = 6; /* ARMv8 debug architecture */
- bool has_el3 =
- !!FIELD_EX32(ahcf->isar.id_aa64pfr0, ID_AA64PFR0, EL3);
- uint32_t dbgdidr = 0;
-
- dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, WRPS, wrps);
- dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, BRPS, brps);
- dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, CTX_CMPS, ctx_cmps);
- dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, VERSION, version);
- dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, NSUHD_IMP, has_el3);
- dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, SE_IMP, has_el3);
- dbgdidr |= (1 << 15); /* RES1 bit */
- ahcf->isar.dbgdidr = dbgdidr;
- }
-
- if (pmu_supported) {
- /* PMCR_EL0 is only accessible if the vCPU has feature PMU_V3 */
- err |= read_sys_reg64(fdarray[2], &ahcf->isar.reset_pmcr_el0,
- ARM64_SYS_REG(3, 3, 9, 12, 0));
- }
-
- if (sve_supported) {
- /*
- * There is a range of kernels between kernel commit 73433762fcae
- * and f81cb2c3ad41 which have a bug where the kernel doesn't
- * expose SYS_ID_AA64ZFR0_EL1 via the ONE_REG API unless the VM has
- * enabled SVE support, which resulted in an error rather than RAZ.
- * So only read the register if we set KVM_ARM_VCPU_SVE above.
- */
- err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64zfr0,
- ARM64_SYS_REG(3, 0, 0, 4, 4));
- }
- }
-
- kvm_arm_destroy_scratch_host_vcpu(fdarray);
-
- if (err < 0) {
- return false;
- }
-
- /*
- * We can assume any KVM supporting CPU is at least a v8
- * with VFPv4+Neon; this in turn implies most of the other
- * feature bits.
- */
- features |= 1ULL << ARM_FEATURE_V8;
- features |= 1ULL << ARM_FEATURE_NEON;
- features |= 1ULL << ARM_FEATURE_AARCH64;
- features |= 1ULL << ARM_FEATURE_PMU;
- features |= 1ULL << ARM_FEATURE_GENERIC_TIMER;
-
- ahcf->features = features;
-
- return true;
-}
-
-void kvm_arm_steal_time_finalize(ARMCPU *cpu, Error **errp)
-{
- bool has_steal_time = kvm_arm_steal_time_supported();
-
- if (cpu->kvm_steal_time == ON_OFF_AUTO_AUTO) {
- if (!has_steal_time || !arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
- cpu->kvm_steal_time = ON_OFF_AUTO_OFF;
- } else {
- cpu->kvm_steal_time = ON_OFF_AUTO_ON;
- }
- } else if (cpu->kvm_steal_time == ON_OFF_AUTO_ON) {
- if (!has_steal_time) {
- error_setg(errp, "'kvm-steal-time' cannot be enabled "
- "on this host");
- return;
- } else if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
- /*
- * DEN0057A chapter 2 says "This specification only covers
- * systems in which the Execution state of the hypervisor
- * as well as EL1 of virtual machines is AArch64.". And,
- * to ensure that, the smc/hvc calls are only specified as
- * smc64/hvc64.
- */
- error_setg(errp, "'kvm-steal-time' cannot be enabled "
- "for AArch32 guests");
- return;
- }
- }
-}
-
-bool kvm_arm_aarch32_supported(void)
-{
- return kvm_check_extension(kvm_state, KVM_CAP_ARM_EL1_32BIT);
-}
-
-bool kvm_arm_sve_supported(void)
-{
- return kvm_check_extension(kvm_state, KVM_CAP_ARM_SVE);
-}
-
-bool kvm_arm_steal_time_supported(void)
-{
- return kvm_check_extension(kvm_state, KVM_CAP_STEAL_TIME);
-}
-
-QEMU_BUILD_BUG_ON(KVM_ARM64_SVE_VQ_MIN != 1);
-
-uint32_t kvm_arm_sve_get_vls(CPUState *cs)
-{
- /* Only call this function if kvm_arm_sve_supported() returns true. */
- static uint64_t vls[KVM_ARM64_SVE_VLS_WORDS];
- static bool probed;
- uint32_t vq = 0;
- int i;
-
- /*
- * KVM ensures all host CPUs support the same set of vector lengths.
- * So we only need to create the scratch VCPUs once and then cache
- * the results.
