1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
|
// Copyright (c) 2020-2021 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <txrequest.h>
#include <crypto/siphash.h>
#include <net.h>
#include <primitives/transaction.h>
#include <random.h>
#include <uint256.h>
#include <boost/multi_index/indexed_by.hpp>
#include <boost/multi_index/ordered_index.hpp>
#include <boost/multi_index/sequenced_index.hpp>
#include <boost/multi_index/tag.hpp>
#include <boost/multi_index_container.hpp>
#include <boost/tuple/tuple.hpp>
#include <chrono>
#include <unordered_map>
#include <utility>
#include <assert.h>
namespace {
/** The various states a (txhash,peer) pair can be in.
*
* Note that CANDIDATE is split up into 3 substates (DELAYED, BEST, READY), allowing more efficient implementation.
* Also note that the sorting order of ByTxHashView relies on the specific order of values in this enum.
*
* Expected behaviour is:
* - When first announced by a peer, the state is CANDIDATE_DELAYED until reqtime is reached.
* - Announcements that have reached their reqtime but not been requested will be either CANDIDATE_READY or
* CANDIDATE_BEST. Neither of those has an expiration time; they remain in that state until they're requested or
* no longer needed. CANDIDATE_READY announcements are promoted to CANDIDATE_BEST when they're the best one left.
* - When requested, an announcement will be in state REQUESTED until expiry is reached.
* - If expiry is reached, or the peer replies to the request (either with NOTFOUND or the tx), the state becomes
* COMPLETED.
*/
enum class State : uint8_t {
/** A CANDIDATE announcement whose reqtime is in the future. */
CANDIDATE_DELAYED,
/** A CANDIDATE announcement that's not CANDIDATE_DELAYED or CANDIDATE_BEST. */
CANDIDATE_READY,
/** The best CANDIDATE for a given txhash; only if there is no REQUESTED announcement already for that txhash.
* The CANDIDATE_BEST is the highest-priority announcement among all CANDIDATE_READY (and _BEST) ones for that
* txhash. */
CANDIDATE_BEST,
/** A REQUESTED announcement. */
REQUESTED,
/** A COMPLETED announcement. */
COMPLETED,
};
//! Type alias for sequence numbers.
using SequenceNumber = uint64_t;
/** An announcement. This is the data we track for each txid or wtxid that is announced to us by each peer. */
struct Announcement {
/** Txid or wtxid that was announced. */
const uint256 m_txhash;
/** For CANDIDATE_{DELAYED,BEST,READY} the reqtime; for REQUESTED the expiry. */
std::chrono::microseconds m_time;
/** What peer the request was from. */
const NodeId m_peer;
/** What sequence number this announcement has. */
const SequenceNumber m_sequence : 59;
/** Whether the request is preferred. */
const bool m_preferred : 1;
/** Whether this is a wtxid request. */
const bool m_is_wtxid : 1;
/** What state this announcement is in.
* This is a uint8_t instead of a State to silence a GCC warning in versions prior to 9.3.
* See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=61414 */
uint8_t m_state : 3;
/** Convert m_state to a State enum. */
State GetState() const { return static_cast<State>(m_state); }
/** Convert a State enum to a uint8_t and store it in m_state. */
void SetState(State state) { m_state = static_cast<uint8_t>(state); }
/** Whether this announcement is selected. There can be at most 1 selected peer per txhash. */
bool IsSelected() const
{
return GetState() == State::CANDIDATE_BEST || GetState() == State::REQUESTED;
}
/** Whether this announcement is waiting for a certain time to pass. */
bool IsWaiting() const
{
return GetState() == State::REQUESTED || GetState() == State::CANDIDATE_DELAYED;
}
/** Whether this announcement can feasibly be selected if the current IsSelected() one disappears. */
bool IsSelectable() const
{
return GetState() == State::CANDIDATE_READY || GetState() == State::CANDIDATE_BEST;
}
/** Construct a new announcement from scratch, initially in CANDIDATE_DELAYED state. */
Announcement(const GenTxid& gtxid, NodeId peer, bool preferred, std::chrono::microseconds reqtime,
SequenceNumber sequence) :
m_txhash(gtxid.GetHash()), m_time(reqtime), m_peer(peer), m_sequence(sequence), m_preferred(preferred),
m_is_wtxid(gtxid.IsWtxid()), m_state(static_cast<uint8_t>(State::CANDIDATE_DELAYED)) {}
};
//! Type alias for priorities.
using Priority = uint64_t;
/** A functor with embedded salt that computes priority of an announcement.
