aboutsummaryrefslogtreecommitdiff
path: root/src/test/scheduler_tests.cpp
blob: 2af0ab22da81f85df5ae981a55139a54a3bd451c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
// Copyright (c) 2012-2018 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.

#include <random.h>
#include <scheduler.h>

#include <test/test_bitcoin.h>

#include <boost/bind.hpp>
#include <boost/thread.hpp>
#include <boost/test/unit_test.hpp>

BOOST_AUTO_TEST_SUITE(scheduler_tests)

static void microTask(CScheduler& s, boost::mutex& mutex, int& counter, int delta, boost::chrono::system_clock::time_point rescheduleTime)
{
    {
        boost::unique_lock<boost::mutex> lock(mutex);
        counter += delta;
    }
    boost::chrono::system_clock::time_point noTime = boost::chrono::system_clock::time_point::min();
    if (rescheduleTime != noTime) {
        CScheduler::Function f = boost::bind(&microTask, boost::ref(s), boost::ref(mutex), boost::ref(counter), -delta + 1, noTime);
        s.schedule(f, rescheduleTime);
    }
}

static void MicroSleep(uint64_t n)
{
#if defined(HAVE_WORKING_BOOST_SLEEP_FOR)
    boost::this_thread::sleep_for(boost::chrono::microseconds(n));
#elif defined(HAVE_WORKING_BOOST_SLEEP)
    boost::this_thread::sleep(boost::posix_time::microseconds(n));
#else
    //should never get here
    #error missing boost sleep implementation
#endif
}

BOOST_AUTO_TEST_CASE(manythreads)
{
    // Stress test: hundreds of microsecond-scheduled tasks,
    // serviced by 10 threads.
    //
    // So... ten shared counters, which if all the tasks execute
    // properly will sum to the number of tasks done.
    // Each task adds or subtracts a random amount from one of the
    // counters, and then schedules another task 0-1000
    // microseconds in the future to subtract or add from
    // the counter -random_amount+1, so in the end the shared
    // counters should sum to the number of initial tasks performed.
    CScheduler microTasks;

    boost::mutex counterMutex[10];
    int counter[10] = { 0 };
    FastRandomContext rng(42);
    auto zeroToNine = [](FastRandomContext& rc) -> int { return rc.randrange(10); }; // [0, 9]
    auto randomMsec = [](FastRandomContext& rc) -> int { return -11 + (int)rc.randrange(1012); }; // [-11, 1000]
    auto randomDelta = [](FastRandomContext& rc) -> int { return -1000 + (int)rc.randrange(2001); }; // [-1000, 1000]

    boost::chrono::system_clock::time_point start = boost::chrono::system_clock::now();
    boost::chrono::system_clock::time_point now = start;
    boost::chrono::system_clock::time_point first, last;
    size_t nTasks = microTasks.getQueueInfo(first, last);
    BOOST_CHECK(nTasks == 0);

    for (int i = 0; i < 100; ++i) {
        boost::chrono::system_clock::time_point t = now + boost::chrono::microseconds(randomMsec(rng));
        boost::chrono::system_clock::time_point tReschedule = now + boost::chrono::microseconds(500 + randomMsec(rng));
        int whichCounter = zeroToNine(rng);
        CScheduler::Function f = boost::bind(&microTask, boost::ref(microTasks),
                                             boost::ref(counterMutex[whichCounter]), boost::ref(counter[whichCounter]),
                                             randomDelta(rng), tReschedule);
        microTasks.schedule(f, t);
    }
    nTasks = microTasks.getQueueInfo(first, last);
    BOOST_CHECK(nTasks == 100);
    BOOST_CHECK(first < last);
    BOOST_CHECK(last > now);

    // As soon as these are created they will start running and servicing the queue
    boost::thread_group microThreads;
    for (int i = 0; i < 5; i++)
        microThreads.create_thread(boost::bind(&CScheduler::serviceQueue, &microTasks));

    MicroSleep(600);
    now = boost::chrono::system_clock::now();

    // More threads and more tasks:
    for (int i = 0; i < 5; i++)
        microThreads.create_thread(boost::bind(&CScheduler::serviceQueue, &microTasks));
    for (int i = 0; i < 100; i++) {
        boost::chrono::system_clock::time_point t = now + boost::chrono::microseconds(randomMsec(rng));
        boost::chrono::system_clock::time_point tReschedule = now + boost::chrono::microseconds(500 + randomMsec(rng));
        int whichCounter = zeroToNine(rng);
        CScheduler::Function f = boost::bind(&microTask, boost::ref(microTasks),
                                             boost::ref(counterMutex[whichCounter]), boost::ref(counter[whichCounter]),
                                             randomDelta(rng), tReschedule);
        microTasks.schedule(f, t);
    }

    // Drain the task queue then exit threads
    microTasks.stop(true);
    microThreads.join_all(); // ... wait until all the threads are done

    int counterSum = 0;
    for (int i = 0; i < 10; i++) {
        BOOST_CHECK(counter[i] != 0);
        counterSum += counter[i];
    }
    BOOST_CHECK_EQUAL(counterSum, 200);
}

BOOST_AUTO_TEST_CASE(singlethreadedscheduler_ordered)
{
    CScheduler scheduler;

    // each queue should be well ordered with respect to itself but not other queues
    SingleThreadedSchedulerClient queue1(&scheduler);
    SingleThreadedSchedulerClient queue2(&scheduler);

    // create more threads than queues
    // if the queues only permit execution of one task at once then
    // the extra threads should effectively be doing nothing
    // if they don't we'll get out of order behaviour
    boost::thread_group threads;
    for (int i = 0; i < 5; ++i) {
        threads.create_thread(boost::bind(&CScheduler::serviceQueue, &scheduler));
    }

    // these are not atomic, if SinglethreadedSchedulerClient prevents
    // parallel execution at the queue level no synchronization should be required here
    int counter1 = 0;
    int counter2 = 0;

    // just simply count up on each queue - if execution is properly ordered then
    // the callbacks should run in exactly the order in which they were enqueued
    for (int i = 0; i < 100; ++i) {
        queue1.AddToProcessQueue([i, &counter1]() {
            assert(i == counter1++);
        });

        queue2.AddToProcessQueue([i, &counter2]() {
            assert(i == counter2++);
        });
    }

    // finish up
    scheduler.stop(true);
    threads.join_all();

    BOOST_CHECK_EQUAL(counter1, 100);
    BOOST_CHECK_EQUAL(counter2, 100);
}

