1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
|
package statistics
import (
"context"
"math"
"math/rand"
"sync"
"sync/atomic"
"time"
"github.com/sirupsen/logrus"
"github.com/matrix-org/dendrite/federationapi/storage"
"github.com/matrix-org/gomatrixserverlib/spec"
)
// Statistics contains information about all of the remote federated
// hosts that we have interacted with. It is basically a threadsafe
// wrapper.
type Statistics struct {
DB storage.Database
servers map[spec.ServerName]*ServerStatistics
mutex sync.RWMutex
backoffTimers map[spec.ServerName]*time.Timer
backoffMutex sync.RWMutex
// How many times should we tolerate consecutive failures before we
// just blacklist the host altogether? The backoff is exponential,
// so the max time here to attempt is 2**failures seconds.
FailuresUntilBlacklist uint32
// How many times should we tolerate consecutive failures before we
// mark the destination as offline. At this point we should attempt
// to send messages to the user's async relay servers if we know them.
FailuresUntilAssumedOffline uint32
enableRelays bool
}
func NewStatistics(
db storage.Database,
failuresUntilBlacklist uint32,
failuresUntilAssumedOffline uint32,
enableRelays bool,
) Statistics {
return Statistics{
DB: db,
FailuresUntilBlacklist: failuresUntilBlacklist,
FailuresUntilAssumedOffline: failuresUntilAssumedOffline,
backoffTimers: make(map[spec.ServerName]*time.Timer),
servers: make(map[spec.ServerName]*ServerStatistics),
enableRelays: enableRelays,
}
}
// ForServer returns server statistics for the given server name. If it
// does not exist, it will create empty statistics and return those.
func (s *Statistics) ForServer(serverName spec.ServerName) *ServerStatistics {
// Look up if we have statistics for this server already.
s.mutex.RLock()
server, found := s.servers[serverName]
s.mutex.RUnlock()
// If we don't, then make one.
if !found {
s.mutex.Lock()
server = &ServerStatistics{
statistics: s,
serverName: serverName,
knownRelayServers: []spec.ServerName{},
}
s.servers[serverName] = server
s.mutex.Unlock()
blacklisted, err := s.DB.IsServerBlacklisted(serverName)
if err != nil {
logrus.WithError(err).Errorf("Failed to get blacklist entry %q", serverName)
} else {
server.blacklisted.Store(blacklisted)
}
// Don't bother hitting the database 2 additional times
// if we don't want to use relays.
if !s.enableRelays {
return server
}
assumedOffline, err := s.DB.IsServerAssumedOffline(context.Background(), serverName)
if err != nil {
logrus.WithError(err).Errorf("Failed to get assumed offline entry %q", serverName)
} else {
server.assumedOffline.Store(assumedOffline)
}
knownRelayServers, err := s.DB.P2PGetRelayServersForServer(context.Background(), serverName)
if err != nil {
logrus.WithError(err).Errorf("Failed to get relay server list for %q", serverName)
} else {
server.relayMutex.Lock()
server.knownRelayServers = knownRelayServers
server.relayMutex.Unlock()
}
}
return server
}
type SendMethod uint8
const (
SendDirect SendMethod = iota
SendViaRelay
)
// ServerStatistics contains information about our interactions with a
// remote federated host, e.g. how many times we were successful, how
// many times we failed etc. It also manages the backoff time and black-
// listing a remote host if it remains uncooperative.
type ServerStatistics struct {
statistics *Statistics //
serverName spec.ServerName //
blacklisted atomic.Bool // is the node blacklisted
assumedOffline atomic.Bool // is the node assumed to be offline
backoffStarted atomic.Bool // is the backoff started
backoffUntil atomic.Value // time.Time until this backoff interval ends
backoffCount atomic.Uint32 // number of times BackoffDuration has been called
successCounter atomic.Uint32 // how many times have we succeeded?