- */
- if (!probed) {
- struct kvm_vcpu_init init = {
- .target = -1,
- .features[0] = (1 << KVM_ARM_VCPU_SVE),
- };
- struct kvm_one_reg reg = {
- .id = KVM_REG_ARM64_SVE_VLS,
- .addr = (uint64_t)&vls[0],
- };
- int fdarray[3], ret;
-
- probed = true;
-
- if (!kvm_arm_create_scratch_host_vcpu(NULL, fdarray, &init)) {
- error_report("failed to create scratch VCPU with SVE enabled");
- abort();
- }
- ret = ioctl(fdarray[2], KVM_GET_ONE_REG, &reg);
- kvm_arm_destroy_scratch_host_vcpu(fdarray);
- if (ret) {
- error_report("failed to get KVM_REG_ARM64_SVE_VLS: %s",
- strerror(errno));
- abort();
- }
-
- for (i = KVM_ARM64_SVE_VLS_WORDS - 1; i >= 0; --i) {
- if (vls[i]) {
- vq = 64 - clz64(vls[i]) + i * 64;
- break;
- }
- }
- if (vq > ARM_MAX_VQ) {
- warn_report("KVM supports vector lengths larger than "
- "QEMU can enable");
- vls[0] &= MAKE_64BIT_MASK(0, ARM_MAX_VQ);
- }
- }
-
- return vls[0];
-}
-
-static int kvm_arm_sve_set_vls(CPUState *cs)
-{
- ARMCPU *cpu = ARM_CPU(cs);
- uint64_t vls[KVM_ARM64_SVE_VLS_WORDS] = { cpu->sve_vq.map };
-
- assert(cpu->sve_max_vq <= KVM_ARM64_SVE_VQ_MAX);
-
- return kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_VLS, &vls[0]);
-}
-
-#define ARM_CPU_ID_MPIDR 3, 0, 0, 0, 5
-
-int kvm_arch_init_vcpu(CPUState *cs)
-{
- int ret;
- uint64_t mpidr;
- ARMCPU *cpu = ARM_CPU(cs);
- CPUARMState *env = &cpu->env;
- uint64_t psciver;
-
- if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE ||
- !object_dynamic_cast(OBJECT(cpu), TYPE_AARCH64_CPU)) {
- error_report("KVM is not supported for this guest CPU type");
- return -EINVAL;
- }
-
- qemu_add_vm_change_state_handler(kvm_arm_vm_state_change, cs);
-
- /* Determine init features for this CPU */
- memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
- if (cs->start_powered_off) {
- cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
- }
- if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
- cpu->psci_version = QEMU_PSCI_VERSION_0_2;
- cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
- }
- if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
- cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT;
- }
- if (!kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PMU_V3)) {
- cpu->has_pmu = false;
- }
- if (cpu->has_pmu) {
- cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
- } else {
- env->features &= ~(1ULL << ARM_FEATURE_PMU);
- }
- if (cpu_isar_feature(aa64_sve, cpu)) {
- assert(kvm_arm_sve_supported());
- cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_SVE;
- }
- if (cpu_isar_feature(aa64_pauth, cpu)) {
- cpu->kvm_init_features[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS |
- 1 << KVM_ARM_VCPU_PTRAUTH_GENERIC);
- }
-
- /* Do KVM_ARM_VCPU_INIT ioctl */
- ret = kvm_arm_vcpu_init(cs);
- if (ret) {
- return ret;
- }
-
- if (cpu_isar_feature(aa64_sve, cpu)) {
- ret = kvm_arm_sve_set_vls(cs);
- if (ret) {
- return ret;
- }
- ret = kvm_arm_vcpu_finalize(cs, KVM_ARM_VCPU_SVE);
- if (ret) {
- return ret;
- }
- }
-
- /*
- * KVM reports the exact PSCI version it is implementing via a
- * special sysreg. If it is present, use its contents to determine
- * what to report to the guest in the dtb (it is the PSCI version,
- * in the same 15-bits major 16-bits minor format that PSCI_VERSION
- * returns).
- */
- if (!kvm_get_one_reg(cs, KVM_REG_ARM_PSCI_VERSION, &psciver)) {
- cpu->psci_version = psciver;
- }
-
- /*
- * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
- * Currently KVM has its own idea about MPIDR assignment, so we
- * override our defaults with what we get from KVM.
- */
- ret = kvm_get_one_reg(cs, ARM64_SYS_REG(ARM_CPU_ID_MPIDR), &mpidr);
- if (ret) {
- return ret;
- }
- cpu->mp_affinity = mpidr & ARM64_AFFINITY_MASK;
-
- /* Check whether user space can specify guest syndrome value */
- kvm_arm_init_serror_injection(cs);
-
- return kvm_arm_init_cpreg_list(cpu);
-}
-
-int kvm_arch_destroy_vcpu(CPUState *cs)
-{
- return 0;
-}
-
-bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
-{
- /* Return true if the regidx is a register we should synchronize
- * via the cpreg_tuples array (ie is not a core or sve reg that
- * we sync by hand in kvm_arch_get/put_registers())
- */
- switch (regidx & KVM_REG_ARM_COPROC_MASK) {
- case KVM_REG_ARM_CORE:
- case KVM_REG_ARM64_SVE:
- return false;
- default:
- return true;
- }
-}
-
-typedef struct CPRegStateLevel {
- uint64_t regidx;
- int level;
-} CPRegStateLevel;
-
-/* All system registers not listed in the following table are assumed to be
- * of the level KVM_PUT_RUNTIME_STATE. If a register should be written less
- * often, you must add it to this table with a state of either
- * KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
- */
-static const CPRegStateLevel non_runtime_cpregs[] = {
- { KVM_REG_ARM_TIMER_CNT, KVM_PUT_FULL_STATE },
- { KVM_REG_ARM_PTIMER_CNT, KVM_PUT_FULL_STATE },
-};
-
-int kvm_arm_cpreg_level(uint64_t regidx)
-{
- int i;
-
- for (i = 0; i < ARRAY_SIZE(non_runtime_cpregs); i++) {
- const CPRegStateLevel *l = &non_runtime_cpregs[i];
- if (l->regidx == regidx) {
- return l->level;
- }
- }
-
- return KVM_PUT_RUNTIME_STATE;
-}
-
-/* Callers must hold the iothread mutex lock */
-static void kvm_inject_arm_sea(CPUState *c)
-{
- ARMCPU *cpu = ARM_CPU(c);
- CPUARMState *env = &cpu->env;
- uint32_t esr;
- bool same_el;
-
- c->exception_index = EXCP_DATA_ABORT;
- env->exception.target_el = 1;
-
- /*
- * Set the DFSC to synchronous external abort and set FnV to not valid,
- * this will tell guest the FAR_ELx is UNKNOWN for this abort.