*
* Higher priorities are selected first.
*/
class PriorityComputer {
const uint64_t m_k0, m_k1;
public:
explicit PriorityComputer(bool deterministic) :
m_k0{deterministic ? 0 : GetRand(0xFFFFFFFFFFFFFFFF)},
m_k1{deterministic ? 0 : GetRand(0xFFFFFFFFFFFFFFFF)} {}
Priority operator()(const uint256& txhash, NodeId peer, bool preferred) const
{
uint64_t low_bits = CSipHasher(m_k0, m_k1).Write(txhash).Write(peer).Finalize() >> 1;
return low_bits | uint64_t{preferred} << 63;
}
Priority operator()(const Announcement& ann) const
{
return operator()(ann.m_txhash, ann.m_peer, ann.m_preferred);
}
};
// Definitions for the 3 indexes used in the main data structure.
//
// Each index has a By* type to identify it, a By*View data type to represent the view of announcement it is sorted
// by, and an By*ViewExtractor type to convert an announcement into the By*View type.
// See https://www.boost.org/doc/libs/1_58_0/libs/multi_index/doc/reference/key_extraction.html#key_extractors
// for more information about the key extraction concept.
// The ByPeer index is sorted by (peer, state == CANDIDATE_BEST, txhash)
//
// Uses:
// * Looking up existing announcements by peer/txhash, by checking both (peer, false, txhash) and
// (peer, true, txhash).
// * Finding all CANDIDATE_BEST announcements for a given peer in GetRequestable.
struct ByPeer {};
using ByPeerView = std::tuple<NodeId, bool, const uint256&>;
struct ByPeerViewExtractor
{
using result_type = ByPeerView;
result_type operator()(const Announcement& ann) const
{
return ByPeerView{ann.m_peer, ann.GetState() == State::CANDIDATE_BEST, ann.m_txhash};
}
};
// The ByTxHash index is sorted by (txhash, state, priority).
//
// Note: priority == 0 whenever state != CANDIDATE_READY.
//
// Uses:
// * Deleting all announcements with a given txhash in ForgetTxHash.
// * Finding the best CANDIDATE_READY to convert to CANDIDATE_BEST, when no other CANDIDATE_READY or REQUESTED
// announcement exists for that txhash.
// * Determining when no more non-COMPLETED announcements for a given txhash exist, so the COMPLETED ones can be
// deleted.
struct ByTxHash {};
using ByTxHashView = std::tuple<const uint256&, State, Priority>;
class ByTxHashViewExtractor {
const PriorityComputer& m_computer;
public:
explicit ByTxHashViewExtractor(const PriorityComputer& computer) : m_computer(computer) {}
using result_type = ByTxHashView;
result_type operator()(const Announcement& ann) const
{
const Priority prio = (ann.GetState() == State::CANDIDATE_READY) ? m_computer(ann) : 0;
return ByTxHashView{ann.m_txhash, ann.GetState(), prio};
}
};
enum class WaitState {
//! Used for announcements that need efficient testing of "is their timestamp in the future?".
FUTURE_EVENT,
//! Used for announcements whose timestamp is not relevant.
NO_EVENT,
//! Used for announcements that need efficient testing of "is their timestamp in the past?".
PAST_EVENT,
};
WaitState GetWaitState(const Announcement& ann)
{
if (ann.IsWaiting()) return WaitState::FUTURE_EVENT;
if (ann.IsSelectable()) return WaitState::PAST_EVENT;
return WaitState::NO_EVENT;
}
// The ByTime index is sorted by (wait_state, time).
//
// All announcements with a timestamp in the future can be found by iterating the index forward from the beginning.
// All announcements with a timestamp in the past can be found by iterating the index backwards from the end.
//
// Uses:
// * Finding CANDIDATE_DELAYED announcements whose reqtime has passed, and REQUESTED announcements whose expiry has
// passed.
