1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
|
// Copyright (c) 2020-2021 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <txrequest.h>
#include <uint256.h>
#include <test/util/random.h>
#include <test/util/setup_common.h>
#include <algorithm>
#include <functional>
#include <vector>
#include <boost/test/unit_test.hpp>
namespace {
class Scenario;
struct TxRequestTest : BasicTestingSetup {
std::chrono::microseconds RandomTime8s();
std::chrono::microseconds RandomTime1y();
void BuildSingleTest(Scenario& scenario, int config);
void BuildPriorityTest(Scenario& scenario, int config);
void BuildBigPriorityTest(Scenario& scenario, int peers);
void BuildRequestOrderTest(Scenario& scenario, int config);
void BuildWtxidTest(Scenario& scenario, int config);
void BuildTimeBackwardsTest(Scenario& scenario);
void BuildWeirdRequestsTest(Scenario& scenario);
void TestInterleavedScenarios();
};
constexpr std::chrono::microseconds MIN_TIME = std::chrono::microseconds::min();
constexpr std::chrono::microseconds MAX_TIME = std::chrono::microseconds::max();
constexpr std::chrono::microseconds MICROSECOND = std::chrono::microseconds{1};
constexpr std::chrono::microseconds NO_TIME = std::chrono::microseconds{0};
/** An Action is a function to call at a particular (simulated) timestamp. */
using Action = std::pair<std::chrono::microseconds, std::function<void()>>;
/** Object that stores actions from multiple interleaved scenarios, and data shared across them.
*
* The Scenario below is used to fill this.
*/
struct Runner
{
/** The TxRequestTracker being tested. */
TxRequestTracker txrequest;
/** List of actions to be executed (in order of increasing timestamp). */
std::vector<Action> actions;
/** Which node ids have been assigned already (to prevent reuse). */
std::set<NodeId> peerset;
/** Which txhashes have been assigned already (to prevent reuse). */
std::set<uint256> txhashset;
/** Which (peer, gtxid) combinations are known to be expired. These need to be accumulated here instead of
* checked directly in the GetRequestable return value to avoid introducing a dependency between the various
* parallel tests. */
std::multiset<std::pair<NodeId, GenTxid>> expired;
};
std::chrono::microseconds TxRequestTest::RandomTime8s() { return std::chrono::microseconds{1 + m_rng.randbits(23)}; }
std::chrono::microseconds TxRequestTest::RandomTime1y() { return std::chrono::microseconds{1 + m_rng.randbits(45)}; }
/** A proxy for a Runner that helps build a sequence of consecutive test actions on a TxRequestTracker.
*
* Each Scenario is a proxy through which actions for the (sequential) execution of various tests are added to a
* Runner. The actions from multiple scenarios are then run concurrently, resulting in these tests being performed
* against a TxRequestTracker in parallel. Every test has its own unique txhashes and NodeIds which are not
* reused in other tests, and thus they should be independent from each other. Running them in parallel however
* means that we verify the behavior (w.r.t. one test's txhashes and NodeIds) even when the state of the data
* structure is more complicated due to the presence of other tests.
*/
class Scenario
{
FastRandomContext& m_rng;
Runner& m_runner;
std::chrono::microseconds m_now;
std::string m_testname;
public:
Scenario(FastRandomContext& rng, Runner& runner, std::chrono::microseconds starttime) : m_rng(rng), m_runner(runner), m_now(starttime) {}
/** Set a name for the current test, to give more clear error messages. */
void SetTestName(std::string testname)
{
m_testname = std::move(testname);
}
/** Advance this Scenario's time; this affects the timestamps newly scheduled events get. */
void AdvanceTime(std::chrono::microseconds amount)
{
assert(amount.count() >= 0);
m_now += amount;
}
/** Schedule a ForgetTxHash call at the Scheduler's current time. */
void ForgetTxHash(const uint256& txhash)
{
auto& runner = m_runner;
runner.actions.emplace_back(m_now, [=,&runner]() {
runner.txrequest.ForgetTxHash(txhash);
runner.txrequest.SanityCheck();
});
}
/** Schedule a ReceivedInv call at the Scheduler's current time. */
void ReceivedInv(NodeId peer, const GenTxid& gtxid, bool pref, std::chrono::microseconds reqtime)
{
auto& runner = m_runner;
runner.actions.emplace_back(m_now, [=,&runner]() {
runner.txrequest.ReceivedInv(peer, gtxid, pref, reqtime);
runner.txrequest.SanityCheck();
});
}
/** Schedule a DisconnectedPeer call at the Scheduler's current time. */
void DisconnectedPeer(NodeId peer)
{
auto& runner = m_runner;
runner.actions.emplace_back(m_now, [=,&runner]() {
runner.txrequest.DisconnectedPeer(peer);
runner.txrequest.SanityCheck();
});
}
/** Schedule a RequestedTx call at the Scheduler's current time. */
void RequestedTx(NodeId peer, const uint256& txhash, std::chrono::microseconds exptime)
{
auto& runner = m_runner;
runner.actions.emplace_back(m_now, [=,&runner]() {
runner.txrequest.RequestedTx(peer, txhash, exptime);
runner.txrequest.SanityCheck();
});
}
/** Schedule a ReceivedResponse call at the Scheduler's current time. */
void ReceivedResponse(NodeId peer, const uint256& txhash)
{
auto& runner = m_runner;
runner.actions.emplace_back(m_now, [=,&runner]() {
runner.txrequest.ReceivedResponse(peer, txhash);
runner.txrequest.SanityCheck();
});
}
/** Schedule calls to verify the TxRequestTracker's state at the Scheduler's current time.
