1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
|
// Copyright (c) 2014-2022 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <chain.h>
#include <chainparams.h>
#include <consensus/params.h>
#include <test/util/random.h>
#include <test/util/setup_common.h>
#include <util/chaintype.h>
#include <versionbits.h>
#include <boost/test/unit_test.hpp>
/* Define a virtual block time, one block per 10 minutes after Nov 14 2014, 0:55:36am */
static int32_t TestTime(int nHeight) { return 1415926536 + 600 * nHeight; }
static std::string StateName(ThresholdState state)
{
switch (state) {
case ThresholdState::DEFINED: return "DEFINED";
case ThresholdState::STARTED: return "STARTED";
case ThresholdState::LOCKED_IN: return "LOCKED_IN";
case ThresholdState::ACTIVE: return "ACTIVE";
case ThresholdState::FAILED: return "FAILED";
} // no default case, so the compiler can warn about missing cases
return "";
}
static const Consensus::Params paramsDummy = Consensus::Params();
class TestConditionChecker : public AbstractThresholdConditionChecker
{
private:
mutable ThresholdConditionCache cache;
public:
int64_t BeginTime(const Consensus::Params& params) const override { return TestTime(10000); }
int64_t EndTime(const Consensus::Params& params) const override { return TestTime(20000); }
int Period(const Consensus::Params& params) const override { return 1000; }
int Threshold(const Consensus::Params& params) const override { return 900; }
bool Condition(const CBlockIndex* pindex, const Consensus::Params& params) const override { return (pindex->nVersion & 0x100); }
ThresholdState GetStateFor(const CBlockIndex* pindexPrev) const { return AbstractThresholdConditionChecker::GetStateFor(pindexPrev, paramsDummy, cache); }
int GetStateSinceHeightFor(const CBlockIndex* pindexPrev) const { return AbstractThresholdConditionChecker::GetStateSinceHeightFor(pindexPrev, paramsDummy, cache); }
};
class TestDelayedActivationConditionChecker : public TestConditionChecker
{
public:
int MinActivationHeight(const Consensus::Params& params) const override { return 15000; }
};
class TestAlwaysActiveConditionChecker : public TestConditionChecker
{
public:
int64_t BeginTime(const Consensus::Params& params) const override { return Consensus::BIP9Deployment::ALWAYS_ACTIVE; }
};
class TestNeverActiveConditionChecker : public TestConditionChecker
{
public:
int64_t BeginTime(const Consensus::Params& params) const override { return Consensus::BIP9Deployment::NEVER_ACTIVE; }
};
#define CHECKERS 6
class VersionBitsTester
{
FastRandomContext& m_rng;
// A fake blockchain
std::vector<CBlockIndex*> vpblock;
// 6 independent checkers for the same bit.
// The first one performs all checks, the second only 50%, the third only 25%, etc...
// This is to test whether lack of cached information leads to the same results.
TestConditionChecker checker[CHECKERS];
// Another 6 that assume delayed activation
TestDelayedActivationConditionChecker checker_delayed[CHECKERS];
// Another 6 that assume always active activation
TestAlwaysActiveConditionChecker checker_always[CHECKERS];
// Another 6 that assume never active activation
TestNeverActiveConditionChecker checker_never[CHECKERS];
// Test counter (to identify failures)
int num{1000};
public:
VersionBitsTester(FastRandomContext& rng) : m_rng{rng} {}
VersionBitsTester& Reset() {
// Have each group of tests be counted by the 1000s part, starting at 1000
num = num - (num % 1000) + 1000;
for (unsigned int i = 0; i < vpblock.size(); i++) {
delete vpblock[i];
}
