1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
|
#!/usr/bin/env python3
# Copyright (c) 2020-2021 The Bitcoin Core developers
# Distributed under the MIT software license, see the accompanying
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
"""A limited-functionality wallet, which may replace a real wallet in tests"""
from copy import deepcopy
from decimal import Decimal
from enum import Enum
from random import choice
from typing import Optional
from test_framework.address import create_deterministic_address_bcrt1_p2tr_op_true
from test_framework.descriptors import descsum_create
from test_framework.key import ECKey
from test_framework.messages import (
COIN,
COutPoint,
CTransaction,
CTxIn,
CTxInWitness,
CTxOut,
tx_from_hex,
)
from test_framework.script import (
CScript,
LegacySignatureHash,
LEAF_VERSION_TAPSCRIPT,
OP_NOP,
OP_TRUE,
SIGHASH_ALL,
)
from test_framework.script_util import (
key_to_p2pk_script,
key_to_p2wpkh_script,
)
from test_framework.util import (
assert_equal,
assert_greater_than_or_equal,
)
DEFAULT_FEE = Decimal("0.0001")
class MiniWalletMode(Enum):
"""Determines the transaction type the MiniWallet is creating and spending.
For most purposes, the default mode ADDRESS_OP_TRUE should be sufficient;
it simply uses a fixed bech32m P2TR address whose coins are spent with a
witness stack of OP_TRUE, i.e. following an anyone-can-spend policy.
However, if the transactions need to be modified by the user (e.g. prepending
scriptSig for testing opcodes that are activated by a soft-fork), or the txs
should contain an actual signature, the raw modes RAW_OP_TRUE and RAW_P2PK
can be useful. Summary of modes:
| output | | tx is | can modify | needs
mode | description | address | standard | scriptSig | signing
----------------+-------------------+-----------+----------+------------+----------
ADDRESS_OP_TRUE | anyone-can-spend | bech32m | yes | no | no
RAW_OP_TRUE | anyone-can-spend | - (raw) | no | yes | no
RAW_P2PK | pay-to-public-key | - (raw) | yes | yes | yes
"""
ADDRESS_OP_TRUE = 1
RAW_OP_TRUE = 2
RAW_P2PK = 3
class MiniWallet:
def __init__(self, test_node, *, mode=MiniWalletMode.ADDRESS_OP_TRUE):
self._test_node = test_node
self._utxos = []
self._priv_key = None
self._address = None
assert isinstance(mode, MiniWalletMode)
if mode == MiniWalletMode.RAW_OP_TRUE:
self._scriptPubKey = bytes(CScript([OP_TRUE]))
elif mode == MiniWalletMode.RAW_P2PK:
# use simple deterministic private key (k=1)
self._priv_key = ECKey()
self._priv_key.set((1).to_bytes(32, 'big'), True)
pub_key = self._priv_key.get_pubkey()
self._scriptPubKey = key_to_p2pk_script(pub_key.get_bytes())
elif mode == MiniWalletMode.ADDRESS_OP_TRUE:
self._address, self._internal_key = create_deterministic_address_bcrt1_p2tr_op_true()
self._scriptPubKey = bytes.fromhex(self._test_node.validateaddress(self._address)['scriptPubKey'])
def rescan_utxos(self):
"""Drop all utxos and rescan the utxo set"""
self._utxos = []
res = self._test_node.scantxoutset(action="start", scanobjects=[self.get_descriptor()])
assert_equal(True, res['success'])
for utxo in res['unspents']:
self._utxos.append({'txid': utxo['txid'], 'vout': utxo['vout'], 'value': utxo['amount'], 'height': utxo['height']})
def scan_tx(self, tx):
"""Scan the tx for self._scriptPubKey outputs and add them to self._utxos"""
for out in tx['vout']:
if out['scriptPubKey']['hex'] == self._scriptPubKey.hex():
self._utxos.append({'txid': tx['txid'], 'vout': out['n'], 'value': out['value'], 'height': 0})
def sign_tx(self, tx, fixed_length=True):
"""Sign tx that has been created by MiniWallet in P2PK mode"""
assert self._priv_key is not None
(sighash, err) = LegacySignatureHash(CScript(self._scriptPubKey), tx, 0, SIGHASH_ALL)
assert err is None
# for exact fee calculation, create only signatures with fixed size by default (>49.89% probability):
# 65 bytes: high-R val (33 bytes) + low-S val (32 bytes)
# with the DER header/skeleton data of 6 bytes added, this leads to a target size of 71 bytes
der_sig = b''
while not len(der_sig) == 71:
der_sig = self._priv_key.sign_ecdsa(sighash)
if not fixed_length:
break
tx.vin[0].scriptSig = CScript([der_sig + bytes(bytearray([SIGHASH_ALL]))])