*
* @param peer The peer whose state will be inspected.
* @param expected The expected return value for GetRequestable(peer)
* @param candidates The expected return value CountCandidates(peer)
* @param inflight The expected return value CountInFlight(peer)
* @param completed The expected return value of Count(peer), minus candidates and inflight.
* @param checkname An arbitrary string to include in error messages, for test identificatrion.
* @param offset Offset with the current time to use (must be <= 0). This allows simulations of time going
* backwards (but note that the ordering of this event only follows the scenario's m_now.
*/
void Check(NodeId peer, const std::vector<GenTxid>& expected, size_t candidates, size_t inflight,
size_t completed, const std::string& checkname,
std::chrono::microseconds offset = std::chrono::microseconds{0})
{
const auto comment = m_testname + " " + checkname;
auto& runner = m_runner;
const auto now = m_now;
assert(offset.count() <= 0);
runner.actions.emplace_back(m_now, [=,&runner]() {
std::vector<std::pair<NodeId, GenTxid>> expired_now;
auto ret = runner.txrequest.GetRequestable(peer, now + offset, &expired_now);
for (const auto& entry : expired_now) runner.expired.insert(entry);
runner.txrequest.SanityCheck();
runner.txrequest.PostGetRequestableSanityCheck(now + offset);
size_t total = candidates + inflight + completed;
size_t real_total = runner.txrequest.Count(peer);
size_t real_candidates = runner.txrequest.CountCandidates(peer);
size_t real_inflight = runner.txrequest.CountInFlight(peer);
BOOST_CHECK_MESSAGE(real_total == total, strprintf("[" + comment + "] total %i (%i expected)", real_total, total));
BOOST_CHECK_MESSAGE(real_inflight == inflight, strprintf("[" + comment + "] inflight %i (%i expected)", real_inflight, inflight));
BOOST_CHECK_MESSAGE(real_candidates == candidates, strprintf("[" + comment + "] candidates %i (%i expected)", real_candidates, candidates));
BOOST_CHECK_MESSAGE(ret == expected, "[" + comment + "] mismatching requestables");
});
}
/** Verify that an announcement for gtxid by peer has expired some time before this check is scheduled.
*
* Every expected expiration should be accounted for through exactly one call to this function.
*/
void CheckExpired(NodeId peer, GenTxid gtxid)
{
const auto& testname = m_testname;
auto& runner = m_runner;
runner.actions.emplace_back(m_now, [=,&runner]() {
auto it = runner.expired.find(std::pair<NodeId, GenTxid>{peer, gtxid});
BOOST_CHECK_MESSAGE(it != runner.expired.end(), "[" + testname + "] missing expiration");
if (it != runner.expired.end()) runner.expired.erase(it);
});
}
/** Generate a random txhash, whose priorities for certain peers are constrained.
*
* For example, NewTxHash({{p1,p2,p3},{p2,p4,p5}}) will generate a txhash T such that both:
* - priority(p1,T) > priority(p2,T) > priority(p3,T)
* - priority(p2,T) > priority(p4,T) > priority(p5,T)
* where priority is the predicted internal TxRequestTracker's priority, assuming all announcements
* are within the same preferredness class.
