aboutsummaryrefslogtreecommitdiff
path: root/test/functional/feature_block.py
blob: 43bf61c174a02057363501c5f497c9311c216d55 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
#!/usr/bin/env python3
# Copyright (c) 2015-2022 The Bitcoin Core developers
# Distributed under the MIT software license, see the accompanying
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
"""Test block processing."""
import copy
import time

from test_framework.blocktools import (
    create_block,
    create_coinbase,
    create_tx_with_script,
    get_legacy_sigopcount_block,
    MAX_BLOCK_SIGOPS,
)
from test_framework.messages import (
    CBlock,
    COIN,
    COutPoint,
    CTransaction,
    CTxIn,
    CTxOut,
    MAX_BLOCK_WEIGHT,
    SEQUENCE_FINAL,
    uint256_from_compact,
    uint256_from_str,
)
from test_framework.p2p import P2PDataStore
from test_framework.script import (
    CScript,
    MAX_SCRIPT_ELEMENT_SIZE,
    OP_2DUP,
    OP_CHECKMULTISIG,
    OP_CHECKMULTISIGVERIFY,
    OP_CHECKSIG,
    OP_CHECKSIGVERIFY,
    OP_ELSE,
    OP_ENDIF,
    OP_DROP,
    OP_FALSE,
    OP_IF,
    OP_INVALIDOPCODE,
    OP_RETURN,
    OP_TRUE,
    sign_input_legacy,
)
from test_framework.script_util import (
    script_to_p2sh_script,
)
from test_framework.test_framework import BitcoinTestFramework
from test_framework.util import (
    assert_equal,
    assert_greater_than,
)
from test_framework.wallet_util import generate_keypair
from data import invalid_txs


#  Use this class for tests that require behavior other than normal p2p behavior.
#  For now, it is used to serialize a bloated varint (b64).
class CBrokenBlock(CBlock):
    def initialize(self, base_block):
        self.vtx = copy.deepcopy(base_block.vtx)
        self.hashMerkleRoot = self.calc_merkle_root()

    def serialize(self, with_witness=False):
        r = b""
        r += super(CBlock, self).serialize()
        r += (255).to_bytes(1, "little") + len(self.vtx).to_bytes(8, "little")
        for tx in self.vtx:
            if with_witness:
                r += tx.serialize_with_witness()
            else:
                r += tx.serialize_without_witness()
        return r

    def normal_serialize(self):
        return super().serialize()


DUPLICATE_COINBASE_SCRIPT_SIG = b'\x01\x78'  # Valid for block at height 120


class FullBlockTest(BitcoinTestFramework):
    def set_test_params(self):
        self.num_nodes = 1
        self.setup_clean_chain = True
        self.extra_args = [[
            '-acceptnonstdtxn=1',  # This is a consensus block test, we don't care about tx policy
            '-testactivationheight=bip34@2',
            '-par=1', # Until https://github.com/bitcoin/bitcoin/issues/30960 is fixed
        ]]

    def run_test(self):
        node = self.nodes[0]  # convenience reference to the node

        self.bootstrap_p2p()  # Add one p2p connection to the node

        self.block_heights = {}
        self.coinbase_key, self.coinbase_pubkey = generate_keypair()
        self.tip = None
        self.blocks = {}
        self.genesis_hash = int(self.nodes[0].getbestblockhash(), 16)
        self.block_heights[self.genesis_hash] = 0
        self.spendable_outputs = []

        # Create a new block
        b_dup_cb = self.next_block('dup_cb')
        b_dup_cb.vtx[0].vin[0].scriptSig = DUPLICATE_COINBASE_SCRIPT_SIG
        b_dup_cb.vtx[0].rehash()
        duplicate_tx = b_dup_cb.vtx[0]
        b_dup_cb = self.update_block('dup_cb', [])
        self.send_blocks([b_dup_cb])

        b0 = self.next_block(0)
        self.save_spendable_output()
        self.send_blocks([b0])

        # These constants chosen specifically to trigger an immature coinbase spend
        # at a certain time below.
        NUM_BUFFER_BLOCKS_TO_GENERATE = 99
        NUM_OUTPUTS_TO_COLLECT = 33

        # Allow the block to mature
        blocks = []
        for i in range(NUM_BUFFER_BLOCKS_TO_GENERATE):
            blocks.append(self.next_block(f"maturitybuffer.{i}"))
            self.save_spendable_output()
        self.send_blocks(blocks)

        # collect spendable outputs now to avoid cluttering the code later on
        out = []
        for _ in range(NUM_OUTPUTS_TO_COLLECT):
            out.append(self.get_spendable_output())

        # Start by building a couple of blocks on top (which output is spent is
        # in parentheses):
        #     genesis -> b1 (0) -> b2 (1)
        b1 = self.next_block(1, spend=out[0])
        self.save_spendable_output()

        b2 = self.next_block(2, spend=out[1])
        self.save_spendable_output()

        self.send_blocks([b1, b2], timeout=4)

        # Select a txn with an output eligible for spending. This won't actually be spent,
        # since we're testing submission of a series of blocks with invalid txns.
        attempt_spend_tx = out[2]

        # Submit blocks for rejection, each of which contains a single transaction
        # (aside from coinbase) which should be considered invalid.
        for TxTemplate in invalid_txs.iter_all_templates():
            template = TxTemplate(spend_tx=attempt_spend_tx)

            if template.valid_in_block:
                continue

            self.log.info(f"Reject block with invalid tx: {TxTemplate.__name__}")
            blockname = f"for_invalid.{TxTemplate.__name__}"
            self.next_block(blockname)
            badtx = template.get_tx()
            if TxTemplate != invalid_txs.InputMissing:
                self.sign_tx(badtx, attempt_spend_tx)
            badtx.rehash()
            badblock = self.update_block(blockname, [badtx])
            self.send_blocks(
                [badblock], success=False,
                reject_reason=(template.block_reject_reason or template.reject_reason),
                reconnect=True, timeout=2)

            self.move_tip(2)

        # Fork like this:
        #
        #     genesis -> b1 (0) -> b2 (1)
        #                      \-> b3 (1)
        #
        # Nothing should happen at this point. We saw b2 first so it takes priority.
        self.log.info("Don't reorg to a chain of the same length")
        self.move_tip(1)
        b3 = self.next_block(3, spend=out[1])
        txout_b3 = b3.vtx[1]
        self.send_blocks([b3], False)

        # Now we add another block to make the alternative chain longer.
        #
        #     genesis -> b1 (0) -> b2 (1)
        #                      \-> b3 (1) -> b4 (2)
        self.log.info("Reorg to a longer chain")
        b4 = self.next_block(4, spend=out[2])
        self.send_blocks([b4])

        # ... and back to the first chain.
        #     genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3)
        #                      \-> b3 (1) -> b4 (2)
        self.move_tip(2)
        b5 = self.next_block(5, spend=out[2])
        self.save_spendable_output()
        self.send_blocks([b5], False)

        self.log.info("Reorg back to the original chain")
        b6 = self.next_block(6, spend=out[3])
        self.send_blocks([b6], True)

        # Try to create a fork that double-spends
        #     genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3)
        #                                          \-> b7 (2) -> b8 (4)
        #                      \-> b3 (1) -> b4 (2)
        self.log.info("Reject a chain with a double spend, even if it is longer")
        self.move_tip(5)
        b7 = self.next_block(7, spend=out[2])
        self.send_blocks([b7], False)

        b8 = self.next_block(8, spend=out[4])
        self.send_blocks([b8], False, reconnect=True)

        # Try to create a block that has too much fee
        #     genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3)
        #                                                    \-> b9 (4)
        #                      \-> b3 (1) -> b4 (2)
        self.log.info("Reject a block where the miner creates too much coinbase reward")
        self.move_tip(6)
        b9 = self.next_block(9, spend=out[4], additional_coinbase_value=1)
        self.send_blocks([b9], success=False, reject_reason='bad-cb-amount', reconnect=True)

        # Create a fork that ends in a block with too much fee (the one that causes the reorg)
        #     genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6  (3)
        #                                          \-> b10 (3) -> b11 (4)
        #                      \-> b3 (1) -> b4 (2)
        self.log.info("Reject a chain where the miner creates too much coinbase reward, even if the chain is longer")
        self.move_tip(5)
        b10 = self.next_block(10, spend=out[3])
        self.send_blocks([b10], False)

        b11 = self.next_block(11, spend=out[4], additional_coinbase_value=1)
        self.send_blocks([b11], success=False, reject_reason='bad-cb-amount', reconnect=True)