- */
- same_el = arm_current_el(env) == env->exception.target_el;
- esr = syn_data_abort_no_iss(same_el, 1, 0, 0, 0, 0, 0x10);
-
- env->exception.syndrome = esr;
-
- arm_cpu_do_interrupt(c);
-}
-
-#define AARCH64_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \
- KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
-
-#define AARCH64_SIMD_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \
- KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
-
-#define AARCH64_SIMD_CTRL_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \
- KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
-
-static int kvm_arch_put_fpsimd(CPUState *cs)
-{
- CPUARMState *env = &ARM_CPU(cs)->env;
- int i, ret;
-
- for (i = 0; i < 32; i++) {
- uint64_t *q = aa64_vfp_qreg(env, i);
-#if HOST_BIG_ENDIAN
- uint64_t fp_val[2] = { q[1], q[0] };
- ret = kvm_set_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]),
- fp_val);
-#else
- ret = kvm_set_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]), q);
-#endif
- if (ret) {
- return ret;
- }
- }
-
- return 0;
-}
-
-/*
- * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
- * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
- * code the slice index to zero for now as it's unlikely we'll need more than
- * one slice for quite some time.
- */
-static int kvm_arch_put_sve(CPUState *cs)
-{
- ARMCPU *cpu = ARM_CPU(cs);
- CPUARMState *env = &cpu->env;
- uint64_t tmp[ARM_MAX_VQ * 2];
- uint64_t *r;
- int n, ret;
-
- for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
- r = sve_bswap64(tmp, &env->vfp.zregs[n].d[0], cpu->sve_max_vq * 2);
- ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_ZREG(n, 0), r);
- if (ret) {
- return ret;
- }
- }
-
- for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
- r = sve_bswap64(tmp, r = &env->vfp.pregs[n].p[0],
- DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
- ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_PREG(n, 0), r);
- if (ret) {
- return ret;
- }
- }
-
- r = sve_bswap64(tmp, &env->vfp.pregs[FFR_PRED_NUM].p[0],
- DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
- ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_FFR(0), r);
- if (ret) {
- return ret;
- }
-
- return 0;
-}
-
-int kvm_arch_put_registers(CPUState *cs, int level)
-{
- uint64_t val;
- uint32_t fpr;
- int i, ret;
- unsigned int el;
-
- ARMCPU *cpu = ARM_CPU(cs);
- CPUARMState *env = &cpu->env;
-
- /* If we are in AArch32 mode then we need to copy the AArch32 regs to the
- * AArch64 registers before pushing them out to 64-bit KVM.
- */
- if (!is_a64(env)) {
- aarch64_sync_32_to_64(env);
- }
-
- for (i = 0; i < 31; i++) {
- ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.regs[i]),
- &env->xregs[i]);
- if (ret) {
- return ret;
- }
- }
-
- /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
- * QEMU side we keep the current SP in xregs[31] as well.
- */
- aarch64_save_sp(env, 1);
-
- ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.sp), &env->sp_el[0]);
- if (ret) {
- return ret;
- }
-
- ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(sp_el1), &env->sp_el[1]);
- if (ret) {
- return ret;
- }
-
- /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */
- if (is_a64(env)) {
- val = pstate_read(env);
- } else {
- val = cpsr_read(env);
- }
- ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.pstate), &val);
- if (ret) {
- return ret;
- }
-
- ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.pc), &env->pc);
- if (ret) {
- return ret;
- }
-
- ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(elr_el1), &env->elr_el[1]);
- if (ret) {
- return ret;
- }
-
- /* Saved Program State Registers
- *
- * Before we restore from the banked_spsr[] array we need to
- * ensure that any modifications to env->spsr are correctly
- * reflected in the banks.
