1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
|
// Copyright (c) 2017-2021 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <consensus/validation.h>
#include <key_io.h>
#include <policy/v3_policy.h>
#include <policy/packages.h>
#include <policy/policy.h>
#include <primitives/transaction.h>
#include <random.h>
#include <script/script.h>
#include <test/util/setup_common.h>
#include <test/util/txmempool.h>
#include <validation.h>
#include <boost/test/unit_test.hpp>
BOOST_AUTO_TEST_SUITE(txvalidation_tests)
/**
* Ensure that the mempool won't accept coinbase transactions.
*/
BOOST_FIXTURE_TEST_CASE(tx_mempool_reject_coinbase, TestChain100Setup)
{
CScript scriptPubKey = CScript() << ToByteVector(coinbaseKey.GetPubKey()) << OP_CHECKSIG;
CMutableTransaction coinbaseTx;
coinbaseTx.nVersion = 1;
coinbaseTx.vin.resize(1);
coinbaseTx.vout.resize(1);
coinbaseTx.vin[0].scriptSig = CScript() << OP_11 << OP_EQUAL;
coinbaseTx.vout[0].nValue = 1 * CENT;
coinbaseTx.vout[0].scriptPubKey = scriptPubKey;
BOOST_CHECK(CTransaction(coinbaseTx).IsCoinBase());
LOCK(cs_main);
unsigned int initialPoolSize = m_node.mempool->size();
const MempoolAcceptResult result = m_node.chainman->ProcessTransaction(MakeTransactionRef(coinbaseTx));
BOOST_CHECK(result.m_result_type == MempoolAcceptResult::ResultType::INVALID);
// Check that the transaction hasn't been added to mempool.
BOOST_CHECK_EQUAL(m_node.mempool->size(), initialPoolSize);
// Check that the validation state reflects the unsuccessful attempt.
BOOST_CHECK(result.m_state.IsInvalid());
BOOST_CHECK_EQUAL(result.m_state.GetRejectReason(), "coinbase");
BOOST_CHECK(result.m_state.GetResult() == TxValidationResult::TX_CONSENSUS);
}
// Generate a number of random, nonexistent outpoints.
static inline std::vector<COutPoint> random_outpoints(size_t num_outpoints) {
std::vector<COutPoint> outpoints;
for (size_t i{0}; i < num_outpoints; ++i) {
outpoints.emplace_back(Txid::FromUint256(GetRandHash()), 0);
}
return outpoints;
}
static inline std::vector<CPubKey> random_keys(size_t num_keys) {
std::vector<CPubKey> keys;
keys.reserve(num_keys);
for (size_t i{0}; i < num_keys; ++i) {
CKey key;
key.MakeNewKey(true);
keys.emplace_back(key.GetPubKey());
}
return keys;
}
// Creates a placeholder tx (not valid) with 25 outputs. Specify the nVersion and the inputs.
static inline CTransactionRef make_tx(const std::vector<COutPoint>& inputs, int32_t version)
{
CMutableTransaction mtx = CMutableTransaction{};
mtx.nVersion = version;
mtx.vin.resize(inputs.size());
mtx.vout.resize(25);
for (size_t i{0}; i < inputs.size(); ++i) {
mtx.vin[i].prevout = inputs[i];
}
for (auto i{0}; i < 25; ++i) {
mtx.vout[i].scriptPubKey = CScript() << OP_TRUE;
mtx.vout[i].nValue = 10000;
}
return MakeTransactionRef(mtx);
}
BOOST_FIXTURE_TEST_CASE(version3_tests, RegTestingSetup)
{
// Test V3 policy helper functions
CTxMemPool& pool = *Assert(m_node.mempool);
LOCK2(cs_main, pool.cs);
TestMemPoolEntryHelper entry;
std::set<Txid> empty_conflicts_set;
CTxMemPool::setEntries empty_ancestors;
auto mempool_tx_v3 = make_tx(random_outpoints(1), /*version=*/3);
pool.addUnchecked(entry.FromTx(mempool_tx_v3));
auto mempool_tx_v2 = make_tx(random_outpoints(1), /*version=*/2);
pool.addUnchecked(entry.FromTx(mempool_tx_v2));
// Default values.
