1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
|
// Copyright (c) 2017-2022 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <wallet/coinselection.h>
#include <common/system.h>
#include <consensus/amount.h>
#include <consensus/consensus.h>
#include <interfaces/chain.h>
#include <logging.h>
#include <policy/feerate.h>
#include <util/check.h>
#include <util/moneystr.h>
#include <numeric>
#include <optional>
#include <queue>
namespace wallet {
// Common selection error across the algorithms
static util::Result<SelectionResult> ErrorMaxWeightExceeded()
{
return util::Error{_("The inputs size exceeds the maximum weight. "
"Please try sending a smaller amount or manually consolidating your wallet's UTXOs")};
}
// Descending order comparator
struct {
bool operator()(const OutputGroup& a, const OutputGroup& b) const
{
return a.GetSelectionAmount() > b.GetSelectionAmount();
}
} descending;
/*
* This is the Branch and Bound Coin Selection algorithm designed by Murch. It searches for an input
* set that can pay for the spending target and does not exceed the spending target by more than the
* cost of creating and spending a change output. The algorithm uses a depth-first search on a binary
* tree. In the binary tree, each node corresponds to the inclusion or the omission of a UTXO. UTXOs
* are sorted by their effective values and the tree is explored deterministically per the inclusion
* branch first. At each node, the algorithm checks whether the selection is within the target range.
* While the selection has not reached the target range, more UTXOs are included. When a selection's
* value exceeds the target range, the complete subtree deriving from this selection can be omitted.
* At that point, the last included UTXO is deselected and the corresponding omission branch explored
* instead. The search ends after the complete tree has been searched or after a limited number of tries.
*
* The search continues to search for better solutions after one solution has been found. The best
* solution is chosen by minimizing the waste metric. The waste metric is defined as the cost to
* spend the current inputs at the given fee rate minus the long term expected cost to spend the
* inputs, plus the amount by which the selection exceeds the spending target:
*
* waste = selectionTotal - target + inputs × (currentFeeRate - longTermFeeRate)
*
* The algorithm uses two additional optimizations. A lookahead keeps track of the total value of
* the unexplored UTXOs. A subtree is not explored if the lookahead indicates that the target range
* cannot be reached. Further, it is unnecessary to test equivalent combinations. This allows us
* to skip testing the inclusion of UTXOs that match the effective value and waste of an omitted
* predecessor.
*
* The Branch and Bound algorithm is described in detail in Murch's Master Thesis:
* https://murch.one/wp-content/uploads/2016/11/erhardt2016coinselection.pdf
*
* @param const std::vector<OutputGroup>& utxo_pool The set of UTXO groups that we are choosing from.
* These UTXO groups will be sorted in descending order by effective value and the OutputGroups'
* values are their effective values.
* @param const CAmount& selection_target This is the value that we want to select. It is the lower
* bound of the range.
* @param const CAmount& cost_of_change This is the cost of creating and spending a change output.
* This plus selection_target is the upper bound of the range.
* @returns The result of this coin selection algorithm, or std::nullopt
*/
static const size_t TOTAL_TRIES = 100000;
util::Result<SelectionResult> SelectCoinsBnB(std::vector<OutputGroup>& utxo_pool, const CAmount& selection_target, const CAmount& cost_of_change,
int max_weight)
{
SelectionResult result(selection_target, SelectionAlgorithm::BNB);
CAmount curr_value = 0;
std::vector<size_t> curr_selection; // selected utxo indexes
int curr_selection_weight = 0; // sum of selected utxo weight
// Calculate curr_available_value
CAmount curr_available_value = 0;
for (const OutputGroup& utxo : utxo_pool) {
// Assert that this utxo is not negative. It should never be negative,
// effective value calculation should have removed it
assert(utxo.GetSelectionAmount() > 0);
curr_available_value += utxo.GetSelectionAmount();
}
if (curr_available_value < selection_target) {
return util::Error();
}
// Sort the utxo_pool
std::sort(utxo_pool.begin(), utxo_pool.end(), descending);
CAmount curr_waste = 0;
std::vector<size_t> best_selection;
CAmount best_waste = MAX_MONEY;
bool is_feerate_high = utxo_pool.at(0).fee > utxo_pool.at(0).long_term_fee;
bool max_tx_weight_exceeded = false;
// Depth First search loop for choosing the UTXOs
for (size_t curr_try = 0, utxo_pool_index = 0; curr_try < TOTAL_TRIES; ++curr_try, ++utxo_pool_index) {
// Conditions for starting a backtrack
bool backtrack = false;
if (curr_value + curr_available_value < selection_target || // Cannot possibly reach target with the amount remaining in the curr_available_value.