- */
- el = arm_current_el(env);
- if (el > 0 && !is_a64(env)) {
- i = bank_number(env->uncached_cpsr & CPSR_M);
- env->banked_spsr[i] = env->spsr;
- }
-
- /* KVM 0-4 map to QEMU banks 1-5 */
- for (i = 0; i < KVM_NR_SPSR; i++) {
- ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(spsr[i]),
- &env->banked_spsr[i + 1]);
- if (ret) {
- return ret;
- }
- }
-
- if (cpu_isar_feature(aa64_sve, cpu)) {
- ret = kvm_arch_put_sve(cs);
- } else {
- ret = kvm_arch_put_fpsimd(cs);
- }
- if (ret) {
- return ret;
- }
-
- fpr = vfp_get_fpsr(env);
- ret = kvm_set_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpsr), &fpr);
- if (ret) {
- return ret;
- }
-
- fpr = vfp_get_fpcr(env);
- ret = kvm_set_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpcr), &fpr);
- if (ret) {
- return ret;
- }
-
- write_cpustate_to_list(cpu, true);
-
- if (!write_list_to_kvmstate(cpu, level)) {
- return -EINVAL;
- }
-
- /*
- * Setting VCPU events should be triggered after syncing the registers
- * to avoid overwriting potential changes made by KVM upon calling
- * KVM_SET_VCPU_EVENTS ioctl
- */
- ret = kvm_put_vcpu_events(cpu);
- if (ret) {
- return ret;
- }
-
- kvm_arm_sync_mpstate_to_kvm(cpu);
-
- return ret;
-}
-
-static int kvm_arch_get_fpsimd(CPUState *cs)
-{
- CPUARMState *env = &ARM_CPU(cs)->env;
- int i, ret;
-
- for (i = 0; i < 32; i++) {
- uint64_t *q = aa64_vfp_qreg(env, i);
- ret = kvm_get_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]), q);
- if (ret) {
- return ret;
- } else {
-#if HOST_BIG_ENDIAN
- uint64_t t;
- t = q[0], q[0] = q[1], q[1] = t;
-#endif
- }
- }
-
- return 0;
-}
-
-/*
- * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
- * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
- * code the slice index to zero for now as it's unlikely we'll need more than
- * one slice for quite some time.
- */
-static int kvm_arch_get_sve(CPUState *cs)
-{
- ARMCPU *cpu = ARM_CPU(cs);
- CPUARMState *env = &cpu->env;
- uint64_t *r;
- int n, ret;
-
- for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
- r = &env->vfp.zregs[n].d[0];
- ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_ZREG(n, 0), r);
- if (ret) {
- return ret;
- }
- sve_bswap64(r, r, cpu->sve_max_vq * 2);
- }
-
- for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
- r = &env->vfp.pregs[n].p[0];
- ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_PREG(n, 0), r);
- if (ret) {
- return ret;
- }
- sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
- }
-
- r = &env->vfp.pregs[FFR_PRED_NUM].p[0];
- ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_FFR(0), r);
- if (ret) {
- return ret;
- }
- sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
-
- return 0;
-}
-
-int kvm_arch_get_registers(CPUState *cs)
-{
- uint64_t val;
- unsigned int el;
- uint32_t fpr;
- int i, ret;
-
- ARMCPU *cpu = ARM_CPU(cs);
- CPUARMState *env = &cpu->env;
-
- for (i = 0; i < 31; i++) {
- ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.regs[i]),
- &env->xregs[i]);
- if (ret) {
- return ret;
- }
- }
-
- ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.sp), &env->sp_el[0]);
- if (ret) {
- return ret;
- }
-
- ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(sp_el1), &env->sp_el[1]);
- if (ret) {
- return ret;
- }
-
- ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.pstate), &val);
- if (ret) {
- return ret;
- }
-
- env->aarch64 = ((val & PSTATE_nRW) == 0);
- if (is_a64(env)) {
- pstate_write(env, val);
- } else {
- cpsr_write(env, val, 0xffffffff, CPSRWriteRaw);
- }
-
- /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
- * QEMU side we keep the current SP in xregs[31] as well.
- */
- aarch64_restore_sp(env, 1);
-
- ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.pc), &env->pc);
- if (ret) {
- return ret;
- }
-
- /* If we are in AArch32 mode then we need to sync the AArch32 regs with the
- * incoming AArch64 regs received from 64-bit KVM.
- * We must perform this after all of the registers have been acquired from
- * the kernel.
- */
- if (!is_a64(env)) {
- aarch64_sync_64_to_32(env);
- }
-
- ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(elr_el1), &env->elr_el[1]);
- if (ret) {
- return ret;
- }
-
- /* Fetch the SPSR registers
- *
- * KVM SPSRs 0-4 map to QEMU banks 1-5
- */
- for (i = 0; i < KVM_NR_SPSR; i++) {
- ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(spsr[i]),
- &env->banked_spsr[i + 1]);
- if (ret) {
- return ret;
- }
- }
-
- el = arm_current_el(env);
- if (el > 0 && !is_a64(env)) {
- i = bank_number(env->uncached_cpsr & CPSR_M);
- env->spsr = env->banked_spsr[i];
- }
-
- if (cpu_isar_feature(aa64_sve, cpu)) {
- ret = kvm_arch_get_sve(cs);
- } else {
- ret = kvm_arch_get_fpsimd(cs);
- }
- if (ret) {
- return ret;
- }
-
- ret = kvm_get_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpsr), &fpr);
- if (ret) {
- return ret;
- }
- vfp_set_fpsr(env, fpr);
-
- ret = kvm_get_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpcr), &fpr);
- if (ret) {
- return ret;
- }
- vfp_set_fpcr(env, fpr);
-
- ret = kvm_get_vcpu_events(cpu);
- if (ret) {
- return ret;
- }
-
- if (!write_kvmstate_to_list(cpu)) {
- return -EINVAL;
- }
- /* Note that it's OK to have registers which aren't in CPUState,
- * so we can ignore a failure return here.