CTxMemPool::Limits m_limits{};
// Cannot spend from an unconfirmed v3 transaction unless this tx is also v3.
{
// mempool_tx_v3
// ^
// tx_v2_from_v3
auto tx_v2_from_v3 = make_tx({COutPoint{mempool_tx_v3->GetHash(), 0}}, /*version=*/2);
auto ancestors_v2_from_v3{pool.CalculateMemPoolAncestors(entry.FromTx(tx_v2_from_v3), m_limits)};
const auto expected_error_str{strprintf("non-v3 tx %s (wtxid=%s) cannot spend from v3 tx %s (wtxid=%s)",
tx_v2_from_v3->GetHash().ToString(), tx_v2_from_v3->GetWitnessHash().ToString(),
mempool_tx_v3->GetHash().ToString(), mempool_tx_v3->GetWitnessHash().ToString())};
auto result_v2_from_v3{SingleV3Checks(tx_v2_from_v3, *ancestors_v2_from_v3, empty_conflicts_set, GetVirtualTransactionSize(*tx_v2_from_v3))};
BOOST_CHECK_EQUAL(result_v2_from_v3->first, expected_error_str);
BOOST_CHECK_EQUAL(result_v2_from_v3->second, nullptr);
Package package_v3_v2{mempool_tx_v3, tx_v2_from_v3};
BOOST_CHECK_EQUAL(*PackageV3Checks(tx_v2_from_v3, GetVirtualTransactionSize(*tx_v2_from_v3), package_v3_v2, empty_ancestors), expected_error_str);
CTxMemPool::setEntries entries_mempool_v3{pool.GetIter(mempool_tx_v3->GetHash().ToUint256()).value()};
BOOST_CHECK_EQUAL(*PackageV3Checks(tx_v2_from_v3, GetVirtualTransactionSize(*tx_v2_from_v3), {tx_v2_from_v3}, entries_mempool_v3), expected_error_str);
// mempool_tx_v3 mempool_tx_v2
// ^ ^
// tx_v2_from_v2_and_v3
auto tx_v2_from_v2_and_v3 = make_tx({COutPoint{mempool_tx_v3->GetHash(), 0}, COutPoint{mempool_tx_v2->GetHash(), 0}}, /*version=*/2);
auto ancestors_v2_from_both{pool.CalculateMemPoolAncestors(entry.FromTx(tx_v2_from_v2_and_v3), m_limits)};
const auto expected_error_str_2{strprintf("non-v3 tx %s (wtxid=%s) cannot spend from v3 tx %s (wtxid=%s)",
tx_v2_from_v2_and_v3->GetHash().ToString(), tx_v2_from_v2_and_v3->GetWitnessHash().ToString(),
mempool_tx_v3->GetHash().ToString(), mempool_tx_v3->GetWitnessHash().ToString())};
auto result_v2_from_both{SingleV3Checks(tx_v2_from_v2_and_v3, *ancestors_v2_from_both, empty_conflicts_set, GetVirtualTransactionSize(*tx_v2_from_v2_and_v3))};
BOOST_CHECK_EQUAL(result_v2_from_both->first, expected_error_str_2);
BOOST_CHECK_EQUAL(result_v2_from_both->second, nullptr);
Package package_v3_v2_v2{mempool_tx_v3, mempool_tx_v2, tx_v2_from_v2_and_v3};
BOOST_CHECK_EQUAL(*PackageV3Checks(tx_v2_from_v2_and_v3, GetVirtualTransactionSize(*tx_v2_from_v2_and_v3), package_v3_v2_v2, empty_ancestors), expected_error_str_2);
}
// V3 cannot spend from an unconfirmed non-v3 transaction.