*/
uint256 NewTxHash(const std::vector<std::vector<NodeId>>& orders = {})
{
uint256 ret;
bool ok;
do {
ret = m_rng.rand256();
ok = true;
for (const auto& order : orders) {
for (size_t pos = 1; pos < order.size(); ++pos) {
uint64_t prio_prev = m_runner.txrequest.ComputePriority(ret, order[pos - 1], true);
uint64_t prio_cur = m_runner.txrequest.ComputePriority(ret, order[pos], true);
if (prio_prev <= prio_cur) {
ok = false;
break;
}
}
if (!ok) break;
}
if (ok) {
ok = m_runner.txhashset.insert(ret).second;
}
} while(!ok);
return ret;
}
/** Generate a random GenTxid; the txhash follows NewTxHash; the is_wtxid flag is random. */
GenTxid NewGTxid(const std::vector<std::vector<NodeId>>& orders = {})
{
return m_rng.randbool() ? GenTxid::Wtxid(NewTxHash(orders)) : GenTxid::Txid(NewTxHash(orders));
}
/** Generate a new random NodeId to use as peer. The same NodeId is never returned twice
* (across all Scenarios combined). */
NodeId NewPeer()
{
bool ok;
NodeId ret;
do {
ret = m_rng.randbits(63);
ok = m_runner.peerset.insert(ret).second;
} while(!ok);
return ret;
}
std::chrono::microseconds Now() const { return m_now; }
};
/** Add to scenario a test with a single tx announced by a single peer.
*
* config is an integer in [0, 32), which controls which variant of the test is used.
*/
void TxRequestTest::BuildSingleTest(Scenario& scenario, int config)
{
auto peer = scenario.NewPeer();
auto gtxid = scenario.NewGTxid();
bool immediate = config & 1;
bool preferred = config & 2;
auto delay = immediate ? NO_TIME : RandomTime8s();
scenario.SetTestName(strprintf("Single(config=%i)", config));
// Receive an announcement, either immediately requestable or delayed.
scenario.ReceivedInv(peer, gtxid, preferred, immediate ? MIN_TIME : scenario.Now() + delay);
if (immediate) {
scenario.Check(peer, {gtxid}, 1, 0, 0, "s1");
} else {
scenario.Check(peer, {}, 1, 0, 0, "s2");
scenario.AdvanceTime(delay - MICROSECOND);
scenario.Check(peer, {}, 1, 0, 0, "s3");
scenario.AdvanceTime(MICROSECOND);
scenario.Check(peer, {gtxid}, 1, 0, 0, "s4");
}
if (config >> 3) { // We'll request the transaction
scenario.AdvanceTime(RandomTime8s());
auto expiry = RandomTime8s();
scenario.Check(peer, {gtxid}, 1, 0, 0, "s5");
scenario.RequestedTx(peer, gtxid.GetHash(), scenario.Now() + expiry);
scenario.Check(peer, {}, 0, 1, 0, "s6");
if ((config >> 3) == 1) { // The request will time out
scenario.AdvanceTime(expiry - MICROSECOND);
scenario.Check(peer, {}, 0, 1, 0, "s7");
scenario.AdvanceTime(MICROSECOND);
scenario.Check(peer, {}, 0, 0, 0, "s8");
scenario.CheckExpired(peer, gtxid);
return;
} else {
scenario.AdvanceTime(std::chrono::microseconds{m_rng.randrange(expiry.count())});
scenario.Check(peer, {}, 0, 1, 0, "s9");
if ((config >> 3) == 3) { // A response will arrive for the transaction
scenario.ReceivedResponse(peer, gtxid.GetHash());
scenario.Check(peer, {}, 0, 0, 0, "s10");
return;
}
}
}
if (config & 4) { // The peer will go offline
scenario.DisconnectedPeer(peer);
} else { // The transaction is no longer needed
scenario.ForgetTxHash(gtxid.GetHash());
}
scenario.Check(peer, {}, 0, 0, 0, "s11");
}
/** Add to scenario a test with a single tx announced by two peers, to verify the
* right peer is selected for requests.
*
* config is an integer in [0, 32), which controls which variant of the test is used.
