1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
|
# Copyright (c) 2022-2023 The Bitcoin Core developers
# Distributed under the MIT software license, see the accompanying
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
"""Test-only implementation of low-level secp256k1 field and group arithmetic
It is designed for ease of understanding, not performance.
WARNING: This code is slow and trivially vulnerable to side channel attacks. Do not use for
anything but tests.
Exports:
* FE: class for secp256k1 field elements
* GE: class for secp256k1 group elements
* G: the secp256k1 generator point
"""
import unittest
from hashlib import sha256
class FE:
"""Objects of this class represent elements of the field GF(2**256 - 2**32 - 977).
They are represented internally in numerator / denominator form, in order to delay inversions.
"""
# The size of the field (also its modulus and characteristic).
SIZE = 2**256 - 2**32 - 977
def __init__(self, a=0, b=1):
"""Initialize a field element a/b; both a and b can be ints or field elements."""
if isinstance(a, FE):
num = a._num
den = a._den
else:
num = a % FE.SIZE
den = 1
if isinstance(b, FE):
den = (den * b._num) % FE.SIZE
num = (num * b._den) % FE.SIZE
else:
den = (den * b) % FE.SIZE
assert den != 0
if num == 0:
den = 1
self._num = num
self._den = den
def __add__(self, a):
"""Compute the sum of two field elements (second may be int)."""
if isinstance(a, FE):
return FE(self._num * a._den + self._den * a._num, self._den * a._den)
return FE(self._num + self._den * a, self._den)
def __radd__(self, a):
"""Compute the sum of an integer and a field element."""
return FE(a) + self
def __sub__(self, a):
"""Compute the difference of two field elements (second may be int)."""
if isinstance(a, FE):
return FE(self._num * a._den - self._den * a._num, self._den * a._den)
return FE(self._num - self._den * a, self._den)
def __rsub__(self, a):
"""Compute the difference of an integer and a field element."""
return FE(a) - self
def __mul__(self, a):
"""Compute the product of two field elements (second may be int)."""
if isinstance(a, FE):
return FE(self._num * a._num, self._den * a._den)
return FE(self._num * a, self._den)
def __rmul__(self, a):
"""Compute the product of an integer with a field element."""
return FE(a) * self
def __truediv__(self, a):
"""Compute the ratio of two field elements (second may be int)."""
return FE(self, a)
def __pow__(self, a):
"""Raise a field element to an integer power."""
return FE(pow(self._num, a, FE.SIZE), pow(self._den, a, FE.SIZE))
def __neg__(self):
"""Negate a field element."""
return FE(-self._num, self._den)
def __int__(self):
"""Convert a field element to an integer in range 0..p-1. The result is cached."""
if self._den != 1:
self._num = (self._num * pow(self._den, -1, FE.SIZE)) % FE.SIZE
self._den = 1
return self._num
def sqrt(self):
"""Compute the square root of a field element if it exists (None otherwise).
Due to the fact that our modulus is of the form (p % 4) == 3, the Tonelli-Shanks
algorithm (https://en.wikipedia.org/wiki/Tonelli-Shanks_algorithm) is simply
raising the argument to the power (p + 1) / 4.
To see why: (p-1) % 2 = 0, so 2 divides the order of the multiplicative group,
and thus only half of the non-zero field elements are squares. An element a is
a (nonzero) square when Euler's criterion, a^((p-1)/2) = 1 (mod p), holds. We're
looking for x such that x^2 = a (mod p). Given a^((p-1)/2) = 1, that is equivalent
to x^2 = a^(1 + (p-1)/2) mod p. As (1 + (p-1)/2) is even, this is equivalent to
x = a^((1 + (p-1)/2)/2) mod p, or x = a^((p+1)/4) mod p."""
v = int(self)
s = pow(v, (FE.SIZE + 1) // 4, FE.SIZE)
if s**2 % FE.SIZE == v:
return FE(s)
return None
def is_square(self):
"""Determine if this field element has a square root."""
# A more efficient algorithm is possible here (Jacobi symbol).
return self.sqrt() is not None
def is_even(self):
"""Determine whether this field element, represented as integer in 0..p-1, is even."""
return int(self) & 1 == 0
def __eq__(self, a):
"""Check whether two field elements are equal (second may be an int)."""
if isinstance(a, FE):
return (self._num * a._den - self._den * a._num) % FE.SIZE == 0
return (self._num - self._den * a) % FE.SIZE == 0
def to_bytes(self):
"""Convert a field element to a 32-byte array (BE byte order)."""
return int(self).to_bytes(32, 'big')
@staticmethod
def from_bytes(b):
"""Convert a 32-byte array to a field element (BE byte order, no overflow allowed)."""
v = int.from_bytes(b, 'big')
if v >= FE.SIZE:
return None
return FE(v)
def __str__(self):
"""Convert this field element to a 64 character hex string."""
return f"{int(self):064x}"
def __repr__(self):
"""Get a string representation of this field element."""
return f"FE(0x{int(self):x})"
class GE:
"""Objects of this class represent secp256k1 group elements (curve points or infinity)
Normal points on the curve have fields:
* x: the x coordinate (a field element)
* y: the y coordinate (a field element, satisfying y^2 = x^3 + 7)
* infinity: False
The point at infinity has field:
* infinity: True
"""
# Order of the group (number of points on the curve, plus 1 for infinity)
ORDER = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141
# Number of valid distinct x coordinates on the curve.
ORDER_HALF = ORDER // 2
def __init__(self, x=None, y=None):
"""Initialize a group element with specified x and y coordinates, or infinity."""
if x is None:
# Initialize as infinity.
assert y is None
self.infinity = True
else:
# Initialize as point on the curve (and check that it is).
fx = FE(x)
fy = FE(y)
assert fy**2 == fx**3 + 7
self.infinity = False
self.x = fx
self.y = fy
def __add__(self, a):
"""Add two group elements together."""