        # Try again, but with a valid fork first
        #     genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6  (3)
        #                                          \-> b12 (3) -> b13 (4) -> b14 (5)
        #                      \-> b3 (1) -> b4 (2)
        self.log.info("Reject a chain where the miner creates too much coinbase reward, even if the chain is longer (on a forked chain)")
        self.move_tip(5)
        b12 = self.next_block(12, spend=out[3])
        self.save_spendable_output()
        b13 = self.next_block(13, spend=out[4])
        self.save_spendable_output()
        b14 = self.next_block(14, spend=out[5], additional_coinbase_value=1)
        self.send_blocks([b12, b13, b14], success=False, reject_reason='bad-cb-amount', reconnect=True)

        # New tip should be b13.
        assert_equal(node.getbestblockhash(), b13.hash)

        # Add a block with MAX_BLOCK_SIGOPS and one with one more sigop
        #     genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6  (3)
        #                                          \-> b12 (3) -> b13 (4) -> b15 (5) -> b16 (6)
        #                      \-> b3 (1) -> b4 (2)
        self.log.info("Accept a block with lots of checksigs")
        lots_of_checksigs = CScript([OP_CHECKSIG] * (MAX_BLOCK_SIGOPS - 1))
        self.move_tip(13)
        b15 = self.next_block(15, spend=out[5], script=lots_of_checksigs)
        self.save_spendable_output()
        self.send_blocks([b15], True)

        self.log.info("Reject a block with too many checksigs")
        too_many_checksigs = CScript([OP_CHECKSIG] * (MAX_BLOCK_SIGOPS))
        b16 = self.next_block(16, spend=out[6], script=too_many_checksigs)
        self.send_blocks([b16], success=False, reject_reason='bad-blk-sigops', reconnect=True)

        # Attempt to spend a transaction created on a different fork
        #     genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6  (3)
        #                                          \-> b12 (3) -> b13 (4) -> b15 (5) -> b17 (b3.vtx[1])
        #                      \-> b3 (1) -> b4 (2)
        self.log.info("Reject a block with a spend from a re-org'ed out tx")
        self.move_tip(15)
        b17 = self.next_block(17, spend=txout_b3)
        self.send_blocks([b17], success=False, reject_reason='bad-txns-inputs-missingorspent', reconnect=True)

        # Attempt to spend a transaction created on a different fork (on a fork this time)
        #     genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6  (3)
        #                                          \-> b12 (3) -> b13 (4) -> b15 (5)
        #                                                                \-> b18 (b3.vtx[1]) -> b19 (6)
        #                      \-> b3 (1) -> b4 (2)
        self.log.info("Reject a block with a spend from a re-org'ed out tx (on a forked chain)")
        self.move_tip(13)
        b18 = self.next_block(18, spend=txout_b3)
        self.send_blocks([b18], False)

        b19 = self.next_block(19, spend=out[6])
        self.send_blocks([b19], success=False, reject_reason='bad-txns-inputs-missingorspent', reconnect=True)

        # Attempt to spend a coinbase at depth too low
        #     genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6  (3)
        #                                          \-> b12 (3) -> b13 (4) -> b15 (5) -> b20 (7)
        #                      \-> b3 (1) -> b4 (2)
        self.log.info("Reject a block spending an immature coinbase.")
        self.move_tip(15)
        b20 = self.next_block(20, spend=out[7])
        self.send_blocks([b20], success=False, reject_reason='bad-txns-premature-spend-of-coinbase', reconnect=True)

        # Attempt to spend a coinbase at depth too low (on a fork this time)
        #     genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6  (3)
        #                                          \-> b12 (3) -> b13 (4) -> b15 (5)
        #                                                                \-> b21 (6) -> b22 (5)
        #                      \-> b3 (1) -> b4 (2)
        self.log.info("Reject a block spending an immature coinbase (on a forked chain)")
        self.move_tip(13)
        b21 = self.next_block(21, spend=out[6])
        self.send_blocks([b21], False)

        b22 = self.next_block(22, spend=out[5])
        self.send_blocks([b22], success=False, reject_reason='bad-txns-premature-spend-of-coinbase', reconnect=True)

        # Create a block on either side of MAX_BLOCK_WEIGHT and make sure its accepted/rejected
        #     genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6  (3)
        #                                          \-> b12 (3) -> b13 (4) -> b15 (5) -> b23 (6)
        #                                                                           \-> b24 (6) -> b25 (7)
        #                      \-> b3 (1) -> b4 (2)
        self.log.info("Accept a block of weight MAX_BLOCK_WEIGHT")
        self.move_tip(15)
        b23 = self.next_block(23, spend=out[6])
        tx = CTransaction()
        script_length = (MAX_BLOCK_WEIGHT - b23.get_weight() - 276) // 4
        script_output = CScript([b'\x00' * script_length])
        tx.vout.append(CTxOut(0, script_output))
        tx.vin.append(CTxIn(COutPoint(b23.vtx[1].sha256, 0)))
        b23 = self.update_block(23, [tx])
        # Make sure the math above worked out to produce a max-weighted block
        assert_equal(b23.get_weight(), MAX_BLOCK_WEIGHT)
        self.send_blocks([b23], True)
        self.save_spendable_output()

        self.log.info("Reject a block of weight MAX_BLOCK_WEIGHT + 4")
        self.move_tip(15)
        b24 = self.next_block(24, spend=out[6])
        script_length = (MAX_BLOCK_WEIGHT - b24.get_weight() - 276) // 4
        script_output = CScript([b'\x00' * (script_length + 1)])
        tx.vout = [CTxOut(0, script_output)]
        b24 = self.update_block(24, [tx])
        assert_equal(b24.get_weight(), MAX_BLOCK_WEIGHT + 1 * 4)
        self.send_blocks([b24], success=False, reject_reason='bad-blk-length', reconnect=True)

        b25 = self.next_block(25, spend=out[7])
        self.send_blocks([b25], False)

        # Create blocks with a coinbase input script size out of range
        #     genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6  (3)
        #                                          \-> b12 (3) -> b13 (4) -> b15 (5) -> b23 (6) -> b30 (7)
        #                                                                           \-> ... (6) -> ... (7)
        #                      \-> b3 (1) -> b4 (2)
        self.log.info("Reject a block with coinbase input script size out of range")
        self.move_tip(15)
        b26 = self.next_block(26, spend=out[6])
        b26.vtx[0].vin[0].scriptSig = b'\x00'
        b26.vtx[0].rehash()
        # update_block causes the merkle root to get updated, even with no new
        # transactions, and updates the required state.
        b26 = self.update_block(26, [])
        self.send_blocks([b26], success=False, reject_reason='bad-cb-length', reconnect=True)

        # Extend the b26 chain to make sure bitcoind isn't accepting b26
        b27 = self.next_block(27, spend=out[7])
        self.send_blocks([b27], False)

        # Now try a too-large-coinbase script
        self.move_tip(15)
        b28 = self.next_block(28, spend=out[6])
        b28.vtx[0].vin[0].scriptSig = b'\x00' * 101
        b28.vtx[0].rehash()
        b28 = self.update_block(28, [])
        self.send_blocks([b28], success=False, reject_reason='bad-cb-length', reconnect=True)

        # Extend the b28 chain to make sure bitcoind isn't accepting b28
        b29 = self.next_block(29, spend=out[7])
        self.send_blocks([b29], False)

        # b30 has a max-sized coinbase scriptSig.
        self.move_tip(23)
        b30 = self.next_block(30)
        b30.vtx[0].vin[0].scriptSig = bytes(b30.vtx[0].vin[0].scriptSig)  # Convert CScript to raw bytes
        b30.vtx[0].vin[0].scriptSig += b'\x00' * (100 - len(b30.vtx[0].vin[0].scriptSig))  # Fill with 0s
        assert_equal(len(b30.vtx[0].vin[0].scriptSig), 100)
        b30.vtx[0].rehash()
        b30 = self.update_block(30, [])
        self.send_blocks([b30], True)
        self.save_spendable_output()

        # b31 - b35 - check sigops of OP_CHECKMULTISIG / OP_CHECKMULTISIGVERIFY / OP_CHECKSIGVERIFY
        #
        #     genesis -> ... -> b30 (7) -> b31 (8) -> b33 (9) -> b35 (10)
        #                                                                \-> b36 (11)
        #                                                    \-> b34 (10)
        #                                         \-> b32 (9)
        #