*/
void TxRequestTest::BuildPriorityTest(Scenario& scenario, int config)
{
scenario.SetTestName(strprintf("Priority(config=%i)", config));
// Two peers. They will announce in order {peer1, peer2}.
auto peer1 = scenario.NewPeer(), peer2 = scenario.NewPeer();
// Construct a transaction that under random rules would be preferred by peer2 or peer1,
// depending on configuration.
bool prio1 = config & 1;
auto gtxid = prio1 ? scenario.NewGTxid({{peer1, peer2}}) : scenario.NewGTxid({{peer2, peer1}});
bool pref1 = config & 2, pref2 = config & 4;
scenario.ReceivedInv(peer1, gtxid, pref1, MIN_TIME);
scenario.Check(peer1, {gtxid}, 1, 0, 0, "p1");
if (m_rng.randbool()) {
scenario.AdvanceTime(RandomTime8s());
scenario.Check(peer1, {gtxid}, 1, 0, 0, "p2");
}
scenario.ReceivedInv(peer2, gtxid, pref2, MIN_TIME);
bool stage2_prio =
// At this point, peer2 will be given priority if:
// - It is preferred and peer1 is not
(pref2 && !pref1) ||
// - They're in the same preference class,
// and the randomized priority favors peer2 over peer1.
(pref1 == pref2 && !prio1);
NodeId priopeer = stage2_prio ? peer2 : peer1, otherpeer = stage2_prio ? peer1 : peer2;
scenario.Check(otherpeer, {}, 1, 0, 0, "p3");
scenario.Check(priopeer, {gtxid}, 1, 0, 0, "p4");
if (m_rng.randbool()) scenario.AdvanceTime(RandomTime8s());
scenario.Check(otherpeer, {}, 1, 0, 0, "p5");
scenario.Check(priopeer, {gtxid}, 1, 0, 0, "p6");
// We possibly request from the selected peer.
if (config & 8) {
scenario.RequestedTx(priopeer, gtxid.GetHash(), MAX_TIME);
scenario.Check(priopeer, {}, 0, 1, 0, "p7");
scenario.Check(otherpeer, {}, 1, 0, 0, "p8");
if (m_rng.randbool()) scenario.AdvanceTime(RandomTime8s());
}
// The peer which was selected (or requested from) now goes offline, or a NOTFOUND is received from them.
if (config & 16) {
scenario.DisconnectedPeer(priopeer);
} else {
scenario.ReceivedResponse(priopeer, gtxid.GetHash());
}
if (m_rng.randbool()) scenario.AdvanceTime(RandomTime8s());
scenario.Check(priopeer, {}, 0, 0, !(config & 16), "p8");
scenario.Check(otherpeer, {gtxid}, 1, 0, 0, "p9");
if (m_rng.randbool()) scenario.AdvanceTime(RandomTime8s());
// Now the other peer goes offline.
scenario.DisconnectedPeer(otherpeer);
if (m_rng.randbool()) scenario.AdvanceTime(RandomTime8s());
scenario.Check(peer1, {}, 0, 0, 0, "p10");
scenario.Check(peer2, {}, 0, 0, 0, "p11");
}
/** Add to scenario a randomized test in which N peers announce the same transaction, to verify
* the order in which they are requested. */
void TxRequestTest::BuildBigPriorityTest(Scenario& scenario, int peers)
{
scenario.SetTestName(strprintf("BigPriority(peers=%i)", peers));
// We will have N peers announce the same transaction.
std::map<NodeId, bool> preferred;
std::vector<NodeId> pref_peers, npref_peers;
int num_pref = m_rng.randrange(peers + 1) ; // Some preferred, ...
int num_npref = peers - num_pref; // some not preferred.
for (int i = 0; i < num_pref; ++i) {
pref_peers.push_back(scenario.NewPeer());
preferred[pref_peers.back()] = true;
}
for (int i = 0; i < num_npref; ++i) {
npref_peers.push_back(scenario.NewPeer());
preferred[npref_peers.back()] = false;
}
// Make a list of all peers, in order of intended request order (concatenation of pref_peers and npref_peers).
std::vector<NodeId> request_order;
request_order.reserve(num_pref + num_npref);
for (int i = 0; i < num_pref; ++i) request_order.push_back(pref_peers[i]);
for (int i = 0; i < num_npref; ++i) request_order.push_back(npref_peers[i]);
// Determine the announcement order randomly.
std::vector<NodeId> announce_order = request_order;
std::shuffle(announce_order.begin(), announce_order.end(), m_rng);
// Find a gtxid whose txhash prioritization is consistent with the required ordering within pref_peers and
// within npref_peers.