curr_value > selection_target + cost_of_change || // Selected value is out of range, go back and try other branch
(curr_waste > best_waste && is_feerate_high)) { // Don't select things which we know will be more wasteful if the waste is increasing
backtrack = true;
} else if (curr_selection_weight > max_weight) { // Exceeding weight for standard tx, cannot find more solutions by adding more inputs
max_tx_weight_exceeded = true; // at least one selection attempt exceeded the max weight
backtrack = true;
} else if (curr_value >= selection_target) { // Selected value is within range
curr_waste += (curr_value - selection_target); // This is the excess value which is added to the waste for the below comparison
// Adding another UTXO after this check could bring the waste down if the long term fee is higher than the current fee.
// However we are not going to explore that because this optimization for the waste is only done when we have hit our target
// value. Adding any more UTXOs will be just burning the UTXO; it will go entirely to fees. Thus we aren't going to
// explore any more UTXOs to avoid burning money like that.
if (curr_waste <= best_waste) {
best_selection = curr_selection;
best_waste = curr_waste;
}
curr_waste -= (curr_value - selection_target); // Remove the excess value as we will be selecting different coins now
backtrack = true;
}
if (backtrack) { // Backtracking, moving backwards
if (curr_selection.empty()) { // We have walked back to the first utxo and no branch is untraversed. All solutions searched
break;
}
// Add omitted UTXOs back to lookahead before traversing the omission branch of last included UTXO.
for (--utxo_pool_index; utxo_pool_index > curr_selection.back(); --utxo_pool_index) {
curr_available_value += utxo_pool.at(utxo_pool_index).GetSelectionAmount();
}
// Output was included on previous iterations, try excluding now.
assert(utxo_pool_index == curr_selection.back());
OutputGroup& utxo = utxo_pool.at(utxo_pool_index);
curr_value -= utxo.GetSelectionAmount();
curr_waste -= utxo.fee - utxo.long_term_fee;
curr_selection_weight -= utxo.m_weight;
curr_selection.pop_back();
} else { // Moving forwards, continuing down this branch
OutputGroup& utxo = utxo_pool.at(utxo_pool_index);
// Remove this utxo from the curr_available_value utxo amount
curr_available_value -= utxo.GetSelectionAmount();
if (curr_selection.empty() ||
// The previous index is included and therefore not relevant for exclusion shortcut
(utxo_pool_index - 1) == curr_selection.back() ||
// Avoid searching a branch if the previous UTXO has the same value and same waste and was excluded.
// Since the ratio of fee to long term fee is the same, we only need to check if one of those values match in order to know that the waste is the same.