// * Finding CANDIDATE_READY/BEST announcements whose reqtime is in the future (when the clock time went backwards).
struct ByTime {};
using ByTimeView = std::pair<WaitState, std::chrono::microseconds>;
struct ByTimeViewExtractor
{
using result_type = ByTimeView;
result_type operator()(const Announcement& ann) const
{
return ByTimeView{GetWaitState(ann), ann.m_time};
}
};
/** Data type for the main data structure (Announcement objects with ByPeer/ByTxHash/ByTime indexes). */
using Index = boost::multi_index_container<
Announcement,
boost::multi_index::indexed_by<
boost::multi_index::ordered_unique<boost::multi_index::tag<ByPeer>, ByPeerViewExtractor>,
boost::multi_index::ordered_non_unique<boost::multi_index::tag<ByTxHash>, ByTxHashViewExtractor>,
boost::multi_index::ordered_non_unique<boost::multi_index::tag<ByTime>, ByTimeViewExtractor>
>
>;
/** Helper type to simplify syntax of iterator types. */
template<typename Tag>
using Iter = typename Index::index<Tag>::type::iterator;
/** Per-peer statistics object. */
struct PeerInfo {
size_t m_total = 0; //!< Total number of announcements for this peer.
size_t m_completed = 0; //!< Number of COMPLETED announcements for this peer.
size_t m_requested = 0; //!< Number of REQUESTED announcements for this peer.
};
/** Per-txhash statistics object. Only used for sanity checking. */
struct TxHashInfo
{
//! Number of CANDIDATE_DELAYED announcements for this txhash.
size_t m_candidate_delayed = 0;
//! Number of CANDIDATE_READY announcements for this txhash.
size_t m_candidate_ready = 0;
//! Number of CANDIDATE_BEST announcements for this txhash (at most one).
size_t m_candidate_best = 0;
//! Number of REQUESTED announcements for this txhash (at most one; mutually exclusive with CANDIDATE_BEST).
size_t m_requested = 0;
//! The priority of the CANDIDATE_BEST announcement if one exists, or max() otherwise.
Priority m_priority_candidate_best = std::numeric_limits<Priority>::max();
//! The highest priority of all CANDIDATE_READY announcements (or min() if none exist).
Priority m_priority_best_candidate_ready = std::numeric_limits<Priority>::min();
//! All peers we have an announcement for this txhash for.
std::vector<NodeId> m_peers;
};
/** Compare two PeerInfo objects. Only used for sanity checking. */
bool operator==(const PeerInfo& a, const PeerInfo& b)
{
return std::tie(a.m_total, a.m_completed, a.m_requested) ==
std::tie(b.m_total, b.m_completed, b.m_requested);
};
/** (Re)compute the PeerInfo map from the index. Only used for sanity checking. */
std::unordered_map<NodeId, PeerInfo> RecomputePeerInfo(const Index& index)
{
std::unordered_map<NodeId, PeerInfo> ret;
for (const Announcement& ann : index) {
PeerInfo& info = ret[ann.m_peer];
++info.m_total;
info.m_requested += (ann.GetState() == State::REQUESTED);
info.m_completed += (ann.GetState() == State::COMPLETED);
}
return ret;
}
/** Compute the TxHashInfo map. Only used for sanity checking. */
std::map<uint256, TxHashInfo> ComputeTxHashInfo(const Index& index, const PriorityComputer& computer)
{
std::map<uint256, TxHashInfo> ret;
for (const Announcement& ann : index) {
TxHashInfo& info = ret[ann.m_txhash];
// Classify how many announcements of each state we have for this txhash.
info.m_candidate_delayed += (ann.GetState() == State::CANDIDATE_DELAYED);
info.m_candidate_ready += (ann.GetState() == State::CANDIDATE_READY);
info.m_candidate_best += (ann.GetState() == State::CANDIDATE_BEST);
info.m_requested += (ann.GetState() == State::REQUESTED);
// And track the priority of the best CANDIDATE_READY/CANDIDATE_BEST announcements.
if (ann.GetState() == State::CANDIDATE_BEST) {
info.m_priority_candidate_best = computer(ann);
}
if (ann.GetState() == State::CANDIDATE_READY) {
info.m_priority_best_candidate_ready = std::max(info.m_priority_best_candidate_ready, computer(ann));
}
// Also keep track of which peers this txhash has an announcement for (so we can detect duplicates).
info.m_peers.push_back(ann.m_peer);
}
return ret;
}
GenTxid ToGenTxid(const Announcement& ann)
{
return ann.m_is_wtxid ? GenTxid::Wtxid(ann.m_txhash) : GenTxid::Txid(ann.m_txhash);
}
} // namespace
/** Actual implementation for TxRequestTracker's data structure. */
class TxRequestTracker::Impl {
//! The current sequence number. Increases for every announcement. This is used to sort txhashes returned by
//! GetRequestable in announcement order.