auto gtxid = scenario.NewGTxid({pref_peers, npref_peers});
// Decide reqtimes in opposite order of the expected request order. This means that as time passes we expect the
// to-be-requested-from-peer will change every time a subsequent reqtime is passed.
std::map<NodeId, std::chrono::microseconds> reqtimes;
auto reqtime = scenario.Now();
for (int i = peers - 1; i >= 0; --i) {
reqtime += RandomTime8s();
reqtimes[request_order[i]] = reqtime;
}
// Actually announce from all peers simultaneously (but in announce_order).
for (const auto peer : announce_order) {
scenario.ReceivedInv(peer, gtxid, preferred[peer], reqtimes[peer]);
}
for (const auto peer : announce_order) {
scenario.Check(peer, {}, 1, 0, 0, "b1");
}
// Let time pass and observe the to-be-requested-from peer change, from nonpreferred to preferred, and from
// high priority to low priority within each class.
for (int i = peers - 1; i >= 0; --i) {
scenario.AdvanceTime(reqtimes[request_order[i]] - scenario.Now() - MICROSECOND);
scenario.Check(request_order[i], {}, 1, 0, 0, "b2");
scenario.AdvanceTime(MICROSECOND);
scenario.Check(request_order[i], {gtxid}, 1, 0, 0, "b3");
}
// Peers now in random order go offline, or send NOTFOUNDs. At every point in time the new to-be-requested-from
// peer should be the best remaining one, so verify this after every response.
for (int i = 0; i < peers; ++i) {
if (m_rng.randbool()) scenario.AdvanceTime(RandomTime8s());
const int pos = m_rng.randrange(request_order.size());
const auto peer = request_order[pos];
request_order.erase(request_order.begin() + pos);
if (m_rng.randbool()) {
scenario.DisconnectedPeer(peer);
scenario.Check(peer, {}, 0, 0, 0, "b4");
} else {
scenario.ReceivedResponse(peer, gtxid.GetHash());
scenario.Check(peer, {}, 0, 0, request_order.size() > 0, "b5");
}
if (request_order.size()) {
scenario.Check(request_order[0], {gtxid}, 1, 0, 0, "b6");
}
}
// Everything is gone in the end.
for (const auto peer : announce_order) {
scenario.Check(peer, {}, 0, 0, 0, "b7");
}
}
/** Add to scenario a test with one peer announcing two transactions, to verify they are
* fetched in announcement order.
*
* config is an integer in [0, 4) inclusive, and selects the variant of the test.
*/
void TxRequestTest::BuildRequestOrderTest(Scenario& scenario, int config)
{
scenario.SetTestName(strprintf("RequestOrder(config=%i)", config));
auto peer = scenario.NewPeer();
auto gtxid1 = scenario.NewGTxid();
auto gtxid2 = scenario.NewGTxid();
auto reqtime2 = scenario.Now() + RandomTime8s();
auto reqtime1 = reqtime2 + RandomTime8s();
scenario.ReceivedInv(peer, gtxid1, config & 1, reqtime1);
// Simulate time going backwards by giving the second announcement an earlier reqtime.
scenario.ReceivedInv(peer, gtxid2, config & 2, reqtime2);
scenario.AdvanceTime(reqtime2 - MICROSECOND - scenario.Now());
scenario.Check(peer, {}, 2, 0, 0, "o1");
scenario.AdvanceTime(MICROSECOND);
scenario.Check(peer, {gtxid2}, 2, 0, 0, "o2");
scenario.AdvanceTime(reqtime1 - MICROSECOND - scenario.Now());
scenario.Check(peer, {gtxid2}, 2, 0, 0, "o3");
scenario.AdvanceTime(MICROSECOND);
// Even with time going backwards in between announcements, the return value of GetRequestable is in
// announcement order.
scenario.Check(peer, {gtxid1, gtxid2}, 2, 0, 0, "o4");
scenario.DisconnectedPeer(peer);
scenario.Check(peer, {}, 0, 0, 0, "o5");
}
/** Add to scenario a test that verifies behavior related to both txid and wtxid with the same
* hash being announced.
*
* config is an integer in [0, 4) inclusive, and selects the variant of the test used.