- */
- write_list_to_cpustate(cpu);
-
- kvm_arm_sync_mpstate_to_qemu(cpu);
-
- /* TODO: other registers */
- return ret;
-}
-
-void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
-{
- ram_addr_t ram_addr;
- hwaddr paddr;
-
- assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
-
- if (acpi_ghes_present() && addr) {
- ram_addr = qemu_ram_addr_from_host(addr);
- if (ram_addr != RAM_ADDR_INVALID &&
- kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
- kvm_hwpoison_page_add(ram_addr);
- /*
- * If this is a BUS_MCEERR_AR, we know we have been called
- * synchronously from the vCPU thread, so we can easily
- * synchronize the state and inject an error.
- *
- * TODO: we currently don't tell the guest at all about
- * BUS_MCEERR_AO. In that case we might either be being
- * called synchronously from the vCPU thread, or a bit
- * later from the main thread, so doing the injection of
- * the error would be more complicated.
- */
- if (code == BUS_MCEERR_AR) {
- kvm_cpu_synchronize_state(c);
- if (!acpi_ghes_record_errors(ACPI_HEST_SRC_ID_SEA, paddr)) {
- kvm_inject_arm_sea(c);
- } else {
- error_report("failed to record the error");
- abort();
- }
- }
- return;
- }
- if (code == BUS_MCEERR_AO) {
- error_report("Hardware memory error at addr %p for memory used by "
- "QEMU itself instead of guest system!", addr);
- }
- }
-
- if (code == BUS_MCEERR_AR) {
- error_report("Hardware memory error!");
- exit(1);
- }
-}
-
-/* C6.6.29 BRK instruction */
-static const uint32_t brk_insn = 0xd4200000;
-
-int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
-{
- if (have_guest_debug) {
- if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
- cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk_insn, 4, 1)) {
- return -EINVAL;
- }
- return 0;
- } else {
- error_report("guest debug not supported on this kernel");
- return -EINVAL;
- }
-}
-
-int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
-{
- static uint32_t brk;
-
- if (have_guest_debug) {
- if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk, 4, 0) ||
- brk != brk_insn ||
- cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
- return -EINVAL;
- }
- return 0;
- } else {
- error_report("guest debug not supported on this kernel");
- return -EINVAL;
- }
-}
-
-/* See v8 ARM ARM D7.2.27 ESR_ELx, Exception Syndrome Register
- *
- * To minimise translating between kernel and user-space the kernel
- * ABI just provides user-space with the full exception syndrome
- * register value to be decoded in QEMU.
- */
-
-bool kvm_arm_handle_debug(CPUState *cs, struct kvm_debug_exit_arch *debug_exit)
-{
- int hsr_ec = syn_get_ec(debug_exit->hsr);
- ARMCPU *cpu = ARM_CPU(cs);
- CPUARMState *env = &cpu->env;
-
- /* Ensure PC is synchronised */
- kvm_cpu_synchronize_state(cs);
-
- switch (hsr_ec) {
- case EC_SOFTWARESTEP:
- if (cs->singlestep_enabled) {
- return true;
- } else {
- /*
- * The kernel should have suppressed the guest's ability to
- * single step at this point so something has gone wrong.
- */
- error_report("%s: guest single-step while debugging unsupported"
- " (%"PRIx64", %"PRIx32")",
- __func__, env->pc, debug_exit->hsr);
- return false;
- }
- break;
- case EC_AA64_BKPT:
- if (kvm_find_sw_breakpoint(cs, env->pc)) {
- return true;
- }
- break;
- case EC_BREAKPOINT:
- if (find_hw_breakpoint(cs, env->pc)) {
- return true;
- }
- break;
- case EC_WATCHPOINT:
- {
- CPUWatchpoint *wp = find_hw_watchpoint(cs, debug_exit->far);
- if (wp) {
- cs->watchpoint_hit = wp;
- return true;
- }
- break;
- }
- default:
- error_report("%s: unhandled debug exit (%"PRIx32", %"PRIx64")",
- __func__, debug_exit->hsr, env->pc);
- }
-
- /* If we are not handling the debug exception it must belong to
- * the guest. Let's re-use the existing TCG interrupt code to set
- * everything up properly.