for (unsigned int i = 0; i < CHECKERS; i++) {
checker[i] = TestConditionChecker();
checker_delayed[i] = TestDelayedActivationConditionChecker();
checker_always[i] = TestAlwaysActiveConditionChecker();
checker_never[i] = TestNeverActiveConditionChecker();
}
vpblock.clear();
return *this;
}
~VersionBitsTester() {
Reset();
}
VersionBitsTester& Mine(unsigned int height, int32_t nTime, int32_t nVersion) {
while (vpblock.size() < height) {
CBlockIndex* pindex = new CBlockIndex();
pindex->nHeight = vpblock.size();
pindex->pprev = Tip();
pindex->nTime = nTime;
pindex->nVersion = nVersion;
pindex->BuildSkip();
vpblock.push_back(pindex);
}
return *this;
}
VersionBitsTester& TestStateSinceHeight(int height)
{
return TestStateSinceHeight(height, height);
}
VersionBitsTester& TestStateSinceHeight(int height, int height_delayed)
{
const CBlockIndex* tip = Tip();
for (int i = 0; i < CHECKERS; i++) {
if (InsecureRandBits(i) == 0) {
BOOST_CHECK_MESSAGE(checker[i].GetStateSinceHeightFor(tip) == height, strprintf("Test %i for StateSinceHeight", num));
BOOST_CHECK_MESSAGE(checker_delayed[i].GetStateSinceHeightFor(tip) == height_delayed, strprintf("Test %i for StateSinceHeight (delayed)", num));
BOOST_CHECK_MESSAGE(checker_always[i].GetStateSinceHeightFor(tip) == 0, strprintf("Test %i for StateSinceHeight (always active)", num));
BOOST_CHECK_MESSAGE(checker_never[i].GetStateSinceHeightFor(tip) == 0, strprintf("Test %i for StateSinceHeight (never active)", num));
}
}
num++;
return *this;
}
VersionBitsTester& TestState(ThresholdState exp)
{
return TestState(exp, exp);
}
VersionBitsTester& TestState(ThresholdState exp, ThresholdState exp_delayed)
{
if (exp != exp_delayed) {
// only expected differences are that delayed stays in locked_in longer
BOOST_CHECK_EQUAL(exp, ThresholdState::ACTIVE);
BOOST_CHECK_EQUAL(exp_delayed, ThresholdState::LOCKED_IN);
}
const CBlockIndex* pindex = Tip();
for (int i = 0; i < CHECKERS; i++) {
if (InsecureRandBits(i) == 0) {
ThresholdState got = checker[i].GetStateFor(pindex);
ThresholdState got_delayed = checker_delayed[i].GetStateFor(pindex);
ThresholdState got_always = checker_always[i].GetStateFor(pindex);
ThresholdState got_never = checker_never[i].GetStateFor(pindex);
// nHeight of the next block. If vpblock is empty, the next (ie first)
// block should be the genesis block with nHeight == 0.
int height = pindex == nullptr ? 0 : pindex->nHeight + 1;
BOOST_CHECK_MESSAGE(got == exp, strprintf("Test %i for %s height %d (got %s)", num, StateName(exp), height, StateName(got)));
BOOST_CHECK_MESSAGE(got_delayed == exp_delayed, strprintf("Test %i for %s height %d (got %s; delayed case)", num, StateName(exp_delayed), height, StateName(got_delayed)));
BOOST_CHECK_MESSAGE(got_always == ThresholdState::ACTIVE, strprintf("Test %i for ACTIVE height %d (got %s; always active case)", num, height, StateName(got_always)));
BOOST_CHECK_MESSAGE(got_never == ThresholdState::FAILED, strprintf("Test %i for FAILED height %d (got %s; never active case)", num, height, StateName(got_never)));
}
}
num++;
return *this;
}
VersionBitsTester& TestDefined() { return TestState(ThresholdState::DEFINED); }
VersionBitsTester& TestStarted() { return TestState(ThresholdState::STARTED); }
VersionBitsTester& TestLockedIn() { return TestState(ThresholdState::LOCKED_IN); }
VersionBitsTester& TestActive() { return TestState(ThresholdState::ACTIVE); }
VersionBitsTester& TestFailed() { return TestState(ThresholdState::FAILED); }
// non-delayed should be active; delayed should still be locked in