{
// mempool_tx_v2
// ^
// tx_v3_from_v2
auto tx_v3_from_v2 = make_tx({COutPoint{mempool_tx_v2->GetHash(), 0}}, /*version=*/3);
auto ancestors_v3_from_v2{pool.CalculateMemPoolAncestors(entry.FromTx(tx_v3_from_v2), m_limits)};
const auto expected_error_str{strprintf("v3 tx %s (wtxid=%s) cannot spend from non-v3 tx %s (wtxid=%s)",
tx_v3_from_v2->GetHash().ToString(), tx_v3_from_v2->GetWitnessHash().ToString(),
mempool_tx_v2->GetHash().ToString(), mempool_tx_v2->GetWitnessHash().ToString())};
auto result_v3_from_v2{SingleV3Checks(tx_v3_from_v2, *ancestors_v3_from_v2, empty_conflicts_set, GetVirtualTransactionSize(*tx_v3_from_v2))};
BOOST_CHECK_EQUAL(result_v3_from_v2->first, expected_error_str);
BOOST_CHECK_EQUAL(result_v3_from_v2->second, nullptr);
Package package_v2_v3{mempool_tx_v2, tx_v3_from_v2};
BOOST_CHECK_EQUAL(*PackageV3Checks(tx_v3_from_v2, GetVirtualTransactionSize(*tx_v3_from_v2), package_v2_v3, empty_ancestors), expected_error_str);
CTxMemPool::setEntries entries_mempool_v2{pool.GetIter(mempool_tx_v2->GetHash().ToUint256()).value()};
BOOST_CHECK_EQUAL(*PackageV3Checks(tx_v3_from_v2, GetVirtualTransactionSize(*tx_v3_from_v2), {tx_v3_from_v2}, entries_mempool_v2), expected_error_str);
// mempool_tx_v3 mempool_tx_v2
// ^ ^
// tx_v3_from_v2_and_v3
auto tx_v3_from_v2_and_v3 = make_tx({COutPoint{mempool_tx_v3->GetHash(), 0}, COutPoint{mempool_tx_v2->GetHash(), 0}}, /*version=*/3);
auto ancestors_v3_from_both{pool.CalculateMemPoolAncestors(entry.FromTx(tx_v3_from_v2_and_v3), m_limits)};
const auto expected_error_str_2{strprintf("v3 tx %s (wtxid=%s) cannot spend from non-v3 tx %s (wtxid=%s)",
tx_v3_from_v2_and_v3->GetHash().ToString(), tx_v3_from_v2_and_v3->GetWitnessHash().ToString(),
mempool_tx_v2->GetHash().ToString(), mempool_tx_v2->GetWitnessHash().ToString())};
auto result_v3_from_both{SingleV3Checks(tx_v3_from_v2_and_v3, *ancestors_v3_from_both, empty_conflicts_set, GetVirtualTransactionSize(*tx_v3_from_v2_and_v3))};
BOOST_CHECK_EQUAL(result_v3_from_both->first, expected_error_str_2);
BOOST_CHECK_EQUAL(result_v3_from_both->second, nullptr);
// tx_v3_from_v2_and_v3 also violates V3_ANCESTOR_LIMIT.
const auto expected_error_str_3{strprintf("tx %s (wtxid=%s) would have too many ancestors",
tx_v3_from_v2_and_v3->GetHash().ToString(), tx_v3_from_v2_and_v3->GetWitnessHash().ToString())};
Package package_v3_v2_v3{mempool_tx_v3, mempool_tx_v2, tx_v3_from_v2_and_v3};
BOOST_CHECK_EQUAL(*PackageV3Checks(tx_v3_from_v2_and_v3, GetVirtualTransactionSize(*tx_v3_from_v2_and_v3), package_v3_v2_v3, empty_ancestors), expected_error_str_3);
}
// V3 from V3 is ok, and non-V3 from non-V3 is ok.
