1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
|
// Copyright (c) 2022 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <policy/feerate.h>
#include <policy/policy.h>
#include <primitives/transaction.h>
#include <test/fuzz/FuzzedDataProvider.h>
#include <test/fuzz/fuzz.h>
#include <test/fuzz/util.h>
#include <test/util/setup_common.h>
#include <wallet/coinselection.h>
#include <numeric>
#include <vector>
namespace wallet {
static void AddCoin(const CAmount& value, int n_input, int n_input_bytes, int locktime, std::vector<COutput>& coins, CFeeRate fee_rate)
{
CMutableTransaction tx;
tx.vout.resize(n_input + 1);
tx.vout[n_input].nValue = value;
tx.nLockTime = locktime; // all transactions get different hashes
coins.emplace_back(COutPoint(tx.GetHash(), n_input), tx.vout.at(n_input), /*depth=*/0, n_input_bytes, /*spendable=*/true, /*solvable=*/true, /*safe=*/true, /*time=*/0, /*from_me=*/true, fee_rate);
}
// Randomly distribute coins to instances of OutputGroup
static void GroupCoins(FuzzedDataProvider& fuzzed_data_provider, const std::vector<COutput>& coins, const CoinSelectionParams& coin_params, bool positive_only, std::vector<OutputGroup>& output_groups)
{
auto output_group = OutputGroup(coin_params);
bool valid_outputgroup{false};
for (auto& coin : coins) {
if (!positive_only || (positive_only && coin.GetEffectiveValue() > 0)) {
output_group.Insert(std::make_shared<COutput>(coin), /*ancestors=*/0, /*descendants=*/0);
}
// If positive_only was specified, nothing was inserted, leading to an empty output group
// that would be invalid for the BnB algorithm
valid_outputgroup = !positive_only || output_group.GetSelectionAmount() > 0;
if (valid_outputgroup && fuzzed_data_provider.ConsumeBool()) {
output_groups.push_back(output_group);
output_group = OutputGroup(coin_params);
valid_outputgroup = false;
}
}
if (valid_outputgroup) output_groups.push_back(output_group);
}
static CAmount CreateCoins(FuzzedDataProvider& fuzzed_data_provider, std::vector<COutput>& utxo_pool, CoinSelectionParams& coin_params, int& next_locktime)
{
CAmount total_balance{0};
LIMITED_WHILE(fuzzed_data_provider.ConsumeBool(), 10000)
{
const int n_input{fuzzed_data_provider.ConsumeIntegralInRange<int>(0, 10)};
const int n_input_bytes{fuzzed_data_provider.ConsumeIntegralInRange<int>(41, 10000)};
const CAmount amount{fuzzed_data_provider.ConsumeIntegralInRange<CAmount>(1, MAX_MONEY)};
if (total_balance + amount >= MAX_MONEY) {
break;
}
AddCoin(amount, n_input, n_input_bytes, ++next_locktime, utxo_pool, coin_params.m_effective_feerate);
total_balance += amount;
}
return total_balance;
}
static SelectionResult ManualSelection(std::vector<COutput>& utxos, const CAmount& total_amount, const bool& subtract_fee_outputs)
{
SelectionResult result(total_amount, SelectionAlgorithm::MANUAL);
std::set<std::shared_ptr<COutput>> utxo_pool;
for (const auto& utxo : utxos) {
utxo_pool.insert(std::make_shared<COutput>(utxo));
}
result.AddInputs(utxo_pool, subtract_fee_outputs);
return result;
}
// Returns true if the result contains an error and the message is not empty
static bool HasErrorMsg(const util::Result<SelectionResult>& res) { return !util::ErrorString(res).empty(); }
FUZZ_TARGET(coin_grinder)
{
FuzzedDataProvider fuzzed_data_provider{buffer.data(), buffer.size()};
std::vector<COutput> utxo_pool;
const CAmount target{fuzzed_data_provider.ConsumeIntegralInRange<CAmount>(1, MAX_MONEY)};
FastRandomContext fast_random_context{ConsumeUInt256(fuzzed_data_provider)};
CoinSelectionParams coin_params{fast_random_context};
coin_params.m_subtract_fee_outputs = fuzzed_data_provider.ConsumeBool();