- */
- cs->exception_index = EXCP_BKPT;
- env->exception.syndrome = debug_exit->hsr;
- env->exception.vaddress = debug_exit->far;
- env->exception.target_el = 1;
- qemu_mutex_lock_iothread();
- arm_cpu_do_interrupt(cs);
- qemu_mutex_unlock_iothread();
-
- return false;
-}
-
-#define ARM64_REG_ESR_EL1 ARM64_SYS_REG(3, 0, 5, 2, 0)
-#define ARM64_REG_TCR_EL1 ARM64_SYS_REG(3, 0, 2, 0, 2)
-
-/*
- * ESR_EL1
- * ISS encoding
- * AARCH64: DFSC, bits [5:0]
- * AARCH32:
- * TTBCR.EAE == 0
- * FS[4] - DFSR[10]
- * FS[3:0] - DFSR[3:0]
- * TTBCR.EAE == 1
- * FS, bits [5:0]
- */
-#define ESR_DFSC(aarch64, lpae, v) \
- ((aarch64 || (lpae)) ? ((v) & 0x3F) \
- : (((v) >> 6) | ((v) & 0x1F)))
-
-#define ESR_DFSC_EXTABT(aarch64, lpae) \
- ((aarch64) ? 0x10 : (lpae) ? 0x10 : 0x8)
-
-bool kvm_arm_verify_ext_dabt_pending(CPUState *cs)
-{
- uint64_t dfsr_val;
-
- if (!kvm_get_one_reg(cs, ARM64_REG_ESR_EL1, &dfsr_val)) {
- ARMCPU *cpu = ARM_CPU(cs);
- CPUARMState *env = &cpu->env;
- int aarch64_mode = arm_feature(env, ARM_FEATURE_AARCH64);
- int lpae = 0;
-
- if (!aarch64_mode) {
- uint64_t ttbcr;
-
- if (!kvm_get_one_reg(cs, ARM64_REG_TCR_EL1, &ttbcr)) {
- lpae = arm_feature(env, ARM_FEATURE_LPAE)
- && (ttbcr & TTBCR_EAE);
- }
- }
- /*
- * The verification here is based on the DFSC bits
- * of the ESR_EL1 reg only
- */
- return (ESR_DFSC(aarch64_mode, lpae, dfsr_val) ==
- ESR_DFSC_EXTABT(aarch64_mode, lpae));
- }
- return false;
-}
diff --git a/target/arm/kvm_arm.h b/target/arm/kvm_arm.h
index 051a0da41c..cfaa0d9bc7 100644
--- a/target/arm/kvm_arm.h
+++ b/target/arm/kvm_arm.h
@@ -12,47 +12,11 @@
#define QEMU_KVM_ARM_H
#include "sysemu/kvm.h"
-#include "exec/memory.h"
-#include "qemu/error-report.h"
#define KVM_ARM_VGIC_V2 (1 << 0)
#define KVM_ARM_VGIC_V3 (1 << 1)
/**
- * kvm_arm_init_debug() - initialize guest debug capabilities
- * @s: KVMState
- *
- * Should be called only once before using guest debug capabilities.
- */
-void kvm_arm_init_debug(KVMState *s);
-
-/**
- * kvm_arm_vcpu_init:
- * @cs: CPUState
- *
- * Initialize (or reinitialize) the VCPU by invoking the
- * KVM_ARM_VCPU_INIT ioctl with the CPU type and feature
- * bitmask specified in the CPUState.
- *
- * Returns: 0 if success else < 0 error code
- */
-int kvm_arm_vcpu_init(CPUState *cs);
-
-/**
- * kvm_arm_vcpu_finalize:
- * @cs: CPUState
- * @feature: feature to finalize
- *
- * Finalizes the configuration of the specified VCPU feature by
- * invoking the KVM_ARM_VCPU_FINALIZE ioctl. Features requiring
- * this are documented in the "KVM_ARM_VCPU_FINALIZE" section of
- * KVM's API documentation.
- *
- * Returns: 0 if success else < 0 error code
- */
-int kvm_arm_vcpu_finalize(CPUState *cs, int feature);
-
-/**
* kvm_arm_register_device:
* @mr: memory region for this device
* @devid: the KVM device ID
@@ -74,37 +38,6 @@ void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group,
uint64_t attr, int dev_fd, uint64_t addr_ormask);
/**
- * kvm_arm_init_cpreg_list:
- * @cpu: ARMCPU
- *
- * Initialize the ARMCPU cpreg list according to the kernel's
- * definition of what CPU registers it knows about (and throw away
- * the previous TCG-created cpreg list).
- *
- * Returns: 0 if success, else < 0 error code
- */
-int kvm_arm_init_cpreg_list(ARMCPU *cpu);
-
-/**
- * kvm_arm_reg_syncs_via_cpreg_list:
- * @regidx: KVM register index
- *
- * Return true if this KVM register should be synchronized via the
- * cpreg list of arbitrary system registers, false if it is synchronized
- * by hand using code in kvm_arch_get/put_registers().
- */
-bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx);
-
-/**
- * kvm_arm_cpreg_level:
- * @regidx: KVM register index
- *
- * Return the level of this coprocessor/system register. Return value is
- * either KVM_PUT_RUNTIME_STATE, KVM_PUT_RESET_STATE, or KVM_PUT_FULL_STATE.
- */
-int kvm_arm_cpreg_level(uint64_t regidx);
-
-/**
* write_list_to_kvmstate:
* @cpu: ARMCPU
* @level: the state level to sync
@@ -163,34 +96,6 @@ void kvm_arm_cpu_post_load(ARMCPU *cpu);
*/
void kvm_arm_reset_vcpu(ARMCPU *cpu);
-/**
- * kvm_arm_init_serror_injection:
- * @cs: CPUState
- *
- * Check whether KVM can set guest SError syndrome.
- */
-void kvm_arm_init_serror_injection(CPUState *cs);
-
-/**
- * kvm_get_vcpu_events:
- * @cpu: ARMCPU
- *
- * Get VCPU related state from kvm.
- *
- * Returns: 0 if success else < 0 error code
- */
-int kvm_get_vcpu_events(ARMCPU *cpu);
-
-/**
- * kvm_put_vcpu_events:
- * @cpu: ARMCPU
- *
- * Put VCPU related state to kvm.