{
// mempool_tx_v3
// ^
// tx_v3_from_v3
auto tx_v3_from_v3 = make_tx({COutPoint{mempool_tx_v3->GetHash(), 0}}, /*version=*/3);
auto ancestors_v3{pool.CalculateMemPoolAncestors(entry.FromTx(tx_v3_from_v3), m_limits)};
BOOST_CHECK(SingleV3Checks(tx_v3_from_v3, *ancestors_v3, empty_conflicts_set, GetVirtualTransactionSize(*tx_v3_from_v3))
== std::nullopt);
Package package_v3_v3{mempool_tx_v3, tx_v3_from_v3};
BOOST_CHECK(PackageV3Checks(tx_v3_from_v3, GetVirtualTransactionSize(*tx_v3_from_v3), package_v3_v3, empty_ancestors) == std::nullopt);
// mempool_tx_v2
// ^
// tx_v2_from_v2
auto tx_v2_from_v2 = make_tx({COutPoint{mempool_tx_v2->GetHash(), 0}}, /*version=*/2);
auto ancestors_v2{pool.CalculateMemPoolAncestors(entry.FromTx(tx_v2_from_v2), m_limits)};
BOOST_CHECK(SingleV3Checks(tx_v2_from_v2, *ancestors_v2, empty_conflicts_set, GetVirtualTransactionSize(*tx_v2_from_v2))
== std::nullopt);
Package package_v2_v2{mempool_tx_v2, tx_v2_from_v2};
BOOST_CHECK(PackageV3Checks(tx_v2_from_v2, GetVirtualTransactionSize(*tx_v2_from_v2), package_v2_v2, empty_ancestors) == std::nullopt);
}
// Tx spending v3 cannot have too many mempool ancestors
// Configuration where the tx has multiple direct parents.
{
Package package_multi_parents;
std::vector<COutPoint> mempool_outpoints;
mempool_outpoints.emplace_back(mempool_tx_v3->GetHash(), 0);
package_multi_parents.emplace_back(mempool_tx_v3);
for (size_t i{0}; i < 2; ++i) {
auto mempool_tx = make_tx(random_outpoints(i + 1), /*version=*/3);
pool.addUnchecked(entry.FromTx(mempool_tx));
mempool_outpoints.emplace_back(mempool_tx->GetHash(), 0);
package_multi_parents.emplace_back(mempool_tx);
}
auto tx_v3_multi_parent = make_tx(mempool_outpoints, /*version=*/3);
package_multi_parents.emplace_back(tx_v3_multi_parent);
auto ancestors{pool.CalculateMemPoolAncestors(entry.FromTx(tx_v3_multi_parent), m_limits)};
BOOST_CHECK_EQUAL(ancestors->size(), 3);
const auto expected_error_str{strprintf("tx %s (wtxid=%s) would have too many ancestors",
tx_v3_multi_parent->GetHash().ToString(), tx_v3_multi_parent->GetWitnessHash().ToString())};
auto result{SingleV3Checks(tx_v3_multi_parent, *ancestors, empty_conflicts_set, GetVirtualTransactionSize(*tx_v3_multi_parent))};
BOOST_CHECK_EQUAL(result->first, expected_error_str);
BOOST_CHECK_EQUAL(result->second, nullptr);
BOOST_CHECK_EQUAL(*PackageV3Checks(tx_v3_multi_parent, GetVirtualTransactionSize(*tx_v3_multi_parent), package_multi_parents, empty_ancestors),
expected_error_str);
}
// Configuration where the tx is in a multi-generation chain.