VersionBitsTester& TestActiveDelayed() { return TestState(ThresholdState::ACTIVE, ThresholdState::LOCKED_IN); }
CBlockIndex* Tip() { return vpblock.empty() ? nullptr : vpblock.back(); }
};
BOOST_FIXTURE_TEST_SUITE(versionbits_tests, BasicTestingSetup)
BOOST_AUTO_TEST_CASE(versionbits_test)
{
for (int i = 0; i < 64; i++) {
// DEFINED -> STARTED after timeout reached -> FAILED
VersionBitsTester(m_rng).TestDefined().TestStateSinceHeight(0)
.Mine(1, TestTime(1), 0x100).TestDefined().TestStateSinceHeight(0)
.Mine(11, TestTime(11), 0x100).TestDefined().TestStateSinceHeight(0)
.Mine(989, TestTime(989), 0x100).TestDefined().TestStateSinceHeight(0)
.Mine(999, TestTime(20000), 0x100).TestDefined().TestStateSinceHeight(0) // Timeout and start time reached simultaneously
.Mine(1000, TestTime(20000), 0).TestStarted().TestStateSinceHeight(1000) // Hit started, stop signalling
.Mine(1999, TestTime(30001), 0).TestStarted().TestStateSinceHeight(1000)
.Mine(2000, TestTime(30002), 0x100).TestFailed().TestStateSinceHeight(2000) // Hit failed, start signalling again
.Mine(2001, TestTime(30003), 0x100).TestFailed().TestStateSinceHeight(2000)
.Mine(2999, TestTime(30004), 0x100).TestFailed().TestStateSinceHeight(2000)
.Mine(3000, TestTime(30005), 0x100).TestFailed().TestStateSinceHeight(2000)
.Mine(4000, TestTime(30006), 0x100).TestFailed().TestStateSinceHeight(2000)
// DEFINED -> STARTED -> FAILED
.Reset().TestDefined().TestStateSinceHeight(0)
.Mine(1, TestTime(1), 0).TestDefined().TestStateSinceHeight(0)
.Mine(1000, TestTime(10000) - 1, 0x100).TestDefined().TestStateSinceHeight(0) // One second more and it would be defined
.Mine(2000, TestTime(10000), 0x100).TestStarted().TestStateSinceHeight(2000) // So that's what happens the next period
.Mine(2051, TestTime(10010), 0).TestStarted().TestStateSinceHeight(2000) // 51 old blocks
.Mine(2950, TestTime(10020), 0x100).TestStarted().TestStateSinceHeight(2000) // 899 new blocks
.Mine(3000, TestTime(20000), 0).TestFailed().TestStateSinceHeight(3000) // 50 old blocks (so 899 out of the past 1000)
.Mine(4000, TestTime(20010), 0x100).TestFailed().TestStateSinceHeight(3000)
// DEFINED -> STARTED -> LOCKEDIN after timeout reached -> ACTIVE
.Reset().TestDefined().TestStateSinceHeight(0)
.Mine(1, TestTime(1), 0).TestDefined().TestStateSinceHeight(0)
.Mine(1000, TestTime(10000) - 1, 0x101).TestDefined().TestStateSinceHeight(0) // One second more and it would be defined
.Mine(2000, TestTime(10000), 0x101).TestStarted().TestStateSinceHeight(2000) // So that's what happens the next period
.Mine(2999, TestTime(30000), 0x100).TestStarted().TestStateSinceHeight(2000) // 999 new blocks
.Mine(3000, TestTime(30000), 0x100).TestLockedIn().TestStateSinceHeight(3000) // 1 new block (so 1000 out of the past 1000 are new)
.Mine(3999, TestTime(30001), 0).TestLockedIn().TestStateSinceHeight(3000)
.Mine(4000, TestTime(30002), 0).TestActiveDelayed().TestStateSinceHeight(4000, 3000)
.Mine(14333, TestTime(30003), 0).TestActiveDelayed().TestStateSinceHeight(4000, 3000)
.Mine(24000, TestTime(40000), 0).TestActive().TestStateSinceHeight(4000, 15000)
// DEFINED -> STARTED -> LOCKEDIN before timeout -> ACTIVE
.Reset().TestDefined()
.Mine(1, TestTime(1), 0).TestDefined().TestStateSinceHeight(0)
.Mine(1000, TestTime(10000) - 1, 0x101).TestDefined().TestStateSinceHeight(0) // One second more and it would be defined
.Mine(2000, TestTime(10000), 0x101).TestStarted().TestStateSinceHeight(2000) // So that's what happens the next period
.Mine(2050, TestTime(10010), 0x200).TestStarted().TestStateSinceHeight(2000) // 50 old blocks