utxo.GetSelectionAmount() != utxo_pool.at(utxo_pool_index - 1).GetSelectionAmount() ||
utxo.fee != utxo_pool.at(utxo_pool_index - 1).fee)
{
// Inclusion branch first (Largest First Exploration)
curr_selection.push_back(utxo_pool_index);
curr_value += utxo.GetSelectionAmount();
curr_waste += utxo.fee - utxo.long_term_fee;
curr_selection_weight += utxo.m_weight;
}
}
}
// Check for solution
if (best_selection.empty()) {
return max_tx_weight_exceeded ? ErrorMaxWeightExceeded() : util::Error();
}
// Set output set
for (const size_t& i : best_selection) {
result.AddInput(utxo_pool.at(i));
}
result.ComputeAndSetWaste(cost_of_change, cost_of_change, CAmount{0});
assert(best_waste == result.GetWaste());
return result;
}
class MinOutputGroupComparator
{
public:
int operator() (const OutputGroup& group1, const OutputGroup& group2) const
{
return group1.GetSelectionAmount() > group2.GetSelectionAmount();
}
};
util::Result<SelectionResult> SelectCoinsSRD(const std::vector<OutputGroup>& utxo_pool, CAmount target_value, CAmount change_fee, FastRandomContext& rng,
int max_weight)
{
SelectionResult result(target_value, SelectionAlgorithm::SRD);
std::priority_queue<OutputGroup, std::vector<OutputGroup>, MinOutputGroupComparator> heap;
// Include change for SRD as we want to avoid making really small change if the selection just
// barely meets the target. Just use the lower bound change target instead of the randomly
// generated one, since SRD will result in a random change amount anyway; avoid making the
// target needlessly large.
target_value += CHANGE_LOWER + change_fee;
std::vector<size_t> indexes;
indexes.resize(utxo_pool.size());
std::iota(indexes.begin(), indexes.end(), 0);
Shuffle(indexes.begin(), indexes.end(), rng);
CAmount selected_eff_value = 0;
int weight = 0;
bool max_tx_weight_exceeded = false;
for (const size_t i : indexes) {
const OutputGroup& group = utxo_pool.at(i);
Assume(group.GetSelectionAmount() > 0);
// Add group to selection
heap.push(group);
selected_eff_value += group.GetSelectionAmount();
weight += group.m_weight;
// If the selection weight exceeds the maximum allowed size, remove the least valuable inputs until we
// are below max weight.
if (weight > max_weight) {
max_tx_weight_exceeded = true; // mark it in case we don't find any useful result.
do {
const OutputGroup& to_remove_group = heap.top();
selected_eff_value -= to_remove_group.GetSelectionAmount();
weight -= to_remove_group.m_weight;
heap.pop();
} while (!heap.empty() && weight > max_weight);
}
// Now check if we are above the target
if (selected_eff_value >= target_value) {
// Result found, add it.
while (!heap.empty()) {
result.AddInput(heap.top());
heap.pop();
}
return result;
}
}
return max_tx_weight_exceeded ? ErrorMaxWeightExceeded() : util::Error();
}
/** Find a subset of the OutputGroups that is at least as large as, but as close as possible to, the
* target amount; solve subset sum.
* param@[in] groups OutputGroups to choose from, sorted by value in descending order.
* param@[in] nTotalLower Total (effective) value of the UTXOs in groups.
* param@[in] nTargetValue Subset sum target, not including change.
* param@[out] vfBest Boolean vector representing the subset chosen that is closest to
* nTargetValue, with indices corresponding to groups. If the ith
* entry is true, that means the ith group in groups was selected.
* param@[out] nBest Total amount of subset chosen that is closest to nTargetValue.
* param@[in] iterations Maximum number of tries.
*/
static void ApproximateBestSubset(FastRandomContext& insecure_rand, const std::vector<OutputGroup>& groups,
const CAmount& nTotalLower, const CAmount& nTargetValue,
std::vector<char>& vfBest, CAmount& nBest, int iterations = 1000)
{
std::vector<char> vfIncluded;
// Worst case "best" approximation is just all of the groups.
vfBest.assign(groups.size(), true);
nBest = nTotalLower;
for (int nRep = 0; nRep < iterations && nBest != nTargetValue; nRep++)
{
vfIncluded.assign(groups.size(), false);
CAmount nTotal = 0;
bool fReachedTarget = false;
for (int nPass = 0; nPass < 2 && !fReachedTarget; nPass++)
{
for (unsigned int i = 0; i < groups.size(); i++)
{
//The solver here uses a randomized algorithm,
//the randomness serves no real security purpose but is just
//needed to prevent degenerate behavior and it is important
//that the rng is fast. We do not use a constant random sequence,
//because there may be some privacy improvement by making
//the selection random.