*/
void TxRequestTest::BuildWtxidTest(Scenario& scenario, int config)
{
scenario.SetTestName(strprintf("Wtxid(config=%i)", config));
auto peerT = scenario.NewPeer();
auto peerW = scenario.NewPeer();
auto txhash = scenario.NewTxHash();
auto txid{GenTxid::Txid(txhash)};
auto wtxid{GenTxid::Wtxid(txhash)};
auto reqtimeT = m_rng.randbool() ? MIN_TIME : scenario.Now() + RandomTime8s();
auto reqtimeW = m_rng.randbool() ? MIN_TIME : scenario.Now() + RandomTime8s();
// Announce txid first or wtxid first.
if (config & 1) {
scenario.ReceivedInv(peerT, txid, config & 2, reqtimeT);
if (m_rng.randbool()) scenario.AdvanceTime(RandomTime8s());
scenario.ReceivedInv(peerW, wtxid, !(config & 2), reqtimeW);
} else {
scenario.ReceivedInv(peerW, wtxid, !(config & 2), reqtimeW);
if (m_rng.randbool()) scenario.AdvanceTime(RandomTime8s());
scenario.ReceivedInv(peerT, txid, config & 2, reqtimeT);
}
// Let time pass if needed, and check that the preferred announcement (txid or wtxid)
// is correctly to-be-requested (and with the correct wtxidness).
auto max_reqtime = std::max(reqtimeT, reqtimeW);
if (max_reqtime > scenario.Now()) scenario.AdvanceTime(max_reqtime - scenario.Now());
if (config & 2) {
scenario.Check(peerT, {txid}, 1, 0, 0, "w1");
scenario.Check(peerW, {}, 1, 0, 0, "w2");
} else {
scenario.Check(peerT, {}, 1, 0, 0, "w3");
scenario.Check(peerW, {wtxid}, 1, 0, 0, "w4");
}
// Let the preferred announcement be requested. It's not going to be delivered.
auto expiry = RandomTime8s();
if (config & 2) {
scenario.RequestedTx(peerT, txid.GetHash(), scenario.Now() + expiry);
scenario.Check(peerT, {}, 0, 1, 0, "w5");
scenario.Check(peerW, {}, 1, 0, 0, "w6");
} else {
scenario.RequestedTx(peerW, wtxid.GetHash(), scenario.Now() + expiry);
scenario.Check(peerT, {}, 1, 0, 0, "w7");
scenario.Check(peerW, {}, 0, 1, 0, "w8");
}
// After reaching expiration time of the preferred announcement, verify that the
// remaining one is requestable
scenario.AdvanceTime(expiry);
if (config & 2) {
scenario.Check(peerT, {}, 0, 0, 1, "w9");
scenario.Check(peerW, {wtxid}, 1, 0, 0, "w10");
scenario.CheckExpired(peerT, txid);
} else {
scenario.Check(peerT, {txid}, 1, 0, 0, "w11");
scenario.Check(peerW, {}, 0, 0, 1, "w12");
scenario.CheckExpired(peerW, wtxid);
}
// If a good transaction with either that hash as wtxid or txid arrives, both
// announcements are gone.
if (m_rng.randbool()) scenario.AdvanceTime(RandomTime8s());
scenario.ForgetTxHash(txhash);
scenario.Check(peerT, {}, 0, 0, 0, "w13");
scenario.Check(peerW, {}, 0, 0, 0, "w14");
}
/** Add to scenario a test that exercises clocks that go backwards. */
void TxRequestTest::BuildTimeBackwardsTest(Scenario& scenario)
{
auto peer1 = scenario.NewPeer();
auto peer2 = scenario.NewPeer();
auto gtxid = scenario.NewGTxid({{peer1, peer2}});
// Announce from peer2.
auto reqtime = scenario.Now() + RandomTime8s();
scenario.ReceivedInv(peer2, gtxid, true, reqtime);
scenario.Check(peer2, {}, 1, 0, 0, "r1");
scenario.AdvanceTime(reqtime - scenario.Now());
scenario.Check(peer2, {gtxid}, 1, 0, 0, "r2");
// Check that if the clock goes backwards by 1us, the transaction would stop being requested.
scenario.Check(peer2, {}, 1, 0, 0, "r3", -MICROSECOND);
// But it reverts to being requested if time goes forward again.
scenario.Check(peer2, {gtxid}, 1, 0, 0, "r4");
// Announce from peer1.