        # MULTISIG: each op code counts as 20 sigops.  To create the edge case, pack another 19 sigops at the end.
        self.log.info("Accept a block with the max number of OP_CHECKMULTISIG sigops")
        lots_of_multisigs = CScript([OP_CHECKMULTISIG] * ((MAX_BLOCK_SIGOPS - 1) // 20) + [OP_CHECKSIG] * 19)
        b31 = self.next_block(31, spend=out[8], script=lots_of_multisigs)
        assert_equal(get_legacy_sigopcount_block(b31), MAX_BLOCK_SIGOPS)
        self.send_blocks([b31], True)
        self.save_spendable_output()

        # this goes over the limit because the coinbase has one sigop
        self.log.info("Reject a block with too many OP_CHECKMULTISIG sigops")
        too_many_multisigs = CScript([OP_CHECKMULTISIG] * (MAX_BLOCK_SIGOPS // 20))
        b32 = self.next_block(32, spend=out[9], script=too_many_multisigs)
        assert_equal(get_legacy_sigopcount_block(b32), MAX_BLOCK_SIGOPS + 1)
        self.send_blocks([b32], success=False, reject_reason='bad-blk-sigops', reconnect=True)

        # CHECKMULTISIGVERIFY
        self.log.info("Accept a block with the max number of OP_CHECKMULTISIGVERIFY sigops")
        self.move_tip(31)
        lots_of_multisigs = CScript([OP_CHECKMULTISIGVERIFY] * ((MAX_BLOCK_SIGOPS - 1) // 20) + [OP_CHECKSIG] * 19)
        b33 = self.next_block(33, spend=out[9], script=lots_of_multisigs)
        self.send_blocks([b33], True)
        self.save_spendable_output()

        self.log.info("Reject a block with too many OP_CHECKMULTISIGVERIFY sigops")
        too_many_multisigs = CScript([OP_CHECKMULTISIGVERIFY] * (MAX_BLOCK_SIGOPS // 20))
        b34 = self.next_block(34, spend=out[10], script=too_many_multisigs)
        self.send_blocks([b34], success=False, reject_reason='bad-blk-sigops', reconnect=True)

        # CHECKSIGVERIFY
        self.log.info("Accept a block with the max number of OP_CHECKSIGVERIFY sigops")
        self.move_tip(33)
        lots_of_checksigs = CScript([OP_CHECKSIGVERIFY] * (MAX_BLOCK_SIGOPS - 1))
        b35 = self.next_block(35, spend=out[10], script=lots_of_checksigs)
        self.send_blocks([b35], True)
        self.save_spendable_output()

        self.log.info("Reject a block with too many OP_CHECKSIGVERIFY sigops")
        too_many_checksigs = CScript([OP_CHECKSIGVERIFY] * (MAX_BLOCK_SIGOPS))
        b36 = self.next_block(36, spend=out[11], script=too_many_checksigs)
        self.send_blocks([b36], success=False, reject_reason='bad-blk-sigops', reconnect=True)

        # Check spending of a transaction in a block which failed to connect
        #
        # b6  (3)
        # b12 (3) -> b13 (4) -> b15 (5) -> b23 (6) -> b30 (7) -> b31 (8) -> b33 (9) -> b35 (10)
        #                                                                                     \-> b37 (11)
        #                                                                                     \-> b38 (11/37)
        #

        # save 37's spendable output, but then double-spend out11 to invalidate the block
        self.log.info("Reject a block spending transaction from a block which failed to connect")
        self.move_tip(35)
        b37 = self.next_block(37, spend=out[11])
        txout_b37 = b37.vtx[1]
        tx = self.create_and_sign_transaction(out[11], 0)
        b37 = self.update_block(37, [tx])
        self.send_blocks([b37], success=False, reject_reason='bad-txns-inputs-missingorspent', reconnect=True)

        # attempt to spend b37's first non-coinbase tx, at which point b37 was still considered valid
        self.move_tip(35)
        b38 = self.next_block(38, spend=txout_b37)
        self.send_blocks([b38], success=False, reject_reason='bad-txns-inputs-missingorspent', reconnect=True)

        # Check P2SH SigOp counting
        #
        #
        #   13 (4) -> b15 (5) -> b23 (6) -> b30 (7) -> b31 (8) -> b33 (9) -> b35 (10) -> b39 (11) -> b41 (12)
        #                                                                                        \-> b40 (12)
        #
        # b39 - create some P2SH outputs that will require 6 sigops to spend:
        #
        #           redeem_script = COINBASE_PUBKEY, (OP_2DUP+OP_CHECKSIGVERIFY) * 5, OP_CHECKSIG
        #           p2sh_script = OP_HASH160, ripemd160(sha256(script)), OP_EQUAL
        #
        self.log.info("Check P2SH SIGOPS are correctly counted")
        self.move_tip(35)
        self.next_block(39)
        b39_outputs = 0
        b39_sigops_per_output = 6

        # Build the redeem script, hash it, use hash to create the p2sh script
        redeem_script = CScript([self.coinbase_pubkey] + [OP_2DUP, OP_CHECKSIGVERIFY] * 5 + [OP_CHECKSIG])
        p2sh_script = script_to_p2sh_script(redeem_script)

        # Create a transaction that spends one satoshi to the p2sh_script, the rest to OP_TRUE
        # This must be signed because it is spending a coinbase
        spend = out[11]
        tx = self.create_tx(spend, 0, 1, p2sh_script)
        tx.vout.append(CTxOut(spend.vout[0].nValue - 1, CScript([OP_TRUE])))
        self.sign_tx(tx, spend)
        tx.rehash()
        b39 = self.update_block(39, [tx])
        b39_outputs += 1

        # Until block is full, add tx's with 1 satoshi to p2sh_script, the rest to OP_TRUE
        tx_new = None
        tx_last = tx
        total_weight = b39.get_weight()
        while total_weight < MAX_BLOCK_WEIGHT:
            tx_new = self.create_tx(tx_last, 1, 1, p2sh_script)
            tx_new.vout.append(CTxOut(tx_last.vout[1].nValue - 1, CScript([OP_TRUE])))
            tx_new.rehash()
            total_weight += tx_new.get_weight()
            if total_weight >= MAX_BLOCK_WEIGHT:
                break
            b39.vtx.append(tx_new)  # add tx to block
            tx_last = tx_new
            b39_outputs += 1

        # The accounting in the loop above can be off, because it misses the
        # compact size encoding of the number of transactions in the block.
        # Make sure we didn't accidentally make too big a block. Note that the
        # size of the block has non-determinism due to the ECDSA signature in
        # the first transaction.
        while b39.get_weight() >= MAX_BLOCK_WEIGHT:
            del b39.vtx[-1]

        b39 = self.update_block(39, [])
        self.send_blocks([b39], True)
        self.save_spendable_output()

        # Test sigops in P2SH redeem scripts
        #
        # b40 creates 3333 tx's spending the 6-sigop P2SH outputs from b39 for a total of 19998 sigops.
        # The first tx has one sigop and then at the end we add 2 more to put us just over the max.
        #
        # b41 does the same, less one, so it has the maximum sigops permitted.
        #
        self.log.info("Reject a block with too many P2SH sigops")
        self.move_tip(39)
        b40 = self.next_block(40, spend=out[12])
        sigops = get_legacy_sigopcount_block(b40)
        numTxes = (MAX_BLOCK_SIGOPS - sigops) // b39_sigops_per_output
        assert_equal(numTxes <= b39_outputs, True)

        lastOutpoint = COutPoint(b40.vtx[1].sha256, 0)
        new_txs = []
        for i in range(1, numTxes + 1):
            tx = CTransaction()
            tx.vout.append(CTxOut(1, CScript([OP_TRUE])))
            tx.vin.append(CTxIn(lastOutpoint, b''))
            # second input is corresponding P2SH output from b39
            tx.vin.append(CTxIn(COutPoint(b39.vtx[i].sha256, 0), b''))
            # Note: must pass the redeem_script (not p2sh_script) to the signature hash function
            tx.vin[1].scriptSig = CScript([redeem_script])
            sign_input_legacy(tx, 1, redeem_script, self.coinbase_key)
            new_txs.append(tx)
            lastOutpoint = COutPoint(tx.sha256, 0)

        b40_sigops_to_fill = MAX_BLOCK_SIGOPS - (numTxes * b39_sigops_per_output + sigops) + 1
        tx = CTransaction()
        tx.vin.append(CTxIn(lastOutpoint, b''))
        tx.vout.append(CTxOut(1, CScript([OP_CHECKSIG] * b40_sigops_to_fill)))
        tx.rehash()
        new_txs.append(tx)
        self.update_block(40, new_txs)
        self.send_blocks([b40], success=False, reject_reason='bad-blk-sigops', reconnect=True)