{
Package package_multi_gen;
CTransactionRef middle_tx;
auto last_outpoint{random_outpoints(1)[0]};
for (size_t i{0}; i < 2; ++i) {
auto mempool_tx = make_tx({last_outpoint}, /*version=*/3);
pool.addUnchecked(entry.FromTx(mempool_tx));
last_outpoint = COutPoint{mempool_tx->GetHash(), 0};
package_multi_gen.emplace_back(mempool_tx);
if (i == 1) middle_tx = mempool_tx;
}
auto tx_v3_multi_gen = make_tx({last_outpoint}, /*version=*/3);
package_multi_gen.emplace_back(tx_v3_multi_gen);
auto ancestors{pool.CalculateMemPoolAncestors(entry.FromTx(tx_v3_multi_gen), m_limits)};
const auto expected_error_str{strprintf("tx %s (wtxid=%s) would have too many ancestors",
tx_v3_multi_gen->GetHash().ToString(), tx_v3_multi_gen->GetWitnessHash().ToString())};
auto result{SingleV3Checks(tx_v3_multi_gen, *ancestors, empty_conflicts_set, GetVirtualTransactionSize(*tx_v3_multi_gen))};
BOOST_CHECK_EQUAL(result->first, expected_error_str);
BOOST_CHECK_EQUAL(result->second, nullptr);
// Middle tx is what triggers a failure for the grandchild:
BOOST_CHECK_EQUAL(*PackageV3Checks(middle_tx, GetVirtualTransactionSize(*middle_tx), package_multi_gen, empty_ancestors), expected_error_str);
BOOST_CHECK(PackageV3Checks(tx_v3_multi_gen, GetVirtualTransactionSize(*tx_v3_multi_gen), package_multi_gen, empty_ancestors) == std::nullopt);
}
// Tx spending v3 cannot be too large in virtual size.
auto many_inputs{random_outpoints(100)};
many_inputs.emplace_back(mempool_tx_v3->GetHash(), 0);
{
auto tx_v3_child_big = make_tx(many_inputs, /*version=*/3);
const auto vsize{GetVirtualTransactionSize(*tx_v3_child_big)};
auto ancestors{pool.CalculateMemPoolAncestors(entry.FromTx(tx_v3_child_big), m_limits)};
const auto expected_error_str{strprintf("v3 child tx %s (wtxid=%s) is too big: %u > %u virtual bytes",
tx_v3_child_big->GetHash().ToString(), tx_v3_child_big->GetWitnessHash().ToString(), vsize, V3_CHILD_MAX_VSIZE)};
auto result{SingleV3Checks(tx_v3_child_big, *ancestors, empty_conflicts_set, GetVirtualTransactionSize(*tx_v3_child_big))};
BOOST_CHECK_EQUAL(result->first, expected_error_str);
BOOST_CHECK_EQUAL(result->second, nullptr);
Package package_child_big{mempool_tx_v3, tx_v3_child_big};
BOOST_CHECK_EQUAL(*PackageV3Checks(tx_v3_child_big, GetVirtualTransactionSize(*tx_v3_child_big), package_child_big, empty_ancestors),
expected_error_str);
}
// Tx spending v3 cannot have too many sigops.
// This child has 10 P2WSH multisig inputs.
auto multisig_outpoints{random_outpoints(10)};
multisig_outpoints.emplace_back(mempool_tx_v3->GetHash(), 0);
auto keys{random_keys(2)};
CScript script_multisig;
script_multisig << OP_1;
for (const auto& key : keys) {
script_multisig << ToByteVector(key);
}
script_multisig << OP_2 << OP_CHECKMULTISIG;
{
CMutableTransaction mtx_many_sigops = CMutableTransaction{};
mtx_many_sigops.nVersion = 3;
for (const auto& outpoint : multisig_outpoints) {
mtx_many_sigops.vin.emplace_back(outpoint);
mtx_many_sigops.vin.back().scriptWitness.stack.emplace_back(script_multisig.begin(), script_multisig.end());
}
mtx_many_sigops.vout.resize(1);
mtx_many_sigops.vout.back().scriptPubKey = CScript() << OP_TRUE;
mtx_many_sigops.vout.back().nValue = 10000;
auto tx_many_sigops{MakeTransactionRef(mtx_many_sigops)};
auto ancestors{pool.CalculateMemPoolAncestors(entry.FromTx(tx_many_sigops), m_limits)};
// legacy uses fAccurate = false, and the maximum number of multisig keys is used
const int64_t total_sigops{static_cast<int64_t>(tx_many_sigops->vin.size()) * static_cast<int64_t>(script_multisig.GetSigOpCount(/*fAccurate=*/false))};
BOOST_CHECK_EQUAL(total_sigops, tx_many_sigops->vin.size() * MAX_PUBKEYS_PER_MULTISIG);
const int64_t bip141_vsize{GetVirtualTransactionSize(*tx_many_sigops)};
// Weight limit is not reached...