SequenceNumber m_current_sequence{0};
//! This tracker's priority computer.
const PriorityComputer m_computer;
//! This tracker's main data structure. See SanityCheck() for the invariants that apply to it.
Index m_index;
//! Map with this tracker's per-peer statistics.
std::unordered_map<NodeId, PeerInfo> m_peerinfo;
public:
void SanityCheck() const
{
// Recompute m_peerdata from m_index. This verifies the data in it as it should just be caching statistics
// on m_index. It also verifies the invariant that no PeerInfo announcements with m_total==0 exist.
assert(m_peerinfo == RecomputePeerInfo(m_index));
// Calculate per-txhash statistics from m_index, and validate invariants.
for (auto& item : ComputeTxHashInfo(m_index, m_computer)) {
TxHashInfo& info = item.second;
// Cannot have only COMPLETED peer (txhash should have been forgotten already)
assert(info.m_candidate_delayed + info.m_candidate_ready + info.m_candidate_best + info.m_requested > 0);
// Can have at most 1 CANDIDATE_BEST/REQUESTED peer
assert(info.m_candidate_best + info.m_requested <= 1);
// If there are any CANDIDATE_READY announcements, there must be exactly one CANDIDATE_BEST or REQUESTED
// announcement.
if (info.m_candidate_ready > 0) {
assert(info.m_candidate_best + info.m_requested == 1);
}
// If there is both a CANDIDATE_READY and a CANDIDATE_BEST announcement, the CANDIDATE_BEST one must be
// at least as good (equal or higher priority) as the best CANDIDATE_READY.
if (info.m_candidate_ready && info.m_candidate_best) {
assert(info.m_priority_candidate_best >= info.m_priority_best_candidate_ready);
}
// No txhash can have been announced by the same peer twice.
std::sort(info.m_peers.begin(), info.m_peers.end());
assert(std::adjacent_find(info.m_peers.begin(), info.m_peers.end()) == info.m_peers.end());
}
}
void PostGetRequestableSanityCheck(std::chrono::microseconds now) const
{
for (const Announcement& ann : m_index) {
if (ann.IsWaiting()) {
// REQUESTED and CANDIDATE_DELAYED must have a time in the future (they should have been converted
// to COMPLETED/CANDIDATE_READY respectively).
assert(ann.m_time > now);
} else if (ann.IsSelectable()) {
// CANDIDATE_READY and CANDIDATE_BEST cannot have a time in the future (they should have remained
// CANDIDATE_DELAYED, or should have been converted back to it if time went backwards).
assert(ann.m_time <= now);
}
}
}
private:
//! Wrapper around Index::...::erase that keeps m_peerinfo up to date.
template<typename Tag>
Iter<Tag> Erase(Iter<Tag> it)
{
auto peerit = m_peerinfo.find(it->m_peer);
peerit->second.m_completed -= it->GetState() == State::COMPLETED;
peerit->second.m_requested -= it->GetState() == State::REQUESTED;
if (--peerit->second.m_total == 0) m_peerinfo.erase(peerit);
return m_index.get<Tag>().erase(it);
}
//! Wrapper around Index::...::modify that keeps m_peerinfo up to date.
template<typename Tag, typename Modifier>
void Modify(Iter<Tag> it, Modifier modifier)
{
auto peerit = m_peerinfo.find(it->m_peer);
peerit->second.m_completed -= it->GetState() == State::COMPLETED;
peerit->second.m_requested -= it->GetState() == State::REQUESTED;
m_index.get<Tag>().modify(it, std::move(modifier));
peerit->second.m_completed += it->GetState() == State::COMPLETED;
peerit->second.m_requested += it->GetState() == State::REQUESTED;
}
//! Convert a CANDIDATE_DELAYED announcement into a CANDIDATE_READY. If this makes it the new best
//! CANDIDATE_READY (and no REQUESTED exists) and better than the CANDIDATE_BEST (if any), it becomes the new
//! CANDIDATE_BEST.
void PromoteCandidateReady(Iter<ByTxHash> it)
{
assert(it != m_index.get<ByTxHash>().end());
assert(it->GetState() == State::CANDIDATE_DELAYED);
// Convert CANDIDATE_DELAYED to CANDIDATE_READY first.