        # same as b40, but one less sigop
        self.log.info("Accept a block with the max number of P2SH sigops")
        self.move_tip(39)
        b41 = self.next_block(41, spend=None)
        self.update_block(41, b40.vtx[1:-1])
        b41_sigops_to_fill = b40_sigops_to_fill - 1
        tx = CTransaction()
        tx.vin.append(CTxIn(lastOutpoint, b''))
        tx.vout.append(CTxOut(1, CScript([OP_CHECKSIG] * b41_sigops_to_fill)))
        tx.rehash()
        self.update_block(41, [tx])
        self.send_blocks([b41], True)

        # Fork off of b39 to create a constant base again
        #
        # b23 (6) -> b30 (7) -> b31 (8) -> b33 (9) -> b35 (10) -> b39 (11) -> b42 (12) -> b43 (13)
        #                                                                  \-> b41 (12)
        #
        self.move_tip(39)
        b42 = self.next_block(42, spend=out[12])
        self.save_spendable_output()

        b43 = self.next_block(43, spend=out[13])
        self.save_spendable_output()
        self.send_blocks([b42, b43], True)

        # Test a number of really invalid scenarios
        #
        #  -> b31 (8) -> b33 (9) -> b35 (10) -> b39 (11) -> b42 (12) -> b43 (13) -> b44 (14)
        #                                                                                   \-> ??? (15)

        # The next few blocks are going to be created "by hand" since they'll do funky things, such as having
        # the first transaction be non-coinbase, etc.  The purpose of b44 is to make sure this works.
        self.log.info("Build block 44 manually")
        height = self.block_heights[self.tip.sha256] + 1
        coinbase = create_coinbase(height, self.coinbase_pubkey)
        b44 = CBlock()
        b44.nTime = self.tip.nTime + 1
        b44.hashPrevBlock = self.tip.sha256
        b44.nBits = 0x207fffff
        b44.vtx.append(coinbase)
        tx = self.create_and_sign_transaction(out[14], 1)
        b44.vtx.append(tx)
        b44.hashMerkleRoot = b44.calc_merkle_root()
        b44.solve()
        self.tip = b44
        self.block_heights[b44.sha256] = height
        self.blocks[44] = b44
        self.send_blocks([b44], True)

        self.log.info("Reject a block with a non-coinbase as the first tx")
        non_coinbase = self.create_tx(out[15], 0, 1)
        b45 = CBlock()
        b45.nTime = self.tip.nTime + 1
        b45.hashPrevBlock = self.tip.sha256
        b45.nBits = 0x207fffff
        b45.vtx.append(non_coinbase)
        b45.hashMerkleRoot = b45.calc_merkle_root()
        b45.solve()
        self.block_heights[b45.sha256] = self.block_heights[self.tip.sha256] + 1
        self.tip = b45
        self.blocks[45] = b45
        self.send_blocks([b45], success=False, reject_reason='bad-cb-missing', reconnect=True)

        self.log.info("Reject a block with no transactions")
        self.move_tip(44)
        b46 = CBlock()
        b46.nTime = b44.nTime + 1
        b46.hashPrevBlock = b44.sha256
        b46.nBits = 0x207fffff
        b46.vtx = []
        b46.hashMerkleRoot = 0
        b46.solve()
        self.block_heights[b46.sha256] = self.block_heights[b44.sha256] + 1
        self.tip = b46
        assert 46 not in self.blocks
        self.blocks[46] = b46
        self.send_blocks([b46], success=False, reject_reason='bad-blk-length', reconnect=True)

        self.log.info("Reject a block with invalid work")
        self.move_tip(44)
        b47 = self.next_block(47)
        target = uint256_from_compact(b47.nBits)
        while b47.sha256 <= target:
            # Rehash nonces until an invalid too-high-hash block is found.
            b47.nNonce += 1
            b47.rehash()
        self.send_blocks([b47], False, force_send=True, reject_reason='high-hash', reconnect=True)

        self.log.info("Reject a block with a timestamp >2 hours in the future")
        self.move_tip(44)
        b48 = self.next_block(48)
        b48.nTime = int(time.time()) + 60 * 60 * 3
        # Header timestamp has changed. Re-solve the block.
        b48.solve()
        self.send_blocks([b48], False, force_send=True, reject_reason='time-too-new')

        self.log.info("Reject a block with invalid merkle hash")
        self.move_tip(44)
        b49 = self.next_block(49)
        b49.hashMerkleRoot += 1
        b49.solve()
        self.send_blocks([b49], success=False, reject_reason='bad-txnmrklroot', reconnect=True)

        self.log.info("Reject a block with incorrect POW limit")
        self.move_tip(44)
        b50 = self.next_block(50)
        b50.nBits = b50.nBits - 1
        b50.solve()
        self.send_blocks([b50], False, force_send=True, reject_reason='bad-diffbits', reconnect=True)

        self.log.info("Reject a block with two coinbase transactions")
        self.move_tip(44)
        self.next_block(51)
        cb2 = create_coinbase(51, self.coinbase_pubkey)
        b51 = self.update_block(51, [cb2])
        self.send_blocks([b51], success=False, reject_reason='bad-cb-multiple', reconnect=True)

        self.log.info("Reject a block with duplicate transactions")
        # Note: txns have to be in the right position in the merkle tree to trigger this error
        self.move_tip(44)
        b52 = self.next_block(52, spend=out[15])
        tx = self.create_tx(b52.vtx[1], 0, 1)
        b52 = self.update_block(52, [tx, tx])
        self.send_blocks([b52], success=False, reject_reason='bad-txns-duplicate', reconnect=True)

        # Test block timestamps
        #  -> b31 (8) -> b33 (9) -> b35 (10) -> b39 (11) -> b42 (12) -> b43 (13) -> b53 (14) -> b55 (15)
        #                                                                                   \-> b54 (15)
        #                                                                        -> b44 (14)\-> b48 ()
        self.move_tip(43)
        b53 = self.next_block(53, spend=out[14])
        self.send_blocks([b53], False)
        self.save_spendable_output()

        self.log.info("Reject a block with timestamp before MedianTimePast")
        b54 = self.next_block(54, spend=out[15])
        b54.nTime = b35.nTime - 1
        b54.solve()
        self.send_blocks([b54], False, force_send=True, reject_reason='time-too-old', reconnect=True)

        # valid timestamp
        self.move_tip(53)
        b55 = self.next_block(55, spend=out[15])
        b55.nTime = b35.nTime
        self.update_block(55, [])
        self.send_blocks([b55], True)
        self.save_spendable_output()

        # The block which was previously rejected because of being "too far(3 hours)" must be accepted 2 hours later.
        # The new block is only 1 hour into future now and we must reorg onto to the new longer chain.
        # The new bestblock b48p is invalidated manually.
        #  -> b31 (8) -> b33 (9) -> b35 (10) -> b39 (11) -> b42 (12) -> b43 (13) -> b53 (14) -> b55 (15)
        #                                                                                   \-> b54 (15)
        #                                                                        -> b44 (14)\-> b48 () -> b48p ()
        self.log.info("Accept a previously rejected future block at a later time")
        node.setmocktime(int(time.time()) + 2*60*60)
        self.move_tip(48)
        self.block_heights[b48.sha256] = self.block_heights[b44.sha256] + 1 # b48 is a parent of b44
        b48p = self.next_block("48p")
        self.send_blocks([b48, b48p], success=True) # Reorg to the longer chain
        node.invalidateblock(b48p.hash) # mark b48p as invalid
        node.setmocktime(0)

        # Test Merkle tree malleability
        #
        # -> b42 (12) -> b43 (13) -> b53 (14) -> b55 (15) -> b57p2 (16)
        #                                                \-> b57   (16)
        #                                                \-> b56p2 (16)
        #                                                \-> b56   (16)
        #
        # Merkle tree malleability (CVE-2012-2459): repeating sequences of transactions in a block without
        #                           affecting the merkle root of a block, while still invalidating it.
        #                           See:  src/consensus/merkle.h
        #
        #  b57 has three txns:  coinbase, tx, tx1.  The merkle root computation will duplicate tx.
        #  Result:  OK
        #
        #  b56 copies b57 but duplicates tx1 and does not recalculate the block hash.  So it has a valid merkle
        #  root but duplicate transactions.
        #  Result:  Fails
        #
        #  b57p2 has six transactions in its merkle tree:
        #       - coinbase, tx, tx1, tx2, tx3, tx4
        #  Merkle root calculation will duplicate as necessary.
        #  Result:  OK.
        #
        #  b56p2 copies b57p2 but adds both tx3 and tx4.  The purpose of the test is to make sure the code catches
        #  duplicate txns that are not next to one another with the "bad-txns-duplicate" error (which indicates
        #  that the error was caught early, avoiding a DOS vulnerability.)