BOOST_CHECK(SingleV3Checks(tx_many_sigops, *ancestors, empty_conflicts_set, bip141_vsize) == std::nullopt);
// ...but sigop limit is.
const auto expected_error_str{strprintf("v3 child tx %s (wtxid=%s) is too big: %u > %u virtual bytes",
tx_many_sigops->GetHash().ToString(), tx_many_sigops->GetWitnessHash().ToString(),
total_sigops * DEFAULT_BYTES_PER_SIGOP / WITNESS_SCALE_FACTOR, V3_CHILD_MAX_VSIZE)};
auto result{SingleV3Checks(tx_many_sigops, *ancestors, empty_conflicts_set,
GetVirtualTransactionSize(*tx_many_sigops, /*nSigOpCost=*/total_sigops, /*bytes_per_sigop=*/ DEFAULT_BYTES_PER_SIGOP))};
BOOST_CHECK_EQUAL(result->first, expected_error_str);
BOOST_CHECK_EQUAL(result->second, nullptr);
Package package_child_sigops{mempool_tx_v3, tx_many_sigops};
BOOST_CHECK_EQUAL(*PackageV3Checks(tx_many_sigops, total_sigops * DEFAULT_BYTES_PER_SIGOP / WITNESS_SCALE_FACTOR, package_child_sigops, empty_ancestors),
expected_error_str);
}
// Parent + child with v3 in the mempool. Child is allowed as long as it is under V3_CHILD_MAX_VSIZE.
auto tx_mempool_v3_child = make_tx({COutPoint{mempool_tx_v3->GetHash(), 0}}, /*version=*/3);
{
BOOST_CHECK(GetTransactionWeight(*tx_mempool_v3_child) <= V3_CHILD_MAX_VSIZE * WITNESS_SCALE_FACTOR);
auto ancestors{pool.CalculateMemPoolAncestors(entry.FromTx(tx_mempool_v3_child), m_limits)};
BOOST_CHECK(SingleV3Checks(tx_mempool_v3_child, *ancestors, empty_conflicts_set, GetVirtualTransactionSize(*tx_mempool_v3_child)) == std::nullopt);
pool.addUnchecked(entry.FromTx(tx_mempool_v3_child));
Package package_v3_1p1c{mempool_tx_v3, tx_mempool_v3_child};
BOOST_CHECK(PackageV3Checks(tx_mempool_v3_child, GetVirtualTransactionSize(*tx_mempool_v3_child), package_v3_1p1c, empty_ancestors) == std::nullopt);
}
// A v3 transaction cannot have more than 1 descendant. Sibling is returned when exactly 1 exists.
{
auto tx_v3_child2 = make_tx({COutPoint{mempool_tx_v3->GetHash(), 1}}, /*version=*/3);
// Configuration where parent already has 1 other child in mempool
auto ancestors_1sibling{pool.CalculateMemPoolAncestors(entry.FromTx(tx_v3_child2), m_limits)};
const auto expected_error_str{strprintf("tx %s (wtxid=%s) would exceed descendant count limit",
mempool_tx_v3->GetHash().ToString(), mempool_tx_v3->GetWitnessHash().ToString())};
auto result_with_sibling_eviction{SingleV3Checks(tx_v3_child2, *ancestors_1sibling, empty_conflicts_set, GetVirtualTransactionSize(*tx_v3_child2))};
BOOST_CHECK_EQUAL(result_with_sibling_eviction->first, expected_error_str);
// The other mempool child is returned to allow for sibling eviction.