Modify<ByTxHash>(it, [](Announcement& ann){ ann.SetState(State::CANDIDATE_READY); });
// The following code relies on the fact that the ByTxHash is sorted by txhash, and then by state (first
// _DELAYED, then _READY, then _BEST/REQUESTED). Within the _READY announcements, the best one (highest
// priority) comes last. Thus, if an existing _BEST exists for the same txhash that this announcement may
// be preferred over, it must immediately follow the newly created _READY.
auto it_next = std::next(it);
if (it_next == m_index.get<ByTxHash>().end() || it_next->m_txhash != it->m_txhash ||
it_next->GetState() == State::COMPLETED) {
// This is the new best CANDIDATE_READY, and there is no IsSelected() announcement for this txhash
// already.
Modify<ByTxHash>(it, [](Announcement& ann){ ann.SetState(State::CANDIDATE_BEST); });
} else if (it_next->GetState() == State::CANDIDATE_BEST) {
Priority priority_old = m_computer(*it_next);
Priority priority_new = m_computer(*it);
if (priority_new > priority_old) {
// There is a CANDIDATE_BEST announcement already, but this one is better.
Modify<ByTxHash>(it_next, [](Announcement& ann){ ann.SetState(State::CANDIDATE_READY); });
Modify<ByTxHash>(it, [](Announcement& ann){ ann.SetState(State::CANDIDATE_BEST); });
}
}
}
//! Change the state of an announcement to something non-IsSelected(). If it was IsSelected(), the next best
//! announcement will be marked CANDIDATE_BEST.
void ChangeAndReselect(Iter<ByTxHash> it, State new_state)
{
assert(new_state == State::COMPLETED || new_state == State::CANDIDATE_DELAYED);
assert(it != m_index.get<ByTxHash>().end());
if (it->IsSelected() && it != m_index.get<ByTxHash>().begin()) {
auto it_prev = std::prev(it);
// The next best CANDIDATE_READY, if any, immediately precedes the REQUESTED or CANDIDATE_BEST
// announcement in the ByTxHash index.
if (it_prev->m_txhash == it->m_txhash && it_prev->GetState() == State::CANDIDATE_READY) {
// If one such CANDIDATE_READY exists (for this txhash), convert it to CANDIDATE_BEST.
Modify<ByTxHash>(it_prev, [](Announcement& ann){ ann.SetState(State::CANDIDATE_BEST); });
}
}
Modify<ByTxHash>(it, [new_state](Announcement& ann){ ann.SetState(new_state); });
}
//! Check if 'it' is the only announcement for a given txhash that isn't COMPLETED.
bool IsOnlyNonCompleted(Iter<ByTxHash> it)
{
assert(it != m_index.get<ByTxHash>().end());
assert(it->GetState() != State::COMPLETED); // Not allowed to call this on COMPLETED announcements.
// This announcement has a predecessor that belongs to the same txhash. Due to ordering, and the
// fact that 'it' is not COMPLETED, its predecessor cannot be COMPLETED here.
if (it != m_index.get<ByTxHash>().begin() && std::prev(it)->m_txhash == it->m_txhash) return false;
// This announcement has a successor that belongs to the same txhash, and is not COMPLETED.
if (std::next(it) != m_index.get<ByTxHash>().end() && std::next(it)->m_txhash == it->m_txhash &&
std::next(it)->GetState() != State::COMPLETED) return false;
return true;
}
/** Convert any announcement to a COMPLETED one. If there are no non-COMPLETED announcements left for this
* txhash, they are deleted. If this was a REQUESTED announcement, and there are other CANDIDATEs left, the
* best one is made CANDIDATE_BEST. Returns whether the announcement still exists. */
bool MakeCompleted(Iter<ByTxHash> it)
{
assert(it != m_index.get<ByTxHash>().end());
// Nothing to be done if it's already COMPLETED.
if (it->GetState() == State::COMPLETED) return true;
if (IsOnlyNonCompleted(it)) {
// This is the last non-COMPLETED announcement for this txhash. Delete all.
uint256 txhash = it->m_txhash;
do {
it = Erase<ByTxHash>(it);
} while (it != m_index.get<ByTxHash>().end() && it->m_txhash == txhash);
return false;
}
// Mark the announcement COMPLETED, and select the next best announcement (the first CANDIDATE_READY) if
// needed.