        # b57 - a good block with 2 txs, don't submit until end
        self.move_tip(55)
        self.next_block(57)
        tx = self.create_and_sign_transaction(out[16], 1)
        tx1 = self.create_tx(tx, 0, 1)
        b57 = self.update_block(57, [tx, tx1])

        # b56 - copy b57, add a duplicate tx
        self.log.info("Reject a block with a duplicate transaction in the Merkle Tree (but with a valid Merkle Root)")
        self.move_tip(55)
        b56 = copy.deepcopy(b57)
        self.blocks[56] = b56
        assert_equal(len(b56.vtx), 3)
        b56 = self.update_block(56, [tx1])
        assert_equal(b56.hash, b57.hash)
        self.send_blocks([b56], success=False, reject_reason='bad-txns-duplicate', reconnect=True)

        # b57p2 - a good block with 6 tx'es, don't submit until end
        self.move_tip(55)
        self.next_block("57p2")
        tx = self.create_and_sign_transaction(out[16], 1)
        tx1 = self.create_tx(tx, 0, 1)
        tx2 = self.create_tx(tx1, 0, 1)
        tx3 = self.create_tx(tx2, 0, 1)
        tx4 = self.create_tx(tx3, 0, 1)
        b57p2 = self.update_block("57p2", [tx, tx1, tx2, tx3, tx4])

        # b56p2 - copy b57p2, duplicate two non-consecutive tx's
        self.log.info("Reject a block with two duplicate transactions in the Merkle Tree (but with a valid Merkle Root)")
        self.move_tip(55)
        b56p2 = copy.deepcopy(b57p2)
        self.blocks["b56p2"] = b56p2
        assert_equal(b56p2.hash, b57p2.hash)
        assert_equal(len(b56p2.vtx), 6)
        b56p2 = self.update_block("b56p2", [tx3, tx4])
        self.send_blocks([b56p2], success=False, reject_reason='bad-txns-duplicate', reconnect=True)

        self.move_tip("57p2")
        self.send_blocks([b57p2], True)

        self.move_tip(57)
        self.send_blocks([b57], False)  # The tip is not updated because 57p2 seen first
        self.save_spendable_output()

        # Test a few invalid tx types
        #
        # -> b35 (10) -> b39 (11) -> b42 (12) -> b43 (13) -> b53 (14) -> b55 (15) -> b57 (16) -> b60 ()
        #                                                                                    \-> ??? (17)
        #

        # tx with prevout.n out of range
        self.log.info("Reject a block with a transaction with prevout.n out of range")
        self.move_tip(57)
        self.next_block(58, spend=out[17])
        tx = CTransaction()
        assert len(out[17].vout) < 42
        tx.vin.append(CTxIn(COutPoint(out[17].sha256, 42), CScript([OP_TRUE]), SEQUENCE_FINAL))
        tx.vout.append(CTxOut(0, b""))
        tx.calc_sha256()
        b58 = self.update_block(58, [tx])
        self.send_blocks([b58], success=False, reject_reason='bad-txns-inputs-missingorspent', reconnect=True)

        # tx with output value > input value
        self.log.info("Reject a block with a transaction with outputs > inputs")
        self.move_tip(57)
        self.next_block(59)
        tx = self.create_and_sign_transaction(out[17], 51 * COIN)
        b59 = self.update_block(59, [tx])
        self.send_blocks([b59], success=False, reject_reason='bad-txns-in-belowout', reconnect=True)

        # reset to good chain
        self.move_tip(57)
        b60 = self.next_block(60)
        self.send_blocks([b60], True)
        self.save_spendable_output()

        # Test BIP30 (reject duplicate)
        #
        # -> b39 (11) -> b42 (12) -> b43 (13) -> b53 (14) -> b55 (15) -> b57 (16) -> b60 ()
        #                                                                                  \-> b61 ()
        #
        # Blocks are not allowed to contain a transaction whose id matches that of an earlier,
        # not-fully-spent transaction in the same chain. To test, make identical coinbases;
        # the second one should be rejected. See also CVE-2012-1909.
        #
        self.log.info("Reject a block with a transaction with a duplicate hash of a previous transaction (BIP30)")
        self.move_tip(60)
        b61 = self.next_block(61)
        b61.vtx[0].vin[0].scriptSig = DUPLICATE_COINBASE_SCRIPT_SIG
        b61.vtx[0].rehash()
        b61 = self.update_block(61, [])
        assert_equal(duplicate_tx.serialize(), b61.vtx[0].serialize())
        # BIP30 is always checked on regtest, regardless of the BIP34 activation height
        self.send_blocks([b61], success=False, reject_reason='bad-txns-BIP30', reconnect=True)

        # Test BIP30 (allow duplicate if spent)
        #
        # -> b57 (16) -> b60 ()
        #            \-> b_spend_dup_cb (b_dup_cb) -> b_dup_2 ()
        #
        self.move_tip(57)
        self.next_block('spend_dup_cb')
        tx = CTransaction()
        tx.vin.append(CTxIn(COutPoint(duplicate_tx.sha256, 0)))
        tx.vout.append(CTxOut(0, CScript([OP_TRUE])))
        self.sign_tx(tx, duplicate_tx)
        tx.rehash()
        b_spend_dup_cb = self.update_block('spend_dup_cb', [tx])

        b_dup_2 = self.next_block('dup_2')
        b_dup_2.vtx[0].vin[0].scriptSig = DUPLICATE_COINBASE_SCRIPT_SIG
        b_dup_2.vtx[0].rehash()
        b_dup_2 = self.update_block('dup_2', [])
        assert_equal(duplicate_tx.serialize(), b_dup_2.vtx[0].serialize())
        assert_equal(self.nodes[0].gettxout(txid=duplicate_tx.hash, n=0)['confirmations'], 119)
        self.send_blocks([b_spend_dup_cb, b_dup_2], success=True)
        # The duplicate has less confirmations
        assert_equal(self.nodes[0].gettxout(txid=duplicate_tx.hash, n=0)['confirmations'], 1)

        # Test tx.isFinal is properly rejected (not an exhaustive tx.isFinal test, that should be in data-driven transaction tests)
        #
        # -> b_spend_dup_cb (b_dup_cb) -> b_dup_2 ()
        #                                           \-> b62 (18)
        #
        self.log.info("Reject a block with a transaction with a nonfinal locktime")
        self.move_tip('dup_2')
        self.next_block(62)
        tx = CTransaction()
        tx.nLockTime = 0xffffffff  # this locktime is non-final
        tx.vin.append(CTxIn(COutPoint(out[18].sha256, 0)))  # don't set nSequence
        tx.vout.append(CTxOut(0, CScript([OP_TRUE])))
        assert_greater_than(SEQUENCE_FINAL, tx.vin[0].nSequence)
        tx.calc_sha256()
        b62 = self.update_block(62, [tx])
        self.send_blocks([b62], success=False, reject_reason='bad-txns-nonfinal', reconnect=True)

        # Test a non-final coinbase is also rejected
        #
        # -> b_spend_dup_cb (b_dup_cb) -> b_dup_2 ()
        #                                           \-> b63 (-)
        #
        self.log.info("Reject a block with a coinbase transaction with a nonfinal locktime")
        self.move_tip('dup_2')
        b63 = self.next_block(63)
        b63.vtx[0].nLockTime = 0xffffffff
        b63.vtx[0].vin[0].nSequence = 0xDEADBEEF
        b63.vtx[0].rehash()
        b63 = self.update_block(63, [])
        self.send_blocks([b63], success=False, reject_reason='bad-txns-nonfinal', reconnect=True)

        #  This checks that a block with a bloated VARINT between the block_header and the array of tx such that
        #  the block is > MAX_BLOCK_WEIGHT with the bloated varint, but <= MAX_BLOCK_WEIGHT without the bloated varint,
        #  does not cause a subsequent, identical block with canonical encoding to be rejected.  The test does not
        #  care whether the bloated block is accepted or rejected; it only cares that the second block is accepted.
        #
        #  What matters is that the receiving node should not reject the bloated block, and then reject the canonical
        #  block on the basis that it's the same as an already-rejected block (which would be a consensus failure.)
        #
        #  -> b_spend_dup_cb (b_dup_cb) -> b_dup_2 () -> b64 (18)
        #                                              \
        #                                               b64a (18)
        #  b64a is a bloated block (non-canonical varint)
        #  b64 is a good block (same as b64 but w/ canonical varint)
        #
        self.log.info("Accept a valid block even if a bloated version of the block has previously been sent")
        self.move_tip('dup_2')
        regular_block = self.next_block("64a", spend=out[18])

