1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
|
// Copyright (c) 2022 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <test/fuzz/FuzzedDataProvider.h>
#include <test/fuzz/fuzz.h>
#include <test/fuzz/util.h>
#include <test/util/setup_common.h>
#include <wallet/crypter.h>
namespace wallet {
namespace {
const TestingSetup* g_setup;
void initialize_crypter()
{
static const auto testing_setup = MakeNoLogFileContext<const TestingSetup>();
g_setup = testing_setup.get();
}
FUZZ_TARGET(crypter, .init = initialize_crypter)
{
FuzzedDataProvider fuzzed_data_provider(buffer.data(), buffer.size());
bool good_data{true};
CCrypter crypt;
// These values are regularly updated within `CallOneOf`
std::vector<unsigned char> cipher_text_ed;
CKeyingMaterial plain_text_ed;
const std::vector<unsigned char> random_key = ConsumeFixedLengthByteVector(fuzzed_data_provider, WALLET_CRYPTO_KEY_SIZE);
if (fuzzed_data_provider.ConsumeBool()) {
const std::string random_string = fuzzed_data_provider.ConsumeRandomLengthString(100);
SecureString secure_string(random_string.begin(), random_string.end());
const unsigned int derivation_method = fuzzed_data_provider.ConsumeBool() ? 0 : fuzzed_data_provider.ConsumeIntegral<unsigned int>();
// Limiting the value of rounds since it is otherwise uselessly expensive and causes a timeout when fuzzing.
crypt.SetKeyFromPassphrase(/*key_data=*/secure_string,
/*salt=*/ConsumeFixedLengthByteVector(fuzzed_data_provider, WALLET_CRYPTO_SALT_SIZE),
/*rounds=*/fuzzed_data_provider.ConsumeIntegralInRange<unsigned int>(0, 25000),
/*derivation_method=*/derivation_method);
}
LIMITED_WHILE(good_data && fuzzed_data_provider.ConsumeBool(), 100)
{
CallOneOf(
fuzzed_data_provider,
[&] {
const std::vector<unsigned char> random_vector = ConsumeFixedLengthByteVector(fuzzed_data_provider, WALLET_CRYPTO_KEY_SIZE);
plain_text_ed = CKeyingMaterial(random_vector.begin(), random_vector.end());
},
[&] {
cipher_text_ed = ConsumeRandomLengthByteVector(fuzzed_data_provider, 64);
},
[&] {
(void)crypt.Encrypt(plain_text_ed, cipher_text_ed);
},
[&] {
(void)crypt.Decrypt(cipher_text_ed, plain_text_ed);
},
[&] {
const CKeyingMaterial master_key(random_key.begin(), random_key.end());
const uint256 iv = ConsumeUInt256(fuzzed_data_provider);
(void)EncryptSecret(master_key, plain_text_ed, iv, cipher_text_ed);
},
[&] {
const CKeyingMaterial master_key(random_key.begin(), random_key.end());
const uint256 iv = ConsumeUInt256(fuzzed_data_provider);
(void)DecryptSecret(master_key, cipher_text_ed, iv, plain_text_ed);
},
[&] {
std::optional<CPubKey> random_pub_key = ConsumeDeserializable<CPubKey>(fuzzed_data_provider);
if (!random_pub_key) {
good_data = false;
return;
}
const CPubKey pub_key = *random_pub_key;
const CKeyingMaterial master_key(random_key.begin(), random_key.end());
const std::vector<unsigned char> crypted_secret = ConsumeRandomLengthByteVector(fuzzed_data_provider, 64);
CKey key;
(void)DecryptKey(master_key, crypted_secret, pub_key, key);
});
}
}
} // namespace
} // namespace wallet
|