.Mine(2950, TestTime(10020), 0x100).TestStarted().TestStateSinceHeight(2000) // 900 new blocks
.Mine(2999, TestTime(19999), 0x200).TestStarted().TestStateSinceHeight(2000) // 49 old blocks
.Mine(3000, TestTime(29999), 0x200).TestLockedIn().TestStateSinceHeight(3000) // 1 old block (so 900 out of the past 1000)
.Mine(3999, TestTime(30001), 0).TestLockedIn().TestStateSinceHeight(3000)
.Mine(4000, TestTime(30002), 0).TestActiveDelayed().TestStateSinceHeight(4000, 3000) // delayed will not become active until height=15000
.Mine(14333, TestTime(30003), 0).TestActiveDelayed().TestStateSinceHeight(4000, 3000)
.Mine(15000, TestTime(40000), 0).TestActive().TestStateSinceHeight(4000, 15000)
.Mine(24000, TestTime(40000), 0).TestActive().TestStateSinceHeight(4000, 15000)
// DEFINED multiple periods -> STARTED multiple periods -> FAILED
.Reset().TestDefined().TestStateSinceHeight(0)
.Mine(999, TestTime(999), 0).TestDefined().TestStateSinceHeight(0)
.Mine(1000, TestTime(1000), 0).TestDefined().TestStateSinceHeight(0)
.Mine(2000, TestTime(2000), 0).TestDefined().TestStateSinceHeight(0)
.Mine(3000, TestTime(10000), 0).TestStarted().TestStateSinceHeight(3000)
.Mine(4000, TestTime(10000), 0).TestStarted().TestStateSinceHeight(3000)
.Mine(5000, TestTime(10000), 0).TestStarted().TestStateSinceHeight(3000)
.Mine(5999, TestTime(20000), 0).TestStarted().TestStateSinceHeight(3000)
.Mine(6000, TestTime(20000), 0).TestFailed().TestStateSinceHeight(6000)
.Mine(7000, TestTime(20000), 0x100).TestFailed().TestStateSinceHeight(6000)
.Mine(24000, TestTime(20000), 0x100).TestFailed().TestStateSinceHeight(6000) // stay in FAILED no matter how much we signal
;
}
}
struct BlockVersionTest : BasicTestingSetup {
/** Check that ComputeBlockVersion will set the appropriate bit correctly */
void check_computeblockversion(VersionBitsCache& versionbitscache, const Consensus::Params& params, Consensus::DeploymentPos dep)
{
// Clear the cache every time
versionbitscache.Clear();
int64_t bit = params.vDeployments[dep].bit;
int64_t nStartTime = params.vDeployments[dep].nStartTime;
int64_t nTimeout = params.vDeployments[dep].nTimeout;
int min_activation_height = params.vDeployments[dep].min_activation_height;
// should not be any signalling for first block
BOOST_CHECK_EQUAL(versionbitscache.ComputeBlockVersion(nullptr, params), VERSIONBITS_TOP_BITS);
// always/never active deployments shouldn't need to be tested further
if (nStartTime == Consensus::BIP9Deployment::ALWAYS_ACTIVE ||
nStartTime == Consensus::BIP9Deployment::NEVER_ACTIVE)
{
BOOST_CHECK_EQUAL(min_activation_height, 0);
BOOST_CHECK_EQUAL(nTimeout, Consensus::BIP9Deployment::NO_TIMEOUT);
return;
}
BOOST_REQUIRE(nStartTime < nTimeout);
BOOST_REQUIRE(nStartTime >= 0);
BOOST_REQUIRE(nTimeout <= std::numeric_limits<uint32_t>::max() || nTimeout == Consensus::BIP9Deployment::NO_TIMEOUT);
BOOST_REQUIRE(0 <= bit && bit < 32);
// Make sure that no deployment tries to set an invalid bit.
BOOST_REQUIRE(((1 << bit) & VERSIONBITS_TOP_MASK) == 0);
BOOST_REQUIRE(min_activation_height >= 0);
// Check min_activation_height is on a retarget boundary
BOOST_REQUIRE_EQUAL(min_activation_height % params.nMinerConfirmationWindow, 0U);
const uint32_t bitmask{versionbitscache.Mask(params, dep)};
BOOST_CHECK_EQUAL(bitmask, uint32_t{1} << bit);
// In the first chain, test that the bit is set by CBV until it has failed.
// In the second chain, test the bit is set by CBV while STARTED and
// LOCKED-IN, and then no longer set while ACTIVE.
