1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
|
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2021 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#if defined(HAVE_CONFIG_H)
#include <config/bitcoin-config.h>
#endif
#include <compat.h>
#include <util/time.h>
#include <util/check.h>
#include <atomic>
#include <boost/date_time/posix_time/posix_time.hpp>
#include <ctime>
#include <thread>
#include <tinyformat.h>
void UninterruptibleSleep(const std::chrono::microseconds& n) { std::this_thread::sleep_for(n); }
static std::atomic<int64_t> nMockTime(0); //!< For testing
bool ChronoSanityCheck()
{
// std::chrono::system_clock.time_since_epoch and time_t(0) are not guaranteed
// to use the Unix epoch timestamp, prior to C++20, but in practice they almost
// certainly will. Any differing behavior will be assumed to be an error, unless
// certain platforms prove to consistently deviate, at which point we'll cope
// with it by adding offsets.
// Create a new clock from time_t(0) and make sure that it represents 0
// seconds from the system_clock's time_since_epoch. Then convert that back
// to a time_t and verify that it's the same as before.
const time_t time_t_epoch{};
auto clock = std::chrono::system_clock::from_time_t(time_t_epoch);
if (std::chrono::duration_cast<std::chrono::seconds>(clock.time_since_epoch()).count() != 0) {
return false;
}
time_t time_val = std::chrono::system_clock::to_time_t(clock);
if (time_val != time_t_epoch) {
return false;
}
// Check that the above zero time is actually equal to the known unix timestamp.
struct tm epoch;
#ifdef HAVE_GMTIME_R
if (gmtime_r(&time_val, &epoch) == nullptr) {
#else
if (gmtime_s(&epoch, &time_val) != 0) {
#endif
return false;
}
if ((epoch.tm_sec != 0) ||
(epoch.tm_min != 0) ||
(epoch.tm_hour != 0) ||
(epoch.tm_mday != 1) ||
(epoch.tm_mon != 0) ||
(epoch.tm_year != 70)) {
return false;
}
return true;
}
template <typename T>
T GetTime()
{
const std::chrono::seconds mocktime{nMockTime.load(std::memory_order_relaxed)};
const auto ret{
mocktime.count() ?
mocktime :
std::chrono::duration_cast<T>(std::chrono::system_clock::now().time_since_epoch())};
assert(ret > 0s);
return ret;
}
template std::chrono::seconds GetTime();
template std::chrono::milliseconds GetTime();
template std::chrono::microseconds GetTime();
template <typename T>
static T GetSystemTime()
{
const auto now = std::chrono::duration_cast<T>(std::chrono::system_clock::now().time_since_epoch());
assert(now.count() > 0);
return now;
}
void SetMockTime(int64_t nMockTimeIn)
{
Assert(nMockTimeIn >= 0);
nMockTime.store(nMockTimeIn, std::memory_order_relaxed);
}
void SetMockTime(std::chrono::seconds mock_time_in)
{
nMockTime.store(mock_time_in.count(), std::memory_order_relaxed);
}
std::chrono::seconds GetMockTime()
{
return std::chrono::seconds(nMockTime.load(std::memory_order_relaxed));
}
int64_t GetTimeMillis()
{
return int64_t{GetSystemTime<std::chrono::milliseconds>().count()};
}
int64_t GetTimeMicros()
{
return int64_t{GetSystemTime<std::chrono::microseconds>().count()};
}
int64_t GetTimeSeconds()
{
return int64_t{GetSystemTime<std::chrono::seconds>().count()};
}
int64_t GetTime() { return GetTime<std::chrono::seconds>().count(); }
std::string FormatISO8601DateTime(int64_t nTime) {
struct tm ts;
time_t time_val = nTime;
#ifdef HAVE_GMTIME_R
if (gmtime_r(&time_val, &ts) == nullptr) {
#else
if (gmtime_s(&ts, &time_val) != 0) {
#endif
return {};
}
return strprintf("%04i-%02i-%02iT%02i:%02i:%02iZ", ts.tm_year + 1900, ts.tm_mon + 1, ts.tm_mday, ts.tm_hour, ts.tm_min, ts.tm_sec);
}
std::string FormatISO8601Date(int64_t nTime) {
struct tm ts;
time_t time_val = nTime;
#ifdef HAVE_GMTIME_R
if (gmtime_r(&time_val, &ts) == nullptr) {
#else
if (gmtime_s(&ts, &time_val) != 0) {
#endif
return {};
}
return strprintf("%04i-%02i-%02i", ts.tm_year + 1900, ts.tm_mon + 1, ts.tm_mday);
}
int64_t ParseISO8601DateTime(const std::string& str)
{
static const boost::posix_time::ptime epoch = boost::posix_time::from_time_t(0);
static const std::locale loc(std::locale::classic(),
new boost::posix_time::time_input_facet("%Y-%m-%dT%H:%M:%SZ"));
std::istringstream iss(str);
iss.imbue(loc);
boost::posix_time::ptime ptime(boost::date_time::not_a_date_time);
iss >> ptime;
if (ptime.is_not_a_date_time() || epoch > ptime)
return 0;
return (ptime - epoch).total_seconds();
}
struct timeval MillisToTimeval(int64_t nTimeout)
{
struct timeval timeout;
timeout.tv_sec = nTimeout / 1000;
timeout.tv_usec = (nTimeout % 1000) * 1000;
return timeout;
}
struct timeval MillisToTimeval(std::chrono::milliseconds ms)
{
return MillisToTimeval(count_milliseconds(ms));
}
|