ChangeAndReselect(it, State::COMPLETED);
return true;
}
//! Make the data structure consistent with a given point in time:
//! - REQUESTED announcements with expiry <= now are turned into COMPLETED.
//! - CANDIDATE_DELAYED announcements with reqtime <= now are turned into CANDIDATE_{READY,BEST}.
//! - CANDIDATE_{READY,BEST} announcements with reqtime > now are turned into CANDIDATE_DELAYED.
void SetTimePoint(std::chrono::microseconds now, std::vector<std::pair<NodeId, GenTxid>>* expired)
{
if (expired) expired->clear();
// Iterate over all CANDIDATE_DELAYED and REQUESTED from old to new, as long as they're in the past,
// and convert them to CANDIDATE_READY and COMPLETED respectively.
while (!m_index.empty()) {
auto it = m_index.get<ByTime>().begin();
if (it->GetState() == State::CANDIDATE_DELAYED && it->m_time <= now) {
PromoteCandidateReady(m_index.project<ByTxHash>(it));
} else if (it->GetState() == State::REQUESTED && it->m_time <= now) {
if (expired) expired->emplace_back(it->m_peer, ToGenTxid(*it));
MakeCompleted(m_index.project<ByTxHash>(it));
} else {
break;
}
}
while (!m_index.empty()) {
// If time went backwards, we may need to demote CANDIDATE_BEST and CANDIDATE_READY announcements back
// to CANDIDATE_DELAYED. This is an unusual edge case, and unlikely to matter in production. However,
// it makes it much easier to specify and test TxRequestTracker::Impl's behaviour.
auto it = std::prev(m_index.get<ByTime>().end());
if (it->IsSelectable() && it->m_time > now) {
ChangeAndReselect(m_index.project<ByTxHash>(it), State::CANDIDATE_DELAYED);
} else {
break;
}
}
}
public:
explicit Impl(bool deterministic) :
m_computer(deterministic),
// Explicitly initialize m_index as we need to pass a reference to m_computer to ByTxHashViewExtractor.
m_index(boost::make_tuple(
boost::make_tuple(ByPeerViewExtractor(), std::less<ByPeerView>()),
boost::make_tuple(ByTxHashViewExtractor(m_computer), std::less<ByTxHashView>()),
boost::make_tuple(ByTimeViewExtractor(), std::less<ByTimeView>())
)) {}
// Disable copying and assigning (a default copy won't work due the stateful ByTxHashViewExtractor).
Impl(const Impl&) = delete;
Impl& operator=(const Impl&) = delete;
void DisconnectedPeer(NodeId peer)
{
auto& index = m_index.get<ByPeer>();
auto it = index.lower_bound(ByPeerView{peer, false, uint256::ZERO});
while (it != index.end() && it->m_peer == peer) {
// Check what to continue with after this iteration. 'it' will be deleted in what follows, so we need to
// decide what to continue with afterwards. There are a number of cases to consider:
// - std::next(it) is end() or belongs to a different peer. In that case, this is the last iteration
// of the loop (denote this by setting it_next to end()).
// - 'it' is not the only non-COMPLETED announcement for its txhash. This means it will be deleted, but
// no other Announcement objects will be modified. Continue with std::next(it) if it belongs to the
// same peer, but decide this ahead of time (as 'it' may change position in what follows).
// - 'it' is the only non-COMPLETED announcement for its txhash. This means it will be deleted along
// with all other announcements for the same txhash - which may include std::next(it). However, other
// than 'it', no announcements for the same peer can be affected (due to (peer, txhash) uniqueness).
// In other words, the situation where std::next(it) is deleted can only occur if std::next(it)
// belongs to a different peer but the same txhash as 'it'. This is covered by the first bulletpoint
// already, and we'll have set it_next to end().
auto it_next = (std::next(it) == index.end() || std::next(it)->m_peer != peer) ? index.end() :
std::next(it);
// If the announcement isn't already COMPLETED, first make it COMPLETED (which will mark other
// CANDIDATEs as CANDIDATE_BEST, or delete all of a txhash's announcements if no non-COMPLETED ones are
// left).
if (MakeCompleted(m_index.project<ByTxHash>(it))) {
// Then actually delete the announcement (unless it was already deleted by MakeCompleted).