backoffNotifier func() // notifies destination queue when backoff completes
notifierMutex sync.Mutex
knownRelayServers []spec.ServerName
relayMutex sync.Mutex
}
const maxJitterMultiplier = 1.4
const minJitterMultiplier = 0.8
// duration returns how long the next backoff interval should be.
func (s *ServerStatistics) duration(count uint32) time.Duration {
// Add some jitter to minimise the chance of having multiple backoffs
// ending at the same time.
jitter := rand.Float64()*(maxJitterMultiplier-minJitterMultiplier) + minJitterMultiplier
duration := time.Millisecond * time.Duration(math.Exp2(float64(count))*jitter*1000)
return duration
}
// cancel will interrupt the currently active backoff.
func (s *ServerStatistics) cancel() {
s.blacklisted.Store(false)
s.backoffUntil.Store(time.Time{})
s.ClearBackoff()
}
// AssignBackoffNotifier configures the channel to send to when
// a backoff completes.
func (s *ServerStatistics) AssignBackoffNotifier(notifier func()) {
s.notifierMutex.Lock()
defer s.notifierMutex.Unlock()
s.backoffNotifier = notifier
}
// Success updates the server statistics with a new successful
// attempt, which increases the sent counter and resets the idle and
// failure counters. If a host was blacklisted at this point then
// we will unblacklist it.
// `relay` specifies whether the success was to the actual destination
// or one of their relay servers.
func (s *ServerStatistics) Success(method SendMethod) {
s.cancel()
s.backoffCount.Store(0)
// NOTE : Sending to the final destination vs. a relay server has
// slightly different semantics.
if method == SendDirect {
s.successCounter.Add(1)
if s.blacklisted.Load() && s.statistics.DB != nil {
if err := s.statistics.DB.RemoveServerFromBlacklist(s.serverName); err != nil {
logrus.WithError(err).Errorf("Failed to remove %q from blacklist", s.serverName)
}
}
s.removeAssumedOffline()
}
}
// Failure marks a failure and starts backing off if needed.
// It will return the time that the current failure
// will result in backoff waiting until, and a bool signalling
// whether we have blacklisted and therefore to give up.
func (s *ServerStatistics) Failure() (time.Time, bool) {
// Return immediately if we have blacklisted this node.
if s.blacklisted.Load() {
return time.Time{}, true
}
// If we aren't already backing off, this call will start
// a new backoff period, increase the failure counter and
// start a goroutine which will wait out the backoff and
// unset the backoffStarted flag when done.
if s.backoffStarted.CompareAndSwap(false, true) {
backoffCount := s.backoffCount.Add(1)
if backoffCount >= s.statistics.FailuresUntilAssumedOffline {
s.assumedOffline.CompareAndSwap(false, true)
if s.statistics.DB != nil {
if err := s.statistics.DB.SetServerAssumedOffline(context.Background(), s.serverName); err != nil {
logrus.WithError(err).Errorf("Failed to set %q as assumed offline", s.serverName)
}
}
}
if backoffCount >= s.statistics.FailuresUntilBlacklist {
s.blacklisted.Store(true)
if s.statistics.DB != nil {
if err := s.statistics.DB.AddServerToBlacklist(s.serverName); err != nil {
logrus.WithError(err).Errorf("Failed to add %q to blacklist", s.serverName)
}
}
s.ClearBackoff()
return time.Time{}, true
}
// We're starting a new back off so work out what the next interval
// will be.
count := s.backoffCount.Load()
until := time.Now().Add(s.duration(count))
s.backoffUntil.Store(until)
s.statistics.backoffMutex.Lock()
s.statistics.backoffTimers[s.serverName] = time.AfterFunc(time.Until(until), s.backoffFinished)
s.statistics.backoffMutex.Unlock()
}
return s.backoffUntil.Load().(time.Time), false
}
// MarkServerAlive removes the assumed offline and blacklisted statuses from this server.