        # make it a "broken_block," with non-canonical serialization
        b64a = CBrokenBlock(regular_block)
        b64a.initialize(regular_block)
        self.blocks["64a"] = b64a
        self.tip = b64a
        tx = CTransaction()

        # use canonical serialization to calculate size
        script_length = (MAX_BLOCK_WEIGHT - 4 * len(b64a.normal_serialize()) - 276) // 4
        script_output = CScript([b'\x00' * script_length])
        tx.vout.append(CTxOut(0, script_output))
        tx.vin.append(CTxIn(COutPoint(b64a.vtx[1].sha256, 0)))
        b64a = self.update_block("64a", [tx])
        assert_equal(b64a.get_weight(), MAX_BLOCK_WEIGHT + 8 * 4)
        self.send_blocks([b64a], success=False, reject_reason='non-canonical ReadCompactSize()')

        # bitcoind doesn't disconnect us for sending a bloated block, but if we subsequently
        # resend the header message, it won't send us the getdata message again. Just
        # disconnect and reconnect and then call sync_blocks.
        # TODO: improve this test to be less dependent on P2P DOS behaviour.
        node.disconnect_p2ps()
        self.reconnect_p2p()

        self.move_tip('dup_2')
        b64 = CBlock(b64a)
        b64.vtx = copy.deepcopy(b64a.vtx)
        assert_equal(b64.hash, b64a.hash)
        assert_equal(b64.get_weight(), MAX_BLOCK_WEIGHT)
        self.blocks[64] = b64
        b64 = self.update_block(64, [])
        self.send_blocks([b64], True)
        self.save_spendable_output()

        # Spend an output created in the block itself
        #
        # -> b_dup_2 () -> b64 (18) -> b65 (19)
        #
        self.log.info("Accept a block with a transaction spending an output created in the same block")
        self.move_tip(64)
        self.next_block(65)
        tx1 = self.create_and_sign_transaction(out[19], out[19].vout[0].nValue)
        tx2 = self.create_and_sign_transaction(tx1, 0)
        b65 = self.update_block(65, [tx1, tx2])
        self.send_blocks([b65], True)
        self.save_spendable_output()

        # Attempt to spend an output created later in the same block
        #
        # -> b64 (18) -> b65 (19)
        #                        \-> b66 (20)
        self.log.info("Reject a block with a transaction spending an output created later in the same block")
        self.move_tip(65)
        self.next_block(66)
        tx1 = self.create_and_sign_transaction(out[20], out[20].vout[0].nValue)
        tx2 = self.create_and_sign_transaction(tx1, 1)
        b66 = self.update_block(66, [tx2, tx1])
        self.send_blocks([b66], success=False, reject_reason='bad-txns-inputs-missingorspent', reconnect=True)

        # Attempt to double-spend a transaction created in a block
        #
        # -> b64 (18) -> b65 (19)
        #                        \-> b67 (20)
        #
        #
        self.log.info("Reject a block with a transaction double spending a transaction created in the same block")
        self.move_tip(65)
        self.next_block(67)
        tx1 = self.create_and_sign_transaction(out[20], out[20].vout[0].nValue)
        tx2 = self.create_and_sign_transaction(tx1, 1)
        tx3 = self.create_and_sign_transaction(tx1, 2)
        b67 = self.update_block(67, [tx1, tx2, tx3])
        self.send_blocks([b67], success=False, reject_reason='bad-txns-inputs-missingorspent', reconnect=True)

        # More tests of block subsidy
        #
        # -> b64 (18) -> b65 (19) -> b69 (20)
        #                        \-> b68 (20)
        #
        # b68 - coinbase with an extra 10 satoshis,
        #       creates a tx that has 9 satoshis from out[20] go to fees
        #       this fails because the coinbase is trying to claim 1 satoshi too much in fees
        #
        # b69 - coinbase with extra 10 satoshis, and a tx that gives a 10 satoshi fee
        #       this succeeds
        #
        self.log.info("Reject a block trying to claim too much subsidy in the coinbase transaction")
        self.move_tip(65)
        self.next_block(68, additional_coinbase_value=10)
        tx = self.create_and_sign_transaction(out[20], out[20].vout[0].nValue - 9)
        b68 = self.update_block(68, [tx])
        self.send_blocks([b68], success=False, reject_reason='bad-cb-amount', reconnect=True)

        self.log.info("Accept a block claiming the correct subsidy in the coinbase transaction")
        self.move_tip(65)
        b69 = self.next_block(69, additional_coinbase_value=10)
        tx = self.create_and_sign_transaction(out[20], out[20].vout[0].nValue - 10)
        self.update_block(69, [tx])
        self.send_blocks([b69], True)
        self.save_spendable_output()

        # Test spending the outpoint of a non-existent transaction
        #
        # -> b65 (19) -> b69 (20)
        #                        \-> b70 (21)
        #
        self.log.info("Reject a block containing a transaction spending from a non-existent input")
        self.move_tip(69)
        self.next_block(70, spend=out[21])
        bogus_tx = CTransaction()
        bogus_tx.sha256 = uint256_from_str(b"23c70ed7c0506e9178fc1a987f40a33946d4ad4c962b5ae3a52546da53af0c5c")
        tx = CTransaction()
        tx.vin.append(CTxIn(COutPoint(bogus_tx.sha256, 0), b"", SEQUENCE_FINAL))
        tx.vout.append(CTxOut(1, b""))
        b70 = self.update_block(70, [tx])
        self.send_blocks([b70], success=False, reject_reason='bad-txns-inputs-missingorspent', reconnect=True)

        # Test accepting an invalid block which has the same hash as a valid one (via merkle tree tricks)
        #
        #  -> b65 (19) -> b69 (20) -> b72 (21)
        #                          \-> b71 (21)
        #
        # b72 is a good block.
        # b71 is a copy of 72, but re-adds one of its transactions.  However, it has the same hash as b72.
        self.log.info("Reject a block containing a duplicate transaction but with the same Merkle root (Merkle tree malleability")
        self.move_tip(69)
        self.next_block(72)
        tx1 = self.create_and_sign_transaction(out[21], 2)
        tx2 = self.create_and_sign_transaction(tx1, 1)
        b72 = self.update_block(72, [tx1, tx2])  # now tip is 72
        b71 = copy.deepcopy(b72)
        b71.vtx.append(tx2)   # add duplicate tx2
        self.block_heights[b71.sha256] = self.block_heights[b69.sha256] + 1  # b71 builds off b69
        self.blocks[71] = b71

        assert_equal(len(b71.vtx), 4)
        assert_equal(len(b72.vtx), 3)
        assert_equal(b72.sha256, b71.sha256)

        self.move_tip(71)
        self.send_blocks([b71], success=False, reject_reason='bad-txns-duplicate', reconnect=True)

        self.move_tip(72)
        self.send_blocks([b72], True)
        self.save_spendable_output()

        # Test some invalid scripts and MAX_BLOCK_SIGOPS
        #
        # -> b69 (20) -> b72 (21)
        #                        \-> b** (22)
        #

        # b73 - tx with excessive sigops that are placed after an excessively large script element.
        #       The purpose of the test is to make sure those sigops are counted.
        #
        #       script is a bytearray of size 20,526
        #
        #       bytearray[0-19,998]     : OP_CHECKSIG
        #       bytearray[19,999]       : OP_PUSHDATA4
        #       bytearray[20,000-20,003]: 521  (max_script_element_size+1, in little-endian format)
        #       bytearray[20,004-20,525]: unread data (script_element)
        #       bytearray[20,526]       : OP_CHECKSIG (this puts us over the limit)
        self.log.info("Reject a block containing too many sigops after a large script element")
        self.move_tip(72)
        self.next_block(73)
        size = MAX_BLOCK_SIGOPS - 1 + MAX_SCRIPT_ELEMENT_SIZE + 1 + 5 + 1
        a = bytearray([OP_CHECKSIG] * size)
        a[MAX_BLOCK_SIGOPS - 1] = int("4e", 16)  # OP_PUSHDATA4

        element_size = MAX_SCRIPT_ELEMENT_SIZE + 1
        a[MAX_BLOCK_SIGOPS] = element_size % 256
        a[MAX_BLOCK_SIGOPS + 1] = element_size // 256
        a[MAX_BLOCK_SIGOPS + 2] = 0
        a[MAX_BLOCK_SIGOPS + 3] = 0

        tx = self.create_and_sign_transaction(out[22], 1, CScript(a))
        b73 = self.update_block(73, [tx])
        assert_equal(get_legacy_sigopcount_block(b73), MAX_BLOCK_SIGOPS + 1)
        self.send_blocks([b73], success=False, reject_reason='bad-blk-sigops', reconnect=True)