- *
- * Returns: 0 if success else < 0 error code
- */
-int kvm_put_vcpu_events(ARMCPU *cpu);
-
#ifdef CONFIG_KVM
/**
* kvm_arm_create_scratch_host_vcpu:
@@ -223,36 +128,14 @@ bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
void kvm_arm_destroy_scratch_host_vcpu(int *fdarray);
/**
- * ARMHostCPUFeatures: information about the host CPU (identified
- * by asking the host kernel)
- */
-typedef struct ARMHostCPUFeatures {
- ARMISARegisters isar;
- uint64_t features;
- uint32_t target;
- const char *dtb_compatible;
-} ARMHostCPUFeatures;
-
-/**
- * kvm_arm_get_host_cpu_features:
- * @ahcf: ARMHostCPUClass to fill in
- *
- * Probe the capabilities of the host kernel's preferred CPU and fill
- * in the ARMHostCPUClass struct accordingly.
- *
- * Returns true on success and false otherwise.
- */
-bool kvm_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf);
-
-/**
* kvm_arm_sve_get_vls:
- * @cs: CPUState
+ * @cpu: ARMCPU
*
* Get all the SVE vector lengths supported by the KVM host, setting
* the bits corresponding to their length in quadwords minus one
* (vq - 1) up to ARM_MAX_VQ. Return the resulting map.
*/
-uint32_t kvm_arm_sve_get_vls(CPUState *cs);
+uint32_t kvm_arm_sve_get_vls(ARMCPU *cpu);
/**
* kvm_arm_set_cpu_features_from_host:
@@ -265,12 +148,12 @@ void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu);
/**
* kvm_arm_add_vcpu_properties:
- * @obj: The CPU object to add the properties to
+ * @cpu: The CPU object to add the properties to
*
* Add all KVM specific CPU properties to the CPU object. These
* are the CPU properties with "kvm-" prefixed names.
*/
-void kvm_arm_add_vcpu_properties(Object *obj);
+void kvm_arm_add_vcpu_properties(ARMCPU *cpu);
/**
* kvm_arm_steal_time_finalize:
@@ -283,14 +166,6 @@ void kvm_arm_add_vcpu_properties(Object *obj);
void kvm_arm_steal_time_finalize(ARMCPU *cpu, Error **errp);
/**
- * kvm_arm_steal_time_supported:
- *
- * Returns: true if KVM can enable steal time reporting
- * and false otherwise.
- */
-bool kvm_arm_steal_time_supported(void);
-
-/**
* kvm_arm_aarch32_supported:
*
* Returns: true if KVM can enable AArch32 mode
@@ -323,57 +198,19 @@ bool kvm_arm_sve_supported(void);
*/
int kvm_arm_get_max_vm_ipa_size(MachineState *ms, bool *fixed_ipa);
-/**
- * kvm_arm_sync_mpstate_to_kvm:
- * @cpu: ARMCPU
- *
- * If supported set the KVM MP_STATE based on QEMU's model.
- *
- * Returns 0 on success and -1 on failure.
- */
-int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu);
-
-/**
- * kvm_arm_sync_mpstate_to_qemu:
- * @cpu: ARMCPU
- *
- * If supported get the MP_STATE from KVM and store in QEMU's model.
- *
- * Returns 0 on success and aborts on failure.
- */
-int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu);
-
-/**
- * kvm_arm_get_virtual_time:
- * @cs: CPUState
- *
- * Gets the VCPU's virtual counter and stores it in the KVM CPU state.
- */
-void kvm_arm_get_virtual_time(CPUState *cs);
-
-/**
- * kvm_arm_put_virtual_time:
- * @cs: CPUState
- *
- * Sets the VCPU's virtual counter to the value stored in the KVM CPU state.
- */
-void kvm_arm_put_virtual_time(CPUState *cs);
-
-void kvm_arm_vm_state_change(void *opaque, bool running, RunState state);
-
int kvm_arm_vgic_probe(void);
-void kvm_arm_pmu_set_irq(CPUState *cs, int irq);
-void kvm_arm_pmu_init(CPUState *cs);
+void kvm_arm_pmu_init(ARMCPU *cpu);
+void kvm_arm_pmu_set_irq(ARMCPU *cpu, int irq);
/**
* kvm_arm_pvtime_init:
- * @cs: CPUState
+ * @cpu: ARMCPU
* @ipa: Per-vcpu guest physical base address of the pvtime structures
*
* Initializes PVTIME for the VCPU, setting the PVTIME IPA to @ipa.
*/
-void kvm_arm_pvtime_init(CPUState *cs, uint64_t ipa);
+void kvm_arm_pvtime_init(ARMCPU *cpu, uint64_t ipa);
int kvm_arm_set_irq(int cpu, int irqtype, int irq, int level);
@@ -398,11 +235,6 @@ static inline bool kvm_arm_sve_supported(void)
return false;
}
-static inline bool kvm_arm_steal_time_supported(void)
-{
- return false;
-}
-
/*
* These functions should never actually be called without KVM support.