if (nPass == 0 ? insecure_rand.randbool() : !vfIncluded[i])
{
nTotal += groups[i].GetSelectionAmount();
vfIncluded[i] = true;
if (nTotal >= nTargetValue)
{
fReachedTarget = true;
// If the total is between nTargetValue and nBest, it's our new best
// approximation.
if (nTotal < nBest)
{
nBest = nTotal;
vfBest = vfIncluded;
}
nTotal -= groups[i].GetSelectionAmount();
vfIncluded[i] = false;
}
}
}
}
}
}
util::Result<SelectionResult> KnapsackSolver(std::vector<OutputGroup>& groups, const CAmount& nTargetValue,
CAmount change_target, FastRandomContext& rng, int max_weight)
{
SelectionResult result(nTargetValue, SelectionAlgorithm::KNAPSACK);
// List of values less than target
std::optional<OutputGroup> lowest_larger;
// Groups with selection amount smaller than the target and any change we might produce.
// Don't include groups larger than this, because they will only cause us to overshoot.
std::vector<OutputGroup> applicable_groups;
CAmount nTotalLower = 0;
Shuffle(groups.begin(), groups.end(), rng);
for (const OutputGroup& group : groups) {
if (group.GetSelectionAmount() == nTargetValue) {
result.AddInput(group);
return result;
} else if (group.GetSelectionAmount() < nTargetValue + change_target) {
applicable_groups.push_back(group);
nTotalLower += group.GetSelectionAmount();
} else if (!lowest_larger || group.GetSelectionAmount() < lowest_larger->GetSelectionAmount()) {
lowest_larger = group;
}
}
if (nTotalLower == nTargetValue) {
for (const auto& group : applicable_groups) {
result.AddInput(group);
}
return result;
}
if (nTotalLower < nTargetValue) {
if (!lowest_larger) return util::Error();
result.AddInput(*lowest_larger);
return result;
}
// Solve subset sum by stochastic approximation
std::sort(applicable_groups.begin(), applicable_groups.end(), descending);
std::vector<char> vfBest;
CAmount nBest;
ApproximateBestSubset(rng, applicable_groups, nTotalLower, nTargetValue, vfBest, nBest);
if (nBest != nTargetValue && nTotalLower >= nTargetValue + change_target) {
ApproximateBestSubset(rng, applicable_groups, nTotalLower, nTargetValue + change_target, vfBest, nBest);
}
// If we have a bigger coin and (either the stochastic approximation didn't find a good solution,
// or the next bigger coin is closer), return the bigger coin
if (lowest_larger &&
((nBest != nTargetValue && nBest < nTargetValue + change_target) || lowest_larger->GetSelectionAmount() <= nBest)) {
result.AddInput(*lowest_larger);
} else {
for (unsigned int i = 0; i < applicable_groups.size(); i++) {
if (vfBest[i]) {
result.AddInput(applicable_groups[i]);
}
}
// If the result exceeds the maximum allowed size, return closest UTXO above the target
if (result.GetWeight() > max_weight) {
// No coin above target, nothing to do.