BOOST_CHECK_EQUAL(result_with_sibling_eviction->second, tx_mempool_v3_child);
// If directly replacing the child, make sure there is no double-counting.
BOOST_CHECK(SingleV3Checks(tx_v3_child2, *ancestors_1sibling, {tx_mempool_v3_child->GetHash()}, GetVirtualTransactionSize(*tx_v3_child2))
== std::nullopt);
Package package_v3_1p2c{mempool_tx_v3, tx_mempool_v3_child, tx_v3_child2};
BOOST_CHECK_EQUAL(*PackageV3Checks(tx_v3_child2, GetVirtualTransactionSize(*tx_v3_child2), package_v3_1p2c, empty_ancestors),
expected_error_str);
// Configuration where parent already has 2 other children in mempool (no sibling eviction allowed). This may happen as the result of a reorg.
pool.addUnchecked(entry.FromTx(tx_v3_child2));
auto tx_v3_child3 = make_tx({COutPoint{mempool_tx_v3->GetHash(), 24}}, /*version=*/3);
auto entry_mempool_parent = pool.GetIter(mempool_tx_v3->GetHash().ToUint256()).value();
BOOST_CHECK_EQUAL(entry_mempool_parent->GetCountWithDescendants(), 3);
auto ancestors_2siblings{pool.CalculateMemPoolAncestors(entry.FromTx(tx_v3_child3), m_limits)};
auto result_2children{SingleV3Checks(tx_v3_child3, *ancestors_2siblings, empty_conflicts_set, GetVirtualTransactionSize(*tx_v3_child3))};
BOOST_CHECK_EQUAL(result_2children->first, expected_error_str);
// The other mempool child is not returned because sibling eviction is not allowed.
BOOST_CHECK_EQUAL(result_2children->second, nullptr);
}
// Sibling eviction: parent already has 1 other child, which also has its own child (no sibling eviction allowed). This may happen as the result of a reorg.
{
auto tx_mempool_grandparent = make_tx(random_outpoints(1), /*version=*/3);
auto tx_mempool_sibling = make_tx({COutPoint{tx_mempool_grandparent->GetHash(), 0}}, /*version=*/3);
auto tx_mempool_nibling = make_tx({COutPoint{tx_mempool_sibling->GetHash(), 0}}, /*version=*/3);
auto tx_to_submit = make_tx({COutPoint{tx_mempool_grandparent->GetHash(), 1}}, /*version=*/3);
pool.addUnchecked(entry.FromTx(tx_mempool_grandparent));
pool.addUnchecked(entry.FromTx(tx_mempool_sibling));
pool.addUnchecked(entry.FromTx(tx_mempool_nibling));
auto ancestors_3gen{pool.CalculateMemPoolAncestors(entry.FromTx(tx_to_submit), m_limits)};
const auto expected_error_str{strprintf("tx %s (wtxid=%s) would exceed descendant count limit",
tx_mempool_grandparent->GetHash().ToString(), tx_mempool_grandparent->GetWitnessHash().ToString())};
auto result_3gen{SingleV3Checks(tx_to_submit, *ancestors_3gen, empty_conflicts_set, GetVirtualTransactionSize(*tx_to_submit))};
BOOST_CHECK_EQUAL(result_3gen->first, expected_error_str);
// The other mempool child is not returned because sibling eviction is not allowed.
BOOST_CHECK_EQUAL(result_3gen->second, nullptr);
}
// Configuration where tx has multiple generations of descendants is not tested because that is
// equivalent to the tx with multiple generations of ancestors.
}
BOOST_AUTO_TEST_SUITE_END()
|