def generate(self, num_blocks, **kwargs):
"""Generate blocks with coinbase outputs to the internal address, and append the outputs to the internal list"""
blocks = self._test_node.generatetodescriptor(num_blocks, self.get_descriptor(), **kwargs)
for b in blocks:
block_info = self._test_node.getblock(blockhash=b, verbosity=2)
cb_tx = block_info['tx'][0]
self._utxos.append({'txid': cb_tx['txid'], 'vout': 0, 'value': cb_tx['vout'][0]['value'], 'height': block_info['height']})
return blocks
def get_descriptor(self):
return descsum_create(f'raw({self._scriptPubKey.hex()})')
def get_address(self):
return self._address
def get_utxo(self, *, txid: Optional[str]='', mark_as_spent=True):
"""
Returns a utxo and marks it as spent (pops it from the internal list)
Args:
txid: get the first utxo we find from a specific transaction
"""
index = -1 # by default the last utxo
self._utxos = sorted(self._utxos, key=lambda k: (k['value'], -k['height'])) # Put the largest utxo last
if txid:
utxo = next(filter(lambda utxo: txid == utxo['txid'], self._utxos))
index = self._utxos.index(utxo)
if mark_as_spent:
return self._utxos.pop(index)
else:
return self._utxos[index]
def send_self_transfer(self, **kwargs):
"""Create and send a tx with the specified fee_rate. Fee may be exact or at most one satoshi higher than needed."""
tx = self.create_self_transfer(**kwargs)
self.sendrawtransaction(from_node=kwargs['from_node'], tx_hex=tx['hex'])
return tx
def send_to(self, *, from_node, scriptPubKey, amount, fee=1000):
"""
Create and send a tx with an output to a given scriptPubKey/amount,
plus a change output to our internal address. To keep things simple, a
fixed fee given in Satoshi is used.
Note that this method fails if there is no single internal utxo
available that can cover the cost for the amount and the fixed fee
(the utxo with the largest value is taken).
Returns a tuple (txid, n) referring to the created external utxo outpoint.
"""
tx = self.create_self_transfer(from_node=from_node, fee_rate=0, mempool_valid=False)['tx']
assert_greater_than_or_equal(tx.vout[0].nValue, amount + fee)
tx.vout[0].nValue -= (amount + fee) # change output -> MiniWallet
tx.vout.append(CTxOut(amount, scriptPubKey)) # arbitrary output -> to be returned
txid = self.sendrawtransaction(from_node=from_node, tx_hex=tx.serialize().hex())
return txid, 1
def create_self_transfer(self, *, fee_rate=Decimal("0.003"), from_node, utxo_to_spend=None, mempool_valid=True, locktime=0, sequence=0):
"""Create and return a tx with the specified fee_rate. Fee may be exact or at most one satoshi higher than needed."""
utxo_to_spend = utxo_to_spend or self.get_utxo()
if self._priv_key is None:
vsize = Decimal(104) # anyone-can-spend
else:
vsize = Decimal(168) # P2PK (73 bytes scriptSig + 35 bytes scriptPubKey + 60 bytes other)
send_value = int(COIN * (utxo_to_spend['value'] - fee_rate * (vsize / 1000)))
assert send_value > 0
tx = CTransaction()
tx.vin = [CTxIn(COutPoint(int(utxo_to_spend['txid'], 16), utxo_to_spend['vout']), nSequence=sequence)]
tx.vout = [CTxOut(send_value, self._scriptPubKey)]
tx.nLockTime = locktime
if not self._address:
# raw script
if self._priv_key is not None:
# P2PK, need to sign
self.sign_tx(tx)
else:
# anyone-can-spend
tx.vin[0].scriptSig = CScript([OP_NOP] * 43) # pad to identical size
else:
tx.wit.vtxinwit = [CTxInWitness()]
tx.wit.vtxinwit[0].scriptWitness.stack = [CScript([OP_TRUE]), bytes([LEAF_VERSION_TAPSCRIPT]) + self._internal_key]
tx_hex = tx.serialize().hex()
tx_info = from_node.testmempoolaccept([tx_hex])[0]
assert_equal(mempool_valid, tx_info['allowed'])
if mempool_valid:
assert_equal(tx_info['vsize'], vsize)
assert_equal(tx_info['fees']['base'], utxo_to_spend['value'] - Decimal(send_value) / COIN)
return {'txid': tx_info['txid'], 'wtxid': tx_info['wtxid'], 'hex': tx_hex, 'tx': tx}
def sendrawtransaction(self, *, from_node, tx_hex):
txid = from_node.sendrawtransaction(tx_hex)
self.scan_tx(from_node.decoderawtransaction(tx_hex))
return txid
def random_p2wpkh():
"""Generate a random P2WPKH scriptPubKey. Can be used when a random destination is needed,
but no compiled wallet is available (e.g. as replacement to the getnewaddress RPC)."""