*/
@@ -411,7 +243,7 @@ static inline void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu)
g_assert_not_reached();
}
-static inline void kvm_arm_add_vcpu_properties(Object *obj)
+static inline void kvm_arm_add_vcpu_properties(ARMCPU *cpu)
{
g_assert_not_reached();
}
@@ -426,17 +258,17 @@ static inline int kvm_arm_vgic_probe(void)
g_assert_not_reached();
}
-static inline void kvm_arm_pmu_set_irq(CPUState *cs, int irq)
+static inline void kvm_arm_pmu_set_irq(ARMCPU *cpu, int irq)
{
g_assert_not_reached();
}
-static inline void kvm_arm_pmu_init(CPUState *cs)
+static inline void kvm_arm_pmu_init(ARMCPU *cpu)
{
g_assert_not_reached();
}
-static inline void kvm_arm_pvtime_init(CPUState *cs, uint64_t ipa)
+static inline void kvm_arm_pvtime_init(ARMCPU *cpu, uint64_t ipa)
{
g_assert_not_reached();
}
@@ -446,48 +278,11 @@ static inline void kvm_arm_steal_time_finalize(ARMCPU *cpu, Error **errp)
g_assert_not_reached();
}
-static inline uint32_t kvm_arm_sve_get_vls(CPUState *cs)
+static inline uint32_t kvm_arm_sve_get_vls(ARMCPU *cpu)
{
g_assert_not_reached();
}
#endif
-/**
- * kvm_arm_handle_debug:
- * @cs: CPUState
- * @debug_exit: debug part of the KVM exit structure
- *
- * Returns: TRUE if the debug exception was handled.
- */
-bool kvm_arm_handle_debug(CPUState *cs, struct kvm_debug_exit_arch *debug_exit);
-
-/**
- * kvm_arm_hw_debug_active:
- * @cs: CPU State
- *
- * Return: TRUE if any hardware breakpoints in use.
- */
-bool kvm_arm_hw_debug_active(CPUState *cs);
-
-/**
- * kvm_arm_copy_hw_debug_data:
- * @ptr: kvm_guest_debug_arch structure
- *
- * Copy the architecture specific debug registers into the
- * kvm_guest_debug ioctl structure.
- */
-struct kvm_guest_debug_arch;
-void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr);
-
-/**
- * kvm_arm_verify_ext_dabt_pending:
- * @cs: CPUState
- *
- * Verify the fault status code wrt the Ext DABT injection
- *
- * Returns: true if the fault status code is as expected, false otherwise
- */
-bool kvm_arm_verify_ext_dabt_pending(CPUState *cs);
-
#endif
diff --git a/target/arm/meson.build b/target/arm/meson.build
index 5d04a8e94f..d6c3902e67 100644
--- a/target/arm/meson.build
+++ b/target/arm/meson.build
@@ -8,7 +8,7 @@ arm_ss.add(files(
))
arm_ss.add(zlib)
-arm_ss.add(when: 'CONFIG_KVM', if_true: files('hyp_gdbstub.c', 'kvm.c', 'kvm64.c'), if_false: files('kvm-stub.c'))
+arm_ss.add(when: 'CONFIG_KVM', if_true: files('hyp_gdbstub.c', 'kvm.c'), if_false: files('kvm-stub.c'))
arm_ss.add(when: 'CONFIG_HVF', if_true: files('hyp_gdbstub.c'))
arm_ss.add(when: 'TARGET_AARCH64', if_true: files(
diff --git a/target/arm/tcg/op_helper.c b/target/arm/tcg/op_helper.c
index ea08936a85..9de0fa2d1f 100644
--- a/target/arm/tcg/op_helper.c
+++ b/target/arm/tcg/op_helper.c
@@ -121,6 +121,61 @@ void HELPER(v8m_stackcheck)(CPUARMState *env, uint32_t newvalue)
}
}
+/* Sign/zero extend */
+uint32_t HELPER(sxtb16)(uint32_t x)
+{
+ uint32_t res;
+ res = (uint16_t)(int8_t)x;
+ res |= (uint32_t)(int8_t)(x >> 16) << 16;
+ return res;
+}
+
+static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra)
+{
+ /*
+ * Take a division-by-zero exception if necessary; otherwise return
+ * to get the usual non-trapping division behaviour (result of 0)
+ */
+ if (arm_feature(env, ARM_FEATURE_M)
+ && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) {
+ raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra);
+ }
+}
+
+uint32_t HELPER(uxtb16)(uint32_t x)
+{
+ uint32_t res;
+ res = (uint16_t)(uint8_t)x;
+ res |= (uint32_t)(uint8_t)(x >> 16) << 16;
+ return res;
+}
+
+int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den)
+{
+ if (den == 0) {
+ handle_possible_div0_trap(env, GETPC());
+ return 0;
+ }
+ if (num == INT_MIN && den == -1) {
+ return INT_MIN;
+ }
+ return num / den;
+}
+
+uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den)
+{
+ if (den == 0) {
+ handle_possible_div0_trap(env, GETPC());
+ return 0;
+ }
+ return num / den;
+}
+
+uint32_t HELPER(rbit)(uint32_t x)
+{
+ return revbit32(x);
+}
+
uint32_t HELPER(add_setq)(CPUARMState *env, uint32_t a, uint32_t b)
{
uint32_t res = a + b;
diff --git a/target/arm/tcg/translate-a64.c b/target/arm/tcg/translate-a64.c
index a2e49c39f9..f3b5b9124d 100644
--- a/target/arm/tcg/translate-a64.c
+++ b/target/arm/tcg/translate-a64.c
@@ -18,6 +18,7 @@
*/
#include "qemu/osdep.h"
+#include "exec/exec-all.h"
#include "translate.h"
#include "translate-a64.h"
#include "qemu/log.h"