Erase<ByPeer>(it);
}
it = it_next;
}
}
void ForgetTxHash(const uint256& txhash)
{
auto it = m_index.get<ByTxHash>().lower_bound(ByTxHashView{txhash, State::CANDIDATE_DELAYED, 0});
while (it != m_index.get<ByTxHash>().end() && it->m_txhash == txhash) {
it = Erase<ByTxHash>(it);
}
}
void ReceivedInv(NodeId peer, const GenTxid& gtxid, bool preferred,
std::chrono::microseconds reqtime)
{
// Bail out if we already have a CANDIDATE_BEST announcement for this (txhash, peer) combination. The case
// where there is a non-CANDIDATE_BEST announcement already will be caught by the uniqueness property of the
// ByPeer index when we try to emplace the new object below.
if (m_index.get<ByPeer>().count(ByPeerView{peer, true, gtxid.GetHash()})) return;
// Try creating the announcement with CANDIDATE_DELAYED state (which will fail due to the uniqueness
// of the ByPeer index if a non-CANDIDATE_BEST announcement already exists with the same txhash and peer).
// Bail out in that case.
auto ret = m_index.get<ByPeer>().emplace(gtxid, peer, preferred, reqtime, m_current_sequence);
if (!ret.second) return;
// Update accounting metadata.
++m_peerinfo[peer].m_total;
++m_current_sequence;
}
//! Find the GenTxids to request now from peer.
std::vector<GenTxid> GetRequestable(NodeId peer, std::chrono::microseconds now,
std::vector<std::pair<NodeId, GenTxid>>* expired)
{
// Move time.
SetTimePoint(now, expired);
// Find all CANDIDATE_BEST announcements for this peer.
std::vector<const Announcement*> selected;
auto it_peer = m_index.get<ByPeer>().lower_bound(ByPeerView{peer, true, uint256::ZERO});
while (it_peer != m_index.get<ByPeer>().end() && it_peer->m_peer == peer &&
it_peer->GetState() == State::CANDIDATE_BEST) {
selected.emplace_back(&*it_peer);
++it_peer;
}
// Sort by sequence number.
std::sort(selected.begin(), selected.end(), [](const Announcement* a, const Announcement* b) {
return a->m_sequence < b->m_sequence;
});
// Convert to GenTxid and return.
std::vector<GenTxid> ret;
ret.reserve(selected.size());
std::transform(selected.begin(), selected.end(), std::back_inserter(ret), [](const Announcement* ann) {
return ToGenTxid(*ann);
});
return ret;
}
void RequestedTx(NodeId peer, const uint256& txhash, std::chrono::microseconds expiry)
{
auto it = m_index.get<ByPeer>().find(ByPeerView{peer, true, txhash});
if (it == m_index.get<ByPeer>().end()) {
// There is no CANDIDATE_BEST announcement, look for a _READY or _DELAYED instead. If the caller only
// ever invokes RequestedTx with the values returned by GetRequestable, and no other non-const functions
// other than ForgetTxHash and GetRequestable in between, this branch will never execute (as txhashes
// returned by GetRequestable always correspond to CANDIDATE_BEST announcements).
it = m_index.get<ByPeer>().find(ByPeerView{peer, false, txhash});
if (it == m_index.get<ByPeer>().end() || (it->GetState() != State::CANDIDATE_DELAYED &&
it->GetState() != State::CANDIDATE_READY)) {
// There is no CANDIDATE announcement tracked for this peer, so we have nothing to do. Either this
// txhash wasn't tracked at all (and the caller should have called ReceivedInv), or it was already
// requested and/or completed for other reasons and this is just a superfluous RequestedTx call.
return;
}
// Look for an existing CANDIDATE_BEST or REQUESTED with the same txhash. We only need to do this if the
// found announcement had a different state than CANDIDATE_BEST. If it did, invariants guarantee that no
// other CANDIDATE_BEST or REQUESTED can exist.
auto it_old = m_index.get<ByTxHash>().lower_bound(ByTxHashView{txhash, State::CANDIDATE_BEST, 0});
if (it_old != m_index.get<ByTxHash>().end() && it_old->m_txhash == txhash) {
if (it_old->GetState() == State::CANDIDATE_BEST) {
// The data structure's invariants require that there can be at most one CANDIDATE_BEST or one
// REQUESTED announcement per txhash (but not both simultaneously), so we have to convert any
// existing CANDIDATE_BEST to another CANDIDATE_* when constructing another REQUESTED.