key = ECKey()
key.generate()
return key_to_p2wpkh_script(key.get_pubkey().get_bytes())
def make_chain(node, address, privkeys, parent_txid, parent_value, n=0, parent_locking_script=None, fee=DEFAULT_FEE):
"""Build a transaction that spends parent_txid.vout[n] and produces one output with
amount = parent_value with a fee deducted.
Return tuple (CTransaction object, raw hex, nValue, scriptPubKey of the output created).
"""
inputs = [{"txid": parent_txid, "vout": n}]
my_value = parent_value - fee
outputs = {address : my_value}
rawtx = node.createrawtransaction(inputs, outputs)
prevtxs = [{
"txid": parent_txid,
"vout": n,
"scriptPubKey": parent_locking_script,
"amount": parent_value,
}] if parent_locking_script else None
signedtx = node.signrawtransactionwithkey(hexstring=rawtx, privkeys=privkeys, prevtxs=prevtxs)
assert signedtx["complete"]
tx = tx_from_hex(signedtx["hex"])
return (tx, signedtx["hex"], my_value, tx.vout[0].scriptPubKey.hex())
def create_child_with_parents(node, address, privkeys, parents_tx, values, locking_scripts, fee=DEFAULT_FEE):
"""Creates a transaction that spends the first output of each parent in parents_tx."""
num_parents = len(parents_tx)
total_value = sum(values)
inputs = [{"txid": tx.rehash(), "vout": 0} for tx in parents_tx]
outputs = {address : total_value - fee}
rawtx_child = node.createrawtransaction(inputs, outputs)
prevtxs = []
for i in range(num_parents):
prevtxs.append({"txid": parents_tx[i].rehash(), "vout": 0, "scriptPubKey": locking_scripts[i], "amount": values[i]})
signedtx_child = node.signrawtransactionwithkey(hexstring=rawtx_child, privkeys=privkeys, prevtxs=prevtxs)
assert signedtx_child["complete"]
return signedtx_child["hex"]
def create_raw_chain(node, first_coin, address, privkeys, chain_length=25):
"""Helper function: create a "chain" of chain_length transactions. The nth transaction in the
chain is a child of the n-1th transaction and parent of the n+1th transaction.
"""
parent_locking_script = None
txid = first_coin["txid"]
chain_hex = []
chain_txns = []
value = first_coin["amount"]
for _ in range(chain_length):
(tx, txhex, value, parent_locking_script) = make_chain(node, address, privkeys, txid, value, 0, parent_locking_script)
txid = tx.rehash()
chain_hex.append(txhex)
chain_txns.append(tx)
return (chain_hex, chain_txns)
def bulk_transaction(tx, node, target_weight, privkeys, prevtxs=None):
"""Pad a transaction with extra outputs until it reaches a target weight (or higher).
returns CTransaction object
"""
tx_heavy = deepcopy(tx)
assert_greater_than_or_equal(target_weight, tx_heavy.get_weight())
while tx_heavy.get_weight() < target_weight:
random_spk = "6a4d0200" # OP_RETURN OP_PUSH2 512 bytes
for _ in range(512*2):
random_spk += choice("0123456789ABCDEF")
tx_heavy.vout.append(CTxOut(0, bytes.fromhex(random_spk)))
# Re-sign the transaction
if privkeys:
signed = node.signrawtransactionwithkey(tx_heavy.serialize().hex(), privkeys, prevtxs)
return tx_from_hex(signed["hex"])
# OP_TRUE
tx_heavy.wit.vtxinwit = [CTxInWitness()]
tx_heavy.wit.vtxinwit[0].scriptWitness.stack = [CScript([OP_TRUE])]
return tx_heavy
|