if (!lowest_larger) return ErrorMaxWeightExceeded();
// Return closest UTXO above target
result.Clear();
result.AddInput(*lowest_larger);
}
if (LogAcceptCategory(BCLog::SELECTCOINS, BCLog::Level::Debug)) {
std::string log_message{"Coin selection best subset: "};
for (unsigned int i = 0; i < applicable_groups.size(); i++) {
if (vfBest[i]) {
log_message += strprintf("%s ", FormatMoney(applicable_groups[i].m_value));
}
}
LogPrint(BCLog::SELECTCOINS, "%stotal %s\n", log_message, FormatMoney(nBest));
}
}
return result;
}
/******************************************************************************
OutputGroup
******************************************************************************/
void OutputGroup::Insert(const std::shared_ptr<COutput>& output, size_t ancestors, size_t descendants) {
m_outputs.push_back(output);
auto& coin = *m_outputs.back();
fee += coin.GetFee();
coin.long_term_fee = coin.input_bytes < 0 ? 0 : m_long_term_feerate.GetFee(coin.input_bytes);
long_term_fee += coin.long_term_fee;
effective_value += coin.GetEffectiveValue();
m_from_me &= coin.from_me;
m_value += coin.txout.nValue;
m_depth = std::min(m_depth, coin.depth);
// ancestors here express the number of ancestors the new coin will end up having, which is
// the sum, rather than the max; this will overestimate in the cases where multiple inputs
// have common ancestors
m_ancestors += ancestors;
// descendants is the count as seen from the top ancestor, not the descendants as seen from the
// coin itself; thus, this value is counted as the max, not the sum
m_descendants = std::max(m_descendants, descendants);
if (output->input_bytes > 0) {
m_weight += output->input_bytes * WITNESS_SCALE_FACTOR;
}
}
bool OutputGroup::EligibleForSpending(const CoinEligibilityFilter& eligibility_filter) const
{
return m_depth >= (m_from_me ? eligibility_filter.conf_mine : eligibility_filter.conf_theirs)
&& m_ancestors <= eligibility_filter.max_ancestors
&& m_descendants <= eligibility_filter.max_descendants;
}
CAmount OutputGroup::GetSelectionAmount() const
{
return m_subtract_fee_outputs ? m_value : effective_value;
}
void OutputGroupTypeMap::Push(const OutputGroup& group, OutputType type, bool insert_positive, bool insert_mixed)
{
if (group.m_outputs.empty()) return;
Groups& groups = groups_by_type[type];
if (insert_positive && group.GetSelectionAmount() > 0) {
groups.positive_group.emplace_back(group);
all_groups.positive_group.emplace_back(group);
}
if (insert_mixed) {
groups.mixed_group.emplace_back(group);
all_groups.mixed_group.emplace_back(group);
}
}
CAmount SelectionResult::GetSelectionWaste(CAmount change_cost, CAmount target, bool use_effective_value)
{
// This function should not be called with empty inputs as that would mean the selection failed
assert(!m_selected_inputs.empty());
// Always consider the cost of spending an input now vs in the future.
CAmount waste = 0;
for (const auto& coin_ptr : m_selected_inputs) {
const COutput& coin = *coin_ptr;
waste += coin.GetFee() - coin.long_term_fee;
}
// Bump fee of whole selection may diverge from sum of individual bump fees
waste -= bump_fee_group_discount;
if (change_cost) {
// Consider the cost of making change and spending it in the future
// If we aren't making change, the caller should've set change_cost to 0
assert(change_cost > 0);
waste += change_cost;
} else {
// When we are not making change (change_cost == 0), consider the excess we are throwing away to fees
CAmount selected_effective_value = use_effective_value ? GetSelectedEffectiveValue() : GetSelectedValue();
assert(selected_effective_value >= target);
waste += selected_effective_value - target;
}
return waste;
}
CAmount GenerateChangeTarget(const CAmount payment_value, const CAmount change_fee, FastRandomContext& rng)
{
if (payment_value <= CHANGE_LOWER / 2) {
return change_fee + CHANGE_LOWER;
} else {
// random value between 50ksat and min (payment_value * 2, 1milsat)
const auto upper_bound = std::min(payment_value * 2, CHANGE_UPPER);
return change_fee + rng.randrange(upper_bound - CHANGE_LOWER) + CHANGE_LOWER;
}
}