// It doesn't matter whether we pick CANDIDATE_READY or _DELAYED here, as SetTimePoint()
// will correct it at GetRequestable() time. If time only goes forward, it will always be
// _READY, so pick that to avoid extra work in SetTimePoint().
Modify<ByTxHash>(it_old, [](Announcement& ann) { ann.SetState(State::CANDIDATE_READY); });
} else if (it_old->GetState() == State::REQUESTED) {
// As we're no longer waiting for a response to the previous REQUESTED announcement, convert it
// to COMPLETED. This also helps guaranteeing progress.
Modify<ByTxHash>(it_old, [](Announcement& ann) { ann.SetState(State::COMPLETED); });
}
}
}
Modify<ByPeer>(it, [expiry](Announcement& ann) {
ann.SetState(State::REQUESTED);
ann.m_time = expiry;
});
}
void ReceivedResponse(NodeId peer, const uint256& txhash)
{
// We need to search the ByPeer index for both (peer, false, txhash) and (peer, true, txhash).
auto it = m_index.get<ByPeer>().find(ByPeerView{peer, false, txhash});
if (it == m_index.get<ByPeer>().end()) {
it = m_index.get<ByPeer>().find(ByPeerView{peer, true, txhash});
}
if (it != m_index.get<ByPeer>().end()) MakeCompleted(m_index.project<ByTxHash>(it));
}
size_t CountInFlight(NodeId peer) const
{
auto it = m_peerinfo.find(peer);
if (it != m_peerinfo.end()) return it->second.m_requested;
return 0;
}
size_t CountCandidates(NodeId peer) const
{
auto it = m_peerinfo.find(peer);
if (it != m_peerinfo.end()) return it->second.m_total - it->second.m_requested - it->second.m_completed;
return 0;
}
size_t Count(NodeId peer) const
{
auto it = m_peerinfo.find(peer);
if (it != m_peerinfo.end()) return it->second.m_total;
return 0;
}
//! Count how many announcements are being tracked in total across all peers and transactions.
size_t Size() const { return m_index.size(); }
uint64_t ComputePriority(const uint256& txhash, NodeId peer, bool preferred) const
{
// Return Priority as a uint64_t as Priority is internal.
return uint64_t{m_computer(txhash, peer, preferred)};
}
};
TxRequestTracker::TxRequestTracker(bool deterministic) :
m_impl{std::make_unique<TxRequestTracker::Impl>(deterministic)} {}
TxRequestTracker::~TxRequestTracker() = default;
void TxRequestTracker::ForgetTxHash(const uint256& txhash) { m_impl->ForgetTxHash(txhash); }
void TxRequestTracker::DisconnectedPeer(NodeId peer) { m_impl->DisconnectedPeer(peer); }
size_t TxRequestTracker::CountInFlight(NodeId peer) const { return m_impl->CountInFlight(peer); }
size_t TxRequestTracker::CountCandidates(NodeId peer) const { return m_impl->CountCandidates(peer); }
size_t TxRequestTracker::Count(NodeId peer) const { return m_impl->Count(peer); }
size_t TxRequestTracker::Size() const { return m_impl->Size(); }
void TxRequestTracker::SanityCheck() const { m_impl->SanityCheck(); }
void TxRequestTracker::PostGetRequestableSanityCheck(std::chrono::microseconds now) const
{
m_impl->PostGetRequestableSanityCheck(now);
}
void TxRequestTracker::ReceivedInv(NodeId peer, const GenTxid& gtxid, bool preferred,
std::chrono::microseconds reqtime)
{
m_impl->ReceivedInv(peer, gtxid, preferred, reqtime);
}
void TxRequestTracker::RequestedTx(NodeId peer, const uint256& txhash, std::chrono::microseconds expiry)
{
m_impl->RequestedTx(peer, txhash, expiry);
}
void TxRequestTracker::ReceivedResponse(NodeId peer, const uint256& txhash)
{
m_impl->ReceivedResponse(peer, txhash);
}
std::vector<GenTxid> TxRequestTracker::GetRequestable(NodeId peer, std::chrono::microseconds now,
std::vector<std::pair<NodeId, GenTxid>>* expired)
{
return m_impl->GetRequestable(peer, now, expired);
}
uint64_t TxRequestTracker::ComputePriority(const uint256& txhash, NodeId peer, bool preferred) const
{
return m_impl->ComputePriority(txhash, peer, preferred);
}
|