VersionBitsTester firstChain{m_rng}, secondChain{m_rng};
int64_t nTime = nStartTime;
const CBlockIndex *lastBlock = nullptr;
// Before MedianTimePast of the chain has crossed nStartTime, the bit
// should not be set.
if (nTime == 0) {
// since CBlockIndex::nTime is uint32_t we can't represent any
// earlier time, so will transition from DEFINED to STARTED at the
// end of the first period by mining blocks at nTime == 0
lastBlock = firstChain.Mine(params.nMinerConfirmationWindow - 1, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip();
BOOST_CHECK_EQUAL(versionbitscache.ComputeBlockVersion(lastBlock, params) & (1 << bit), 0);
lastBlock = firstChain.Mine(params.nMinerConfirmationWindow, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip();
BOOST_CHECK((versionbitscache.ComputeBlockVersion(lastBlock, params) & (1 << bit)) != 0);
// then we'll keep mining at nStartTime...
} else {
// use a time 1s earlier than start time to check we stay DEFINED
--nTime;
// Start generating blocks before nStartTime
lastBlock = firstChain.Mine(params.nMinerConfirmationWindow, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip();
BOOST_CHECK_EQUAL(versionbitscache.ComputeBlockVersion(lastBlock, params) & (1 << bit), 0);
// Mine more blocks (4 less than the adjustment period) at the old time, and check that CBV isn't setting the bit yet.
for (uint32_t i = 1; i < params.nMinerConfirmationWindow - 4; i++) {
lastBlock = firstChain.Mine(params.nMinerConfirmationWindow + i, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip();
BOOST_CHECK_EQUAL(versionbitscache.ComputeBlockVersion(lastBlock, params) & (1 << bit), 0);
}
// Now mine 5 more blocks at the start time -- MTP should not have passed yet, so
// CBV should still not yet set the bit.
nTime = nStartTime;
for (uint32_t i = params.nMinerConfirmationWindow - 4; i <= params.nMinerConfirmationWindow; i++) {
lastBlock = firstChain.Mine(params.nMinerConfirmationWindow + i, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip();
BOOST_CHECK_EQUAL(versionbitscache.ComputeBlockVersion(lastBlock, params) & (1 << bit), 0);
}
// Next we will advance to the next period and transition to STARTED,
}
lastBlock = firstChain.Mine(params.nMinerConfirmationWindow * 3, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip();
// so ComputeBlockVersion should now set the bit,
BOOST_CHECK((versionbitscache.ComputeBlockVersion(lastBlock, params) & (1 << bit)) != 0);
// and should also be using the VERSIONBITS_TOP_BITS.
BOOST_CHECK_EQUAL(versionbitscache.ComputeBlockVersion(lastBlock, params) & VERSIONBITS_TOP_MASK, VERSIONBITS_TOP_BITS);
// Check that ComputeBlockVersion will set the bit until nTimeout
nTime += 600;
uint32_t blocksToMine = params.nMinerConfirmationWindow * 2; // test blocks for up to 2 time periods
uint32_t nHeight = params.nMinerConfirmationWindow * 3;
// These blocks are all before nTimeout is reached.
while (nTime < nTimeout && blocksToMine > 0) {
lastBlock = firstChain.Mine(nHeight+1, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip();
BOOST_CHECK((versionbitscache.ComputeBlockVersion(lastBlock, params) & (1 << bit)) != 0);
BOOST_CHECK_EQUAL(versionbitscache.ComputeBlockVersion(lastBlock, params) & VERSIONBITS_TOP_MASK, VERSIONBITS_TOP_BITS);
blocksToMine--;
nTime += 600;
nHeight += 1;
}
if (nTimeout != Consensus::BIP9Deployment::NO_TIMEOUT) {
// can reach any nTimeout other than NO_TIMEOUT due to earlier BOOST_REQUIRE
nTime = nTimeout;
// finish the last period before we start timing out
while (nHeight % params.nMinerConfirmationWindow != 0) {
lastBlock = firstChain.Mine(nHeight+1, nTime - 1, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip();
BOOST_CHECK((versionbitscache.ComputeBlockVersion(lastBlock, params) & (1 << bit)) != 0);
nHeight += 1;
}
// FAILED is only triggered at the end of a period, so CBV should be setting
// the bit until the period transition.
for (uint32_t i = 0; i < params.nMinerConfirmationWindow - 1; i++) {
lastBlock = firstChain.Mine(nHeight+1, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip();
BOOST_CHECK((versionbitscache.ComputeBlockVersion(lastBlock, params) & (1 << bit)) != 0);
nHeight += 1;
}
// The next block should trigger no longer setting the bit.