void SelectionResult::SetBumpFeeDiscount(const CAmount discount)
{
// Overlapping ancestry can only lower the fees, not increase them
assert (discount >= 0);
bump_fee_group_discount = discount;
}
void SelectionResult::ComputeAndSetWaste(const CAmount min_viable_change, const CAmount change_cost, const CAmount change_fee)
{
const CAmount change = GetChange(min_viable_change, change_fee);
if (change > 0) {
m_waste = GetSelectionWaste(change_cost, m_target, m_use_effective);
} else {
m_waste = GetSelectionWaste(0, m_target, m_use_effective);
}
}
CAmount SelectionResult::GetWaste() const
{
return *Assert(m_waste);
}
CAmount SelectionResult::GetSelectedValue() const
{
return std::accumulate(m_selected_inputs.cbegin(), m_selected_inputs.cend(), CAmount{0}, [](CAmount sum, const auto& coin) { return sum + coin->txout.nValue; });
}
CAmount SelectionResult::GetSelectedEffectiveValue() const
{
return std::accumulate(m_selected_inputs.cbegin(), m_selected_inputs.cend(), CAmount{0}, [](CAmount sum, const auto& coin) { return sum + coin->GetEffectiveValue(); }) + bump_fee_group_discount;
}
CAmount SelectionResult::GetTotalBumpFees() const
{
return std::accumulate(m_selected_inputs.cbegin(), m_selected_inputs.cend(), CAmount{0}, [](CAmount sum, const auto& coin) { return sum + coin->ancestor_bump_fees; }) - bump_fee_group_discount;
}
void SelectionResult::Clear()
{
m_selected_inputs.clear();
m_waste.reset();
m_weight = 0;
}
void SelectionResult::AddInput(const OutputGroup& group)
{
// As it can fail, combine inputs first
InsertInputs(group.m_outputs);
m_use_effective = !group.m_subtract_fee_outputs;
m_weight += group.m_weight;
}
void SelectionResult::AddInputs(const std::set<std::shared_ptr<COutput>>& inputs, bool subtract_fee_outputs)
{
// As it can fail, combine inputs first
InsertInputs(inputs);
m_use_effective = !subtract_fee_outputs;
m_weight += std::accumulate(inputs.cbegin(), inputs.cend(), 0, [](int sum, const auto& coin) {
return sum + std::max(coin->input_bytes, 0) * WITNESS_SCALE_FACTOR;
});
}
void SelectionResult::Merge(const SelectionResult& other)
{
// As it can fail, combine inputs first
InsertInputs(other.m_selected_inputs);
m_target += other.m_target;
m_use_effective |= other.m_use_effective;
if (m_algo == SelectionAlgorithm::MANUAL) {
m_algo = other.m_algo;
}
m_weight += other.m_weight;
}
const std::set<std::shared_ptr<COutput>>& SelectionResult::GetInputSet() const
{
return m_selected_inputs;
}
std::vector<std::shared_ptr<COutput>> SelectionResult::GetShuffledInputVector() const
{
std::vector<std::shared_ptr<COutput>> coins(m_selected_inputs.begin(), m_selected_inputs.end());
Shuffle(coins.begin(), coins.end(), FastRandomContext());
return coins;
}
bool SelectionResult::operator<(SelectionResult other) const
{
Assert(m_waste.has_value());
Assert(other.m_waste.has_value());
// As this operator is only used in std::min_element, we want the result that has more inputs when waste are equal.
return *m_waste < *other.m_waste || (*m_waste == *other.m_waste && m_selected_inputs.size() > other.m_selected_inputs.size());
}
std::string COutput::ToString() const
{
return strprintf("COutput(%s, %d, %d) [%s]", outpoint.hash.ToString(), outpoint.n, depth, FormatMoney(txout.nValue));
}
std::string GetAlgorithmName(const SelectionAlgorithm algo)
{
switch (algo)
{
case SelectionAlgorithm::BNB: return "bnb";
case SelectionAlgorithm::KNAPSACK: return "knapsack";
case SelectionAlgorithm::SRD: return "srd";
case SelectionAlgorithm::MANUAL: return "manual";
// No default case to allow for compiler to warn
}
assert(false);
}
CAmount SelectionResult::GetChange(const CAmount min_viable_change, const CAmount change_fee) const
{
// change = SUM(inputs) - SUM(outputs) - fees
// 1) With SFFO we don't pay any fees
// 2) Otherwise we pay all the fees:
// - input fees are covered by GetSelectedEffectiveValue()
// - non_input_fee is included in m_target
// - change_fee
const CAmount change = m_use_effective
? GetSelectedEffectiveValue() - m_target - change_fee
: GetSelectedValue() - m_target;
if (change < min_viable_change) {
return 0;
}
return change;
}
} // namespace wallet
|