        # b74/75 - if we push an invalid script element, all previous sigops are counted,
        #          but sigops after the element are not counted.
        #
        #       The invalid script element is that the push_data indicates that
        #       there will be a large amount of data (0xffffff bytes), but we only
        #       provide a much smaller number.  These bytes are CHECKSIGS so they would
        #       cause b75 to fail for excessive sigops, if those bytes were counted.
        #
        #       b74 fails because we put MAX_BLOCK_SIGOPS+1 before the element
        #       b75 succeeds because we put MAX_BLOCK_SIGOPS before the element
        self.log.info("Check sigops are counted correctly after an invalid script element")
        self.move_tip(72)
        self.next_block(74)
        size = MAX_BLOCK_SIGOPS - 1 + MAX_SCRIPT_ELEMENT_SIZE + 42  # total = 20,561
        a = bytearray([OP_CHECKSIG] * size)
        a[MAX_BLOCK_SIGOPS] = 0x4e
        a[MAX_BLOCK_SIGOPS + 1] = 0xfe
        a[MAX_BLOCK_SIGOPS + 2] = 0xff
        a[MAX_BLOCK_SIGOPS + 3] = 0xff
        a[MAX_BLOCK_SIGOPS + 4] = 0xff
        tx = self.create_and_sign_transaction(out[22], 1, CScript(a))
        b74 = self.update_block(74, [tx])
        self.send_blocks([b74], success=False, reject_reason='bad-blk-sigops', reconnect=True)

        self.move_tip(72)
        self.next_block(75)
        size = MAX_BLOCK_SIGOPS - 1 + MAX_SCRIPT_ELEMENT_SIZE + 42
        a = bytearray([OP_CHECKSIG] * size)
        a[MAX_BLOCK_SIGOPS - 1] = 0x4e
        a[MAX_BLOCK_SIGOPS] = 0xff
        a[MAX_BLOCK_SIGOPS + 1] = 0xff
        a[MAX_BLOCK_SIGOPS + 2] = 0xff
        a[MAX_BLOCK_SIGOPS + 3] = 0xff
        tx = self.create_and_sign_transaction(out[22], 1, CScript(a))
        b75 = self.update_block(75, [tx])
        self.send_blocks([b75], True)
        self.save_spendable_output()

        # Check that if we push an element filled with CHECKSIGs, they are not counted
        self.move_tip(75)
        self.next_block(76)
        size = MAX_BLOCK_SIGOPS - 1 + MAX_SCRIPT_ELEMENT_SIZE + 1 + 5
        a = bytearray([OP_CHECKSIG] * size)
        a[MAX_BLOCK_SIGOPS - 1] = 0x4e  # PUSHDATA4, but leave the following bytes as just checksigs
        tx = self.create_and_sign_transaction(out[23], 1, CScript(a))
        b76 = self.update_block(76, [tx])
        self.send_blocks([b76], True)
        self.save_spendable_output()

        # Test transaction resurrection
        #
        # -> b77 (24) -> b78 (25) -> b79 (26)
        #            \-> b80 (25) -> b81 (26) -> b82 (27)
        #
        #    b78 creates a tx, which is spent in b79. After b82, both should be in mempool
        #
        #    The tx'es must be unsigned and pass the node's mempool policy.  It is unsigned for the
        #    rather obscure reason that the Python signature code does not distinguish between
        #    Low-S and High-S values (whereas the bitcoin code has custom code which does so);
        #    as a result of which, the odds are 50% that the python code will use the right
        #    value and the transaction will be accepted into the mempool. Until we modify the
        #    test framework to support low-S signing, we are out of luck.
        #
        #    To get around this issue, we construct transactions which are not signed and which
        #    spend to OP_TRUE.  If the standard-ness rules change, this test would need to be
        #    updated.  (Perhaps to spend to a P2SH OP_TRUE script)
        self.log.info("Test transaction resurrection during a re-org")
        self.move_tip(76)
        self.next_block(77)
        tx77 = self.create_and_sign_transaction(out[24], 10 * COIN)
        b77 = self.update_block(77, [tx77])
        self.send_blocks([b77], True)
        self.save_spendable_output()

        self.next_block(78)
        tx78 = self.create_tx(tx77, 0, 9 * COIN)
        b78 = self.update_block(78, [tx78])
        self.send_blocks([b78], True)

        self.next_block(79)
        tx79 = self.create_tx(tx78, 0, 8 * COIN)
        b79 = self.update_block(79, [tx79])
        self.send_blocks([b79], True)

        # mempool should be empty
        assert_equal(len(self.nodes[0].getrawmempool()), 0)

        self.move_tip(77)
        b80 = self.next_block(80, spend=out[25])
        self.send_blocks([b80], False, force_send=True)
        self.save_spendable_output()

        b81 = self.next_block(81, spend=out[26])
        self.send_blocks([b81], False, force_send=True)  # other chain is same length
        self.save_spendable_output()

        b82 = self.next_block(82, spend=out[27])
        self.send_blocks([b82], True)  # now this chain is longer, triggers re-org
        self.save_spendable_output()

        # now check that tx78 and tx79 have been put back into the peer's mempool
        mempool = self.nodes[0].getrawmempool()
        assert_equal(len(mempool), 2)
        assert tx78.hash in mempool
        assert tx79.hash in mempool

        # Test invalid opcodes in dead execution paths.
        #
        #  -> b81 (26) -> b82 (27) -> b83 (28)
        #
        self.log.info("Accept a block with invalid opcodes in dead execution paths")
        self.next_block(83)
        op_codes = [OP_IF, OP_INVALIDOPCODE, OP_ELSE, OP_TRUE, OP_ENDIF]
        script = CScript(op_codes)
        tx1 = self.create_and_sign_transaction(out[28], out[28].vout[0].nValue, script)

        tx2 = self.create_and_sign_transaction(tx1, 0, CScript([OP_TRUE]))
        tx2.vin[0].scriptSig = CScript([OP_FALSE])
        tx2.rehash()

        b83 = self.update_block(83, [tx1, tx2])
        self.send_blocks([b83], True)
        self.save_spendable_output()

        # Reorg on/off blocks that have OP_RETURN in them (and try to spend them)
        #
        #  -> b81 (26) -> b82 (27) -> b83 (28) -> b84 (29) -> b87 (30) -> b88 (31)
        #                                    \-> b85 (29) -> b86 (30)            \-> b89a (32)
        #
        self.log.info("Test re-orging blocks with OP_RETURN in them")
        self.next_block(84)
        tx1 = self.create_tx(out[29], 0, 0, CScript([OP_RETURN]))
        tx1.vout.append(CTxOut(0, CScript([OP_TRUE])))
        tx1.vout.append(CTxOut(0, CScript([OP_TRUE])))
        tx1.vout.append(CTxOut(0, CScript([OP_TRUE])))
        tx1.vout.append(CTxOut(0, CScript([OP_TRUE])))
        tx1.calc_sha256()
        self.sign_tx(tx1, out[29])
        tx1.rehash()
        tx2 = self.create_tx(tx1, 1, 0, CScript([OP_RETURN]))
        tx2.vout.append(CTxOut(0, CScript([OP_RETURN])))
        tx3 = self.create_tx(tx1, 2, 0, CScript([OP_RETURN]))
        tx3.vout.append(CTxOut(0, CScript([OP_TRUE])))
        tx4 = self.create_tx(tx1, 3, 0, CScript([OP_TRUE]))
        tx4.vout.append(CTxOut(0, CScript([OP_RETURN])))
        tx5 = self.create_tx(tx1, 4, 0, CScript([OP_RETURN]))

        b84 = self.update_block(84, [tx1, tx2, tx3, tx4, tx5])
        self.send_blocks([b84], True)
        self.save_spendable_output()

        self.move_tip(83)
        b85 = self.next_block(85, spend=out[29])
        self.send_blocks([b85], False)  # other chain is same length

        b86 = self.next_block(86, spend=out[30])
        self.send_blocks([b86], True)

        self.move_tip(84)
        b87 = self.next_block(87, spend=out[30])
        self.send_blocks([b87], False)  # other chain is same length
        self.save_spendable_output()

        b88 = self.next_block(88, spend=out[31])
        self.send_blocks([b88], True)
        self.save_spendable_output()