if (m_rng.randbool()) scenario.AdvanceTime(RandomTime8s());
scenario.ReceivedInv(peer1, gtxid, true, MAX_TIME);
scenario.Check(peer2, {gtxid}, 1, 0, 0, "r5");
scenario.Check(peer1, {}, 1, 0, 0, "r6");
// Request from peer1.
if (m_rng.randbool()) scenario.AdvanceTime(RandomTime8s());
auto expiry = scenario.Now() + RandomTime8s();
scenario.RequestedTx(peer1, gtxid.GetHash(), expiry);
scenario.Check(peer1, {}, 0, 1, 0, "r7");
scenario.Check(peer2, {}, 1, 0, 0, "r8");
// Expiration passes.
scenario.AdvanceTime(expiry - scenario.Now());
scenario.Check(peer1, {}, 0, 0, 1, "r9");
scenario.Check(peer2, {gtxid}, 1, 0, 0, "r10"); // Request goes back to peer2.
scenario.CheckExpired(peer1, gtxid);
scenario.Check(peer1, {}, 0, 0, 1, "r11", -MICROSECOND); // Going back does not unexpire.
scenario.Check(peer2, {gtxid}, 1, 0, 0, "r12", -MICROSECOND);
// Peer2 goes offline, meaning no viable announcements remain.
if (m_rng.randbool()) scenario.AdvanceTime(RandomTime8s());
scenario.DisconnectedPeer(peer2);
scenario.Check(peer1, {}, 0, 0, 0, "r13");
scenario.Check(peer2, {}, 0, 0, 0, "r14");
}
/** Add to scenario a test that involves RequestedTx() calls for txhashes not returned by GetRequestable. */
void TxRequestTest::BuildWeirdRequestsTest(Scenario& scenario)
{
auto peer1 = scenario.NewPeer();
auto peer2 = scenario.NewPeer();
auto gtxid1 = scenario.NewGTxid({{peer1, peer2}});
auto gtxid2 = scenario.NewGTxid({{peer2, peer1}});
// Announce gtxid1 by peer1.
scenario.ReceivedInv(peer1, gtxid1, true, MIN_TIME);
scenario.Check(peer1, {gtxid1}, 1, 0, 0, "q1");
// Announce gtxid2 by peer2.
if (m_rng.randbool()) scenario.AdvanceTime(RandomTime8s());
scenario.ReceivedInv(peer2, gtxid2, true, MIN_TIME);
scenario.Check(peer1, {gtxid1}, 1, 0, 0, "q2");
scenario.Check(peer2, {gtxid2}, 1, 0, 0, "q3");
// We request gtxid2 from *peer1* - no effect.
if (m_rng.randbool()) scenario.AdvanceTime(RandomTime8s());
scenario.RequestedTx(peer1, gtxid2.GetHash(), MAX_TIME);
scenario.Check(peer1, {gtxid1}, 1, 0, 0, "q4");
scenario.Check(peer2, {gtxid2}, 1, 0, 0, "q5");
// Now request gtxid1 from peer1 - marks it as REQUESTED.
if (m_rng.randbool()) scenario.AdvanceTime(RandomTime8s());
auto expiryA = scenario.Now() + RandomTime8s();
scenario.RequestedTx(peer1, gtxid1.GetHash(), expiryA);
scenario.Check(peer1, {}, 0, 1, 0, "q6");
scenario.Check(peer2, {gtxid2}, 1, 0, 0, "q7");
// Request it a second time - nothing happens, as it's already REQUESTED.
auto expiryB = expiryA + RandomTime8s();
scenario.RequestedTx(peer1, gtxid1.GetHash(), expiryB);
scenario.Check(peer1, {}, 0, 1, 0, "q8");
scenario.Check(peer2, {gtxid2}, 1, 0, 0, "q9");
// Also announce gtxid1 from peer2 now, so that the txhash isn't forgotten when the peer1 request expires.
scenario.ReceivedInv(peer2, gtxid1, true, MIN_TIME);
scenario.Check(peer1, {}, 0, 1, 0, "q10");
scenario.Check(peer2, {gtxid2}, 2, 0, 0, "q11");
// When reaching expiryA, it expires (not expiryB, which is later).
scenario.AdvanceTime(expiryA - scenario.Now());
scenario.Check(peer1, {}, 0, 0, 1, "q12");
scenario.Check(peer2, {gtxid2, gtxid1}, 2, 0, 0, "q13");
scenario.CheckExpired(peer1, gtxid1);
// Requesting it yet again from peer1 doesn't do anything, as it's already COMPLETED.