coin_params.m_long_term_feerate = CFeeRate{ConsumeMoney(fuzzed_data_provider, /*max=*/COIN)};
coin_params.m_effective_feerate = CFeeRate{ConsumeMoney(fuzzed_data_provider, /*max=*/COIN)};
coin_params.change_output_size = fuzzed_data_provider.ConsumeIntegralInRange<int>(10, 1000);
coin_params.change_spend_size = fuzzed_data_provider.ConsumeIntegralInRange<int>(10, 1000);
coin_params.m_cost_of_change= coin_params.m_effective_feerate.GetFee(coin_params.change_output_size) + coin_params.m_long_term_feerate.GetFee(coin_params.change_spend_size);
coin_params.m_change_fee = coin_params.m_effective_feerate.GetFee(coin_params.change_output_size);
// For other results to be comparable to SRD, we must align the change_target with SRD’s hardcoded behavior
coin_params.m_min_change_target = CHANGE_LOWER + coin_params.m_change_fee;
// Create some coins
CAmount total_balance{0};
CAmount max_spendable{0};
int next_locktime{0};
LIMITED_WHILE(fuzzed_data_provider.ConsumeBool(), 10000)
{
const int n_input{fuzzed_data_provider.ConsumeIntegralInRange<int>(0, 10)};
const int n_input_bytes{fuzzed_data_provider.ConsumeIntegralInRange<int>(41, 10000)};
const CAmount amount{fuzzed_data_provider.ConsumeIntegralInRange<CAmount>(1, MAX_MONEY)};
if (total_balance + amount >= MAX_MONEY) {
break;
}
AddCoin(amount, n_input, n_input_bytes, ++next_locktime, utxo_pool, coin_params.m_effective_feerate);
total_balance += amount;
CAmount eff_value = amount - coin_params.m_effective_feerate.GetFee(n_input_bytes);
max_spendable += eff_value;
}
std::vector<OutputGroup> group_pos;
GroupCoins(fuzzed_data_provider, utxo_pool, coin_params, /*positive_only=*/true, group_pos);
// Run coinselection algorithms
auto result_cg = CoinGrinder(group_pos, target, coin_params.m_min_change_target, MAX_STANDARD_TX_WEIGHT);
if (target + coin_params.m_min_change_target > max_spendable || HasErrorMsg(result_cg)) return; // We only need to compare algorithms if CoinGrinder has a solution
assert(result_cg);
if (!result_cg->GetAlgoCompleted()) return; // Bail out if CoinGrinder solution is not optimal
auto result_srd = SelectCoinsSRD(group_pos, target, coin_params.m_change_fee, fast_random_context, MAX_STANDARD_TX_WEIGHT);
if (result_srd && result_srd->GetChange(CHANGE_LOWER, coin_params.m_change_fee) > 0) { // exclude any srd solutions that don’t have change, err on excluding
assert(result_srd->GetWeight() >= result_cg->GetWeight());
}
auto result_knapsack = KnapsackSolver(group_pos, target, coin_params.m_min_change_target, fast_random_context, MAX_STANDARD_TX_WEIGHT);
if (result_knapsack && result_knapsack->GetChange(CHANGE_LOWER, coin_params.m_change_fee) > 0) { // exclude any knapsack solutions that don’t have change, err on excluding
assert(result_knapsack->GetWeight() >= result_cg->GetWeight());
}
}
FUZZ_TARGET(coin_grinder_is_optimal)
{
FuzzedDataProvider fuzzed_data_provider{buffer.data(), buffer.size()};
FastRandomContext fast_random_context{ConsumeUInt256(fuzzed_data_provider)};
CoinSelectionParams coin_params{fast_random_context};
coin_params.m_subtract_fee_outputs = false;
// Set effective feerate up to MAX_MONEY sats per 1'000'000 vB (2'100'000'000 sat/vB = 21'000 BTC/kvB).
coin_params.m_effective_feerate = CFeeRate{ConsumeMoney(fuzzed_data_provider, MAX_MONEY), 1'000'000};
coin_params.m_min_change_target = ConsumeMoney(fuzzed_data_provider);
// Create some coins
CAmount max_spendable{0};
int next_locktime{0};
static constexpr unsigned max_output_groups{16};
std::vector<OutputGroup> group_pos;
LIMITED_WHILE(fuzzed_data_provider.ConsumeBool(), max_output_groups)
{
// With maximum m_effective_feerate and n_input_bytes = 1'000'000, input_fee <= MAX_MONEY.