# Deal with infinity: a + infinity == infinity + a == a.
if self.infinity:
return a
if a.infinity:
return self
if self.x == a.x:
if self.y != a.y:
# A point added to its own negation is infinity.
assert self.y + a.y == 0
return GE()
else:
# For identical inputs, use the tangent (doubling formula).
lam = (3 * self.x**2) / (2 * self.y)
else:
# For distinct inputs, use the line through both points (adding formula).
lam = (self.y - a.y) / (self.x - a.x)
# Determine point opposite to the intersection of that line with the curve.
x = lam**2 - (self.x + a.x)
y = lam * (self.x - x) - self.y
return GE(x, y)
@staticmethod
def mul(*aps):
"""Compute a (batch) scalar group element multiplication.
GE.mul((a1, p1), (a2, p2), (a3, p3)) is identical to a1*p1 + a2*p2 + a3*p3,
but more efficient."""
# Reduce all the scalars modulo order first (so we can deal with negatives etc).
naps = [(a % GE.ORDER, p) for a, p in aps]
# Start with point at infinity.
r = GE()
# Iterate over all bit positions, from high to low.
for i in range(255, -1, -1):
# Double what we have so far.
r = r + r
# Add then add the points for which the corresponding scalar bit is set.
for (a, p) in naps:
if (a >> i) & 1:
r += p
return r
def __rmul__(self, a):
"""Multiply an integer with a group element."""
if self == G:
return FAST_G.mul(a)
return GE.mul((a, self))
def __neg__(self):
"""Compute the negation of a group element."""
if self.infinity:
return self
return GE(self.x, -self.y)
def to_bytes_compressed(self):
"""Convert a non-infinite group element to 33-byte compressed encoding."""
assert not self.infinity
return bytes([3 - self.y.is_even()]) + self.x.to_bytes()
def to_bytes_uncompressed(self):
"""Convert a non-infinite group element to 65-byte uncompressed encoding."""
assert not self.infinity
return b'\x04' + self.x.to_bytes() + self.y.to_bytes()
def to_bytes_xonly(self):
"""Convert (the x coordinate of) a non-infinite group element to 32-byte xonly encoding."""
assert not self.infinity
return self.x.to_bytes()
@staticmethod
def lift_x(x):
"""Return group element with specified field element as x coordinate (and even y)."""
y = (FE(x)**3 + 7).sqrt()
if y is None:
return None
if not y.is_even():
y = -y
return GE(x, y)
@staticmethod
def from_bytes(b):
"""Convert a compressed or uncompressed encoding to a group element."""
assert len(b) in (33, 65)
if len(b) == 33:
if b[0] != 2 and b[0] != 3:
return None
x = FE.from_bytes(b[1:])
if x is None:
return None
r = GE.lift_x(x)
if r is None:
return None
if b[0] == 3:
r = -r
return r
else:
if b[0] != 4:
return None
x = FE.from_bytes(b[1:33])
y = FE.from_bytes(b[33:])
if y**2 != x**3 + 7:
return None
return GE(x, y)
@staticmethod
def from_bytes_xonly(b):
"""Convert a point given in xonly encoding to a group element."""
assert len(b) == 32
x = FE.from_bytes(b)
if x is None:
return None
return GE.lift_x(x)
@staticmethod
def is_valid_x(x):
"""Determine whether the provided field element is a valid X coordinate."""
return (FE(x)**3 + 7).is_square()
def __str__(self):
"""Convert this group element to a string."""
if self.infinity:
return "(inf)"
return f"({self.x},{self.y})"
def __repr__(self):
"""Get a string representation for this group element."""
if self.infinity:
return "GE()"
return f"GE(0x{int(self.x):x},0x{int(self.y):x})"
# The secp256k1 generator point
G = GE.lift_x(0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798)
class FastGEMul:
"""Table for fast multiplication with a constant group element.
Speed up scalar multiplication with a fixed point P by using a precomputed lookup table with
its powers of 2:
table = [P, 2*P, 4*P, (2^3)*P, (2^4)*P, ..., (2^255)*P]
During multiplication, the points corresponding to each bit set in the scalar are added up,
i.e. on average ~128 point additions take place.
"""
def __init__(self, p):
self.table = [p] # table[i] = (2^i) * p
for _ in range(255):
p = p + p
self.table.append(p)
def mul(self, a):
result = GE()
a = a % GE.ORDER
for bit in range(a.bit_length()):
if a & (1 << bit):
result += self.table[bit]
return result
# Precomputed table with multiples of G for fast multiplication
FAST_G = FastGEMul(G)
class TestFrameworkSecp256k1(unittest.TestCase):
def test_H(self):
H = sha256(G.to_bytes_uncompressed()).digest()
assert GE.lift_x(FE.from_bytes(H)) is not None
self.assertEqual(H.hex(), "50929b74c1a04954b78b4b6035e97a5e078a5a0f28ec96d547bfee9ace803ac0")
|