        # trying to spend the OP_RETURN output is rejected
        self.next_block("89a", spend=out[32])
        tx = self.create_tx(tx1, 0, 0, CScript([OP_TRUE]))
        b89a = self.update_block("89a", [tx])
        self.send_blocks([b89a], success=False, reject_reason='bad-txns-inputs-missingorspent', reconnect=True)

        # Don't use v2transport for the large reorg, which is too slow with the unoptimized python ChaCha20 implementation
        if self.options.v2transport:
            self.nodes[0].disconnect_p2ps()
            self.helper_peer = self.nodes[0].add_p2p_connection(P2PDataStore(), supports_v2_p2p=False)
        self.log.info("Test a re-org of one week's worth of blocks (1088 blocks)")

        self.move_tip(88)
        LARGE_REORG_SIZE = 1088
        blocks = []
        spend = out[32]
        for i in range(89, LARGE_REORG_SIZE + 89):
            b = self.next_block(i, spend)
            tx = CTransaction()
            script_length = (MAX_BLOCK_WEIGHT - b.get_weight() - 276) // 4
            script_output = CScript([b'\x00' * script_length])
            tx.vout.append(CTxOut(0, script_output))
            tx.vin.append(CTxIn(COutPoint(b.vtx[1].sha256, 0)))
            b = self.update_block(i, [tx])
            assert_equal(b.get_weight(), MAX_BLOCK_WEIGHT)
            blocks.append(b)
            self.save_spendable_output()
            spend = self.get_spendable_output()

        self.send_blocks(blocks, True, timeout=2440)
        chain1_tip = i

        # now create alt chain of same length
        self.move_tip(88)
        blocks2 = []
        for i in range(89, LARGE_REORG_SIZE + 89):
            blocks2.append(self.next_block("alt" + str(i)))
        self.send_blocks(blocks2, False, force_send=False)

        # extend alt chain to trigger re-org
        block = self.next_block("alt" + str(chain1_tip + 1))
        self.send_blocks([block], True, timeout=2440)

        # ... and re-org back to the first chain
        self.move_tip(chain1_tip)
        block = self.next_block(chain1_tip + 1)
        self.send_blocks([block], False, force_send=True)
        block = self.next_block(chain1_tip + 2)
        self.send_blocks([block], True, timeout=2440)

        self.log.info("Reject a block with an invalid block header version")
        b_v1 = self.next_block('b_v1', version=1)
        self.send_blocks([b_v1], success=False, force_send=True, reject_reason='bad-version(0x00000001)', reconnect=True)

        self.move_tip(chain1_tip + 2)
        b_cb34 = self.next_block('b_cb34')
        b_cb34.vtx[0].vin[0].scriptSig = b_cb34.vtx[0].vin[0].scriptSig[:-1]
        b_cb34.vtx[0].rehash()
        b_cb34.hashMerkleRoot = b_cb34.calc_merkle_root()
        b_cb34.solve()
        self.send_blocks([b_cb34], success=False, reject_reason='bad-cb-height', reconnect=True)

    # Helper methods
    ################

    def add_transactions_to_block(self, block, tx_list):
        [tx.rehash() for tx in tx_list]
        block.vtx.extend(tx_list)

    # this is a little handier to use than the version in blocktools.py
    def create_tx(self, spend_tx, n, value, output_script=None):
        if output_script is None:
            output_script = CScript([OP_TRUE, OP_DROP] * 15 + [OP_TRUE])
        return create_tx_with_script(spend_tx, n, amount=value, output_script=output_script)

    # sign a transaction, using the key we know about
    # this signs input 0 in tx, which is assumed to be spending output 0 in spend_tx
    def sign_tx(self, tx, spend_tx):
        scriptPubKey = bytearray(spend_tx.vout[0].scriptPubKey)
        if (scriptPubKey[0] == OP_TRUE):  # an anyone-can-spend
            tx.vin[0].scriptSig = CScript()
            return
        sign_input_legacy(tx, 0, spend_tx.vout[0].scriptPubKey, self.coinbase_key)

    def create_and_sign_transaction(self, spend_tx, value, output_script=None):
        if output_script is None:
            output_script = CScript([OP_TRUE])
        tx = self.create_tx(spend_tx, 0, value, output_script=output_script)
        self.sign_tx(tx, spend_tx)
        tx.rehash()
        return tx

    def next_block(self, number, spend=None, additional_coinbase_value=0, *, script=None, version=4):
        if script is None:
            script = CScript([OP_TRUE])
        if self.tip is None:
            base_block_hash = self.genesis_hash
            block_time = int(time.time()) + 1
        else:
            base_block_hash = self.tip.sha256
            block_time = self.tip.nTime + 1
        # First create the coinbase
        height = self.block_heights[base_block_hash] + 1
        coinbase = create_coinbase(height, self.coinbase_pubkey)
        coinbase.vout[0].nValue += additional_coinbase_value
        coinbase.rehash()
        if spend is None:
            block = create_block(base_block_hash, coinbase, block_time, version=version)
        else:
            coinbase.vout[0].nValue += spend.vout[0].nValue - 1  # all but one satoshi to fees
            coinbase.rehash()
            tx = self.create_tx(spend, 0, 1, output_script=script)  # spend 1 satoshi
            self.sign_tx(tx, spend)
            tx.rehash()
            block = create_block(base_block_hash, coinbase, block_time, version=version, txlist=[tx])
        # Block is created. Find a valid nonce.
        block.solve()
        self.tip = block
        self.block_heights[block.sha256] = height
        assert number not in self.blocks
        self.blocks[number] = block
        return block

    # save the current tip so it can be spent by a later block
    def save_spendable_output(self):
        self.log.debug(f"saving spendable output {self.tip.vtx[0]}")
        self.spendable_outputs.append(self.tip)

    # get an output that we previously marked as spendable
    def get_spendable_output(self):
        self.log.debug(f"getting spendable output {self.spendable_outputs[0].vtx[0]}")
        return self.spendable_outputs.pop(0).vtx[0]

    # move the tip back to a previous block
    def move_tip(self, number):
        self.tip = self.blocks[number]

    # adds transactions to the block and updates state
    def update_block(self, block_number, new_transactions):
        block = self.blocks[block_number]
        self.add_transactions_to_block(block, new_transactions)
        old_sha256 = block.sha256
        block.hashMerkleRoot = block.calc_merkle_root()
        block.solve()
        # Update the internal state just like in next_block
        self.tip = block
        if block.sha256 != old_sha256:
            self.block_heights[block.sha256] = self.block_heights[old_sha256]
            del self.block_heights[old_sha256]
        self.blocks[block_number] = block
        return block

    def bootstrap_p2p(self, timeout=10):
        """Add a P2P connection to the node.

        Helper to connect and wait for version handshake."""
        self.helper_peer = self.nodes[0].add_p2p_connection(P2PDataStore())
        # We need to wait for the initial getheaders from the peer before we
        # start populating our blockstore. If we don't, then we may run ahead
        # to the next subtest before we receive the getheaders. We'd then send
        # an INV for the next block and receive two getheaders - one for the
        # IBD and one for the INV. We'd respond to both and could get
        # unexpectedly disconnected if the DoS score for that error is 50.
        self.helper_peer.wait_for_getheaders(timeout=timeout)

    def reconnect_p2p(self, timeout=60):
        """Tear down and bootstrap the P2P connection to the node.

        The node gets disconnected several times in this test. This helper
        method reconnects the p2p and restarts the network thread."""
        self.nodes[0].disconnect_p2ps()
        self.bootstrap_p2p(timeout=timeout)

    def send_blocks(self, blocks, success=True, reject_reason=None, force_send=False, reconnect=False, timeout=960):
        """Sends blocks to test node. Syncs and verifies that tip has advanced to most recent block.

        Call with success = False if the tip shouldn't advance to the most recent block."""
        self.helper_peer.send_blocks_and_test(blocks, self.nodes[0], success=success, reject_reason=reject_reason, force_send=force_send, timeout=timeout, expect_disconnect=reconnect)

        if reconnect:
            self.reconnect_p2p(timeout=timeout)


if __name__ == '__main__':
    FullBlockTest(__file__).main()