const int n_input_bytes{fuzzed_data_provider.ConsumeIntegralInRange<int>(1, 1'000'000)};
// Only make UTXOs with positive effective value
const CAmount input_fee = coin_params.m_effective_feerate.GetFee(n_input_bytes);
// Ensure that each UTXO has at least an effective value of 1 sat
const CAmount eff_value{fuzzed_data_provider.ConsumeIntegralInRange<CAmount>(1, MAX_MONEY + group_pos.size() - max_spendable - max_output_groups)};
const CAmount amount{eff_value + input_fee};
std::vector<COutput> temp_utxo_pool;
AddCoin(amount, /*n_input=*/0, n_input_bytes, ++next_locktime, temp_utxo_pool, coin_params.m_effective_feerate);
max_spendable += eff_value;
auto output_group = OutputGroup(coin_params);
output_group.Insert(std::make_shared<COutput>(temp_utxo_pool.at(0)), /*ancestors=*/0, /*descendants=*/0);
group_pos.push_back(output_group);
}
size_t num_groups = group_pos.size();
assert(num_groups <= max_output_groups);
// Only choose targets below max_spendable
const CAmount target{fuzzed_data_provider.ConsumeIntegralInRange<CAmount>(1, std::max(CAmount{1}, max_spendable - coin_params.m_min_change_target))};
// Brute force optimal solution
CAmount best_amount{MAX_MONEY};
int best_weight{std::numeric_limits<int>::max()};
for (uint32_t pattern = 1; (pattern >> num_groups) == 0; ++pattern) {
CAmount subset_amount{0};
int subset_weight{0};
for (unsigned i = 0; i < num_groups; ++i) {
if ((pattern >> i) & 1) {
subset_amount += group_pos[i].GetSelectionAmount();
subset_weight += group_pos[i].m_weight;
}
}
if ((subset_amount >= target + coin_params.m_min_change_target) && (subset_weight < best_weight || (subset_weight == best_weight && subset_amount < best_amount))) {
best_weight = subset_weight;
best_amount = subset_amount;
}
}
if (best_weight < std::numeric_limits<int>::max()) {
// Sufficient funds and acceptable weight: CoinGrinder should find at least one solution
int high_max_selection_weight = fuzzed_data_provider.ConsumeIntegralInRange<int>(best_weight, std::numeric_limits<int>::max());
auto result_cg = CoinGrinder(group_pos, target, coin_params.m_min_change_target, high_max_selection_weight);
assert(result_cg);
assert(result_cg->GetWeight() <= high_max_selection_weight);
assert(result_cg->GetSelectedEffectiveValue() >= target + coin_params.m_min_change_target);
assert(best_weight < result_cg->GetWeight() || (best_weight == result_cg->GetWeight() && best_amount <= result_cg->GetSelectedEffectiveValue()));
if (result_cg->GetAlgoCompleted()) {
// If CoinGrinder exhausted the search space, it must return the optimal solution
assert(best_weight == result_cg->GetWeight());
assert(best_amount == result_cg->GetSelectedEffectiveValue());
}
}
// CoinGrinder cannot ever find a better solution than the brute-forced best, or there is none in the first place
int low_max_selection_weight = fuzzed_data_provider.ConsumeIntegralInRange<int>(0, best_weight - 1);
auto result_cg = CoinGrinder(group_pos, target, coin_params.m_min_change_target, low_max_selection_weight);
// Max_weight should have been exceeded, or there were insufficient funds
assert(!result_cg);
}
FUZZ_TARGET(coinselection)
{
FuzzedDataProvider fuzzed_data_provider{buffer.data(), buffer.size()};
std::vector<COutput> utxo_pool;
const CFeeRate long_term_fee_rate{ConsumeMoney(fuzzed_data_provider, /*max=*/COIN)};
const CFeeRate effective_fee_rate{ConsumeMoney(fuzzed_data_provider, /*max=*/COIN)};
// Discard feerate must be at least dust relay feerate
const CFeeRate discard_fee_rate{fuzzed_data_provider.ConsumeIntegralInRange<CAmount>(DUST_RELAY_TX_FEE, COIN)};
const CAmount target{fuzzed_data_provider.ConsumeIntegralInRange<CAmount>(1, MAX_MONEY)};
const bool subtract_fee_outputs{fuzzed_data_provider.ConsumeBool()};
FastRandomContext fast_random_context{ConsumeUInt256(fuzzed_data_provider)};
CoinSelectionParams coin_params{fast_random_context};
coin_params.m_subtract_fee_outputs = subtract_fee_outputs;
coin_params.m_long_term_feerate = long_term_fee_rate;
coin_params.m_effective_feerate = effective_fee_rate;
coin_params.change_output_size = fuzzed_data_provider.ConsumeIntegralInRange(1, MAX_SCRIPT_SIZE);
coin_params.m_change_fee = effective_fee_rate.GetFee(coin_params.change_output_size);
coin_params.m_discard_feerate = discard_fee_rate;
coin_params.change_spend_size = fuzzed_data_provider.ConsumeIntegralInRange<int>(41, 1000);
const auto change_spend_fee{coin_params.m_discard_feerate.GetFee(coin_params.change_spend_size)};
coin_params.m_cost_of_change = coin_params.m_change_fee + change_spend_fee;