// Returns whether the server was blacklisted before this point.
func (s *ServerStatistics) MarkServerAlive() bool {
s.removeAssumedOffline()
wasBlacklisted := s.removeBlacklist()
return wasBlacklisted
}
// ClearBackoff stops the backoff timer for this destination if it is running
// and removes the timer from the backoffTimers map.
func (s *ServerStatistics) ClearBackoff() {
// If the timer is still running then stop it so it's memory is cleaned up sooner.
s.statistics.backoffMutex.Lock()
defer s.statistics.backoffMutex.Unlock()
if timer, ok := s.statistics.backoffTimers[s.serverName]; ok {
timer.Stop()
}
delete(s.statistics.backoffTimers, s.serverName)
s.backoffStarted.Store(false)
}
// backoffFinished will clear the previous backoff and notify the destination queue.
func (s *ServerStatistics) backoffFinished() {
s.ClearBackoff()
// Notify the destinationQueue if one is currently running.
s.notifierMutex.Lock()
defer s.notifierMutex.Unlock()
if s.backoffNotifier != nil {
s.backoffNotifier()
}
}
// BackoffInfo returns information about the current or previous backoff.
// Returns the last backoffUntil time.
func (s *ServerStatistics) BackoffInfo() *time.Time {
until, ok := s.backoffUntil.Load().(time.Time)
if ok {
return &until
}
return nil
}
// Blacklisted returns true if the server is blacklisted and false
// otherwise.
func (s *ServerStatistics) Blacklisted() bool {
return s.blacklisted.Load()
}
// AssumedOffline returns true if the server is assumed offline and false
// otherwise.
func (s *ServerStatistics) AssumedOffline() bool {
return s.assumedOffline.Load()
}
// removeBlacklist removes the blacklisted status from the server.
// Returns whether the server was blacklisted.
func (s *ServerStatistics) removeBlacklist() bool {
var wasBlacklisted bool
if s.Blacklisted() {
wasBlacklisted = true
_ = s.statistics.DB.RemoveServerFromBlacklist(s.serverName)
}
s.cancel()
s.backoffCount.Store(0)
return wasBlacklisted
}
// removeAssumedOffline removes the assumed offline status from the server.
func (s *ServerStatistics) removeAssumedOffline() {
if s.AssumedOffline() {
_ = s.statistics.DB.RemoveServerAssumedOffline(context.Background(), s.serverName)
}
s.assumedOffline.Store(false)
}
// SuccessCount returns the number of successful requests. This is
// usually useful in constructing transaction IDs.
func (s *ServerStatistics) SuccessCount() uint32 {
return s.successCounter.Load()
}
// KnownRelayServers returns the list of relay servers associated with this
// server.
func (s *ServerStatistics) KnownRelayServers() []spec.ServerName {
s.relayMutex.Lock()
defer s.relayMutex.Unlock()
return s.knownRelayServers
}
func (s *ServerStatistics) AddRelayServers(relayServers []spec.ServerName) {
seenSet := make(map[spec.ServerName]bool)
uniqueList := []spec.ServerName{}
for _, srv := range relayServers {
if seenSet[srv] {
continue
}
seenSet[srv] = true
uniqueList = append(uniqueList, srv)
}
err := s.statistics.DB.P2PAddRelayServersForServer(context.Background(), s.serverName, uniqueList)
if err != nil {
logrus.WithError(err).Errorf("Failed to add relay servers for %q. Servers: %v", s.serverName, uniqueList)
return
}
for _, newServer := range uniqueList {
alreadyKnown := false
knownRelayServers := s.KnownRelayServers()
for _, srv := range knownRelayServers {
if srv == newServer {
alreadyKnown = true
}
}
if !alreadyKnown {
{
s.relayMutex.Lock()
s.knownRelayServers = append(s.knownRelayServers, newServer)
s.relayMutex.Unlock()
}
}
}
}
|