lastBlock = firstChain.Mine(nHeight+1, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip();
BOOST_CHECK_EQUAL(versionbitscache.ComputeBlockVersion(lastBlock, params) & (1 << bit), 0);
}
// On a new chain:
// verify that the bit will be set after lock-in, and then stop being set
// after activation.
nTime = nStartTime;
// Mine one period worth of blocks, and check that the bit will be on for the
// next period.
lastBlock = secondChain.Mine(params.nMinerConfirmationWindow, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip();
BOOST_CHECK((versionbitscache.ComputeBlockVersion(lastBlock, params) & (1 << bit)) != 0);
// Mine another period worth of blocks, signaling the new bit.
lastBlock = secondChain.Mine(params.nMinerConfirmationWindow * 2, nTime, VERSIONBITS_TOP_BITS | (1<<bit)).Tip();
// After one period of setting the bit on each block, it should have locked in.
// We keep setting the bit for one more period though, until activation.
BOOST_CHECK((versionbitscache.ComputeBlockVersion(lastBlock, params) & (1 << bit)) != 0);
// Now check that we keep mining the block until the end of this period, and
// then stop at the beginning of the next period.
lastBlock = secondChain.Mine((params.nMinerConfirmationWindow * 3) - 1, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip();
BOOST_CHECK((versionbitscache.ComputeBlockVersion(lastBlock, params) & (1 << bit)) != 0);
lastBlock = secondChain.Mine(params.nMinerConfirmationWindow * 3, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip();
if (lastBlock->nHeight + 1 < min_activation_height) {
// check signalling continues while min_activation_height is not reached
lastBlock = secondChain.Mine(min_activation_height - 1, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip();
BOOST_CHECK((versionbitscache.ComputeBlockVersion(lastBlock, params) & (1 << bit)) != 0);
// then reach min_activation_height, which was already REQUIRE'd to start a new period
lastBlock = secondChain.Mine(min_activation_height, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip();
}
// Check that we don't signal after activation
BOOST_CHECK_EQUAL(versionbitscache.ComputeBlockVersion(lastBlock, params) & (1 << bit), 0);
}
}; // struct BlockVersionTest
BOOST_FIXTURE_TEST_CASE(versionbits_computeblockversion, BlockVersionTest)
{
VersionBitsCache vbcache;
// check that any deployment on any chain can conceivably reach both
// ACTIVE and FAILED states in roughly the way we expect
for (const auto& chain_type: {ChainType::MAIN, ChainType::TESTNET, ChainType::TESTNET4, ChainType::SIGNET, ChainType::REGTEST}) {
const auto chainParams = CreateChainParams(*m_node.args, chain_type);
uint32_t chain_all_vbits{0};
for (int i = 0; i < (int)Consensus::MAX_VERSION_BITS_DEPLOYMENTS; ++i) {
const auto dep = static_cast<Consensus::DeploymentPos>(i);
// Check that no bits are reused (within the same chain). This is
// disallowed because the transition to FAILED (on timeout) does
// not take precedence over STARTED/LOCKED_IN. So all softforks on
// the same bit might overlap, even when non-overlapping start-end
// times are picked.
const uint32_t dep_mask{vbcache.Mask(chainParams->GetConsensus(), dep)};
BOOST_CHECK(!(chain_all_vbits & dep_mask));
chain_all_vbits |= dep_mask;
check_computeblockversion(vbcache, chainParams->GetConsensus(), dep);
}
}
{
// Use regtest/testdummy to ensure we always exercise some
// deployment that's not always/never active
ArgsManager args;
args.ForceSetArg("-vbparams", "testdummy:1199145601:1230767999"); // January 1, 2008 - December 31, 2008
const auto chainParams = CreateChainParams(args, ChainType::REGTEST);
check_computeblockversion(vbcache, chainParams->GetConsensus(), Consensus::DEPLOYMENT_TESTDUMMY);
}
{
// Use regtest/testdummy to ensure we always exercise the
// min_activation_height test, even if we're not using that in a
// live deployment
ArgsManager args;
args.ForceSetArg("-vbparams", "testdummy:1199145601:1230767999:403200"); // January 1, 2008 - December 31, 2008, min act height 403200
const auto chainParams = CreateChainParams(args, ChainType::REGTEST);
check_computeblockversion(vbcache, chainParams->GetConsensus(), Consensus::DEPLOYMENT_TESTDUMMY);
}
}
BOOST_AUTO_TEST_SUITE_END()
|