if (m_rng.randbool()) scenario.AdvanceTime(RandomTime8s());
scenario.RequestedTx(peer1, gtxid1.GetHash(), MAX_TIME);
scenario.Check(peer1, {}, 0, 0, 1, "q14");
scenario.Check(peer2, {gtxid2, gtxid1}, 2, 0, 0, "q15");
// Now announce gtxid2 from peer1.
if (m_rng.randbool()) scenario.AdvanceTime(RandomTime8s());
scenario.ReceivedInv(peer1, gtxid2, true, MIN_TIME);
scenario.Check(peer1, {}, 1, 0, 1, "q16");
scenario.Check(peer2, {gtxid2, gtxid1}, 2, 0, 0, "q17");
// And request it from peer1 (weird as peer2 has the preference).
if (m_rng.randbool()) scenario.AdvanceTime(RandomTime8s());
scenario.RequestedTx(peer1, gtxid2.GetHash(), MAX_TIME);
scenario.Check(peer1, {}, 0, 1, 1, "q18");
scenario.Check(peer2, {gtxid1}, 2, 0, 0, "q19");
// If peer2 now (normally) requests gtxid2, the existing request by peer1 becomes COMPLETED.
if (m_rng.randbool()) scenario.AdvanceTime(RandomTime8s());
scenario.RequestedTx(peer2, gtxid2.GetHash(), MAX_TIME);
scenario.Check(peer1, {}, 0, 0, 2, "q20");
scenario.Check(peer2, {gtxid1}, 1, 1, 0, "q21");
// If peer2 goes offline, no viable announcements remain.
scenario.DisconnectedPeer(peer2);
scenario.Check(peer1, {}, 0, 0, 0, "q22");
scenario.Check(peer2, {}, 0, 0, 0, "q23");
}
void TxRequestTest::TestInterleavedScenarios()
{
// Create a list of functions which add tests to scenarios.
std::vector<std::function<void(Scenario&)>> builders;
// Add instances of every test, for every configuration.
for (int n = 0; n < 64; ++n) {
builders.emplace_back([this, n](Scenario& scenario) { BuildWtxidTest(scenario, n); });
builders.emplace_back([this, n](Scenario& scenario) { BuildRequestOrderTest(scenario, n & 3); });
builders.emplace_back([this, n](Scenario& scenario) { BuildSingleTest(scenario, n & 31); });
builders.emplace_back([this, n](Scenario& scenario) { BuildPriorityTest(scenario, n & 31); });
builders.emplace_back([this, n](Scenario& scenario) { BuildBigPriorityTest(scenario, (n & 7) + 1); });
builders.emplace_back([this](Scenario& scenario) { BuildTimeBackwardsTest(scenario); });
builders.emplace_back([this](Scenario& scenario) { BuildWeirdRequestsTest(scenario); });
}
// Randomly shuffle all those functions.
std::shuffle(builders.begin(), builders.end(), m_rng);
Runner runner;
auto starttime = RandomTime1y();
// Construct many scenarios, and run (up to) 10 randomly-chosen tests consecutively in each.
while (builders.size()) {
// Introduce some variation in the start time of each scenario, so they don't all start off
// concurrently, but get a more random interleaving.
auto scenario_start = starttime + RandomTime8s() + RandomTime8s() + RandomTime8s();
Scenario scenario(m_rng, runner, scenario_start);
for (int j = 0; builders.size() && j < 10; ++j) {
builders.back()(scenario);
builders.pop_back();
}
}
// Sort all the actions from all those scenarios chronologically, resulting in the actions from
// distinct scenarios to become interleaved. Use stable_sort so that actions from one scenario
// aren't reordered w.r.t. each other.
std::stable_sort(runner.actions.begin(), runner.actions.end(), [](const Action& a1, const Action& a2) {
return a1.first < a2.first;
});
// Run all actions from all scenarios, in order.
for (auto& action : runner.actions) {
action.second();
}
BOOST_CHECK_EQUAL(runner.txrequest.Size(), 0U);
BOOST_CHECK(runner.expired.empty());
}
} // namespace
BOOST_FIXTURE_TEST_SUITE(txrequest_tests, TxRequestTest)
BOOST_AUTO_TEST_CASE(TxRequestTest)
{
for (int i = 0; i < 5; ++i) {
TestInterleavedScenarios();
}
}
BOOST_AUTO_TEST_SUITE_END()
|