CScript change_out_script = CScript() << std::vector<unsigned char>(coin_params.change_output_size, OP_TRUE);
const auto dust{GetDustThreshold(CTxOut{/*nValueIn=*/0, change_out_script}, coin_params.m_discard_feerate)};
coin_params.min_viable_change = std::max(change_spend_fee + 1, dust);
int next_locktime{0};
CAmount total_balance{CreateCoins(fuzzed_data_provider, utxo_pool, coin_params, next_locktime)};
std::vector<OutputGroup> group_pos;
GroupCoins(fuzzed_data_provider, utxo_pool, coin_params, /*positive_only=*/true, group_pos);
std::vector<OutputGroup> group_all;
GroupCoins(fuzzed_data_provider, utxo_pool, coin_params, /*positive_only=*/false, group_all);
for (const OutputGroup& group : group_all) {
const CoinEligibilityFilter filter{fuzzed_data_provider.ConsumeIntegral<int>(), fuzzed_data_provider.ConsumeIntegral<int>(), fuzzed_data_provider.ConsumeIntegral<uint64_t>()};
(void)group.EligibleForSpending(filter);
}
int max_selection_weight = fuzzed_data_provider.ConsumeIntegralInRange<int>(0, std::numeric_limits<int>::max());
// Run coinselection algorithms
auto result_bnb = coin_params.m_subtract_fee_outputs ? util::Error{Untranslated("BnB disabled when SFFO is enabled")} :
SelectCoinsBnB(group_pos, target, coin_params.m_cost_of_change, max_selection_weight);
if (result_bnb) {
assert(result_bnb->GetChange(coin_params.min_viable_change, coin_params.m_change_fee) == 0);
assert(result_bnb->GetSelectedValue() >= target);
assert(result_bnb->GetWeight() <= max_selection_weight);
(void)result_bnb->GetShuffledInputVector();
(void)result_bnb->GetInputSet();
}
auto result_srd = SelectCoinsSRD(group_pos, target, coin_params.m_change_fee, fast_random_context, max_selection_weight);
if (result_srd) {
assert(result_srd->GetSelectedValue() >= target);
assert(result_srd->GetChange(CHANGE_LOWER, coin_params.m_change_fee) > 0); // Demonstrate that SRD creates change of at least CHANGE_LOWER
assert(result_srd->GetWeight() <= max_selection_weight);
result_srd->RecalculateWaste(coin_params.min_viable_change, coin_params.m_cost_of_change, coin_params.m_change_fee);
(void)result_srd->GetShuffledInputVector();
(void)result_srd->GetInputSet();
}
CAmount change_target{GenerateChangeTarget(target, coin_params.m_change_fee, fast_random_context)};
auto result_knapsack = KnapsackSolver(group_all, target, change_target, fast_random_context, max_selection_weight);
if (result_knapsack) {
assert(result_knapsack->GetSelectedValue() >= target);
assert(result_knapsack->GetWeight() <= max_selection_weight);
result_knapsack->RecalculateWaste(coin_params.min_viable_change, coin_params.m_cost_of_change, coin_params.m_change_fee);
(void)result_knapsack->GetShuffledInputVector();
(void)result_knapsack->GetInputSet();
}
// If the total balance is sufficient for the target and we are not using
// effective values, Knapsack should always find a solution (unless the selection exceeded the max tx weight).
if (total_balance >= target && subtract_fee_outputs && !HasErrorMsg(result_knapsack)) {
assert(result_knapsack);
}
std::vector<COutput> utxos;
std::vector<util::Result<SelectionResult>> results;
results.emplace_back(std::move(result_srd));
results.emplace_back(std::move(result_knapsack));
results.emplace_back(std::move(result_bnb));
CAmount new_total_balance{CreateCoins(fuzzed_data_provider, utxos, coin_params, next_locktime)};
if (new_total_balance > 0) {
std::set<std::shared_ptr<COutput>> new_utxo_pool;
for (const auto& utxo : utxos) {
new_utxo_pool.insert(std::make_shared<COutput>(utxo));
}
for (auto& result : results) {
if (!result) continue;
const auto weight{result->GetWeight()};
result->AddInputs(new_utxo_pool, subtract_fee_outputs);
assert(result->GetWeight() > weight);
}
}
std::vector<COutput> manual_inputs;
CAmount manual_balance{CreateCoins(fuzzed_data_provider, manual_inputs, coin_params, next_locktime)};
if (manual_balance == 0) return;
auto manual_selection{ManualSelection(manual_inputs, manual_balance, coin_params.m_subtract_fee_outputs)};
for (auto& result : results) {
if (!result) continue;
const CAmount old_target{result->GetTarget()};
const std::set<std::shared_ptr<COutput>> input_set{result->GetInputSet()};
const int old_weight{result->GetWeight()};
result->Merge(manual_selection);
assert(result->GetInputSet().size() == input_set.size() + manual_inputs.size());
assert(result->GetTarget() == old_target + manual_selection.GetTarget());
assert(result->GetWeight() == old_weight + manual_selection.GetWeight());
}
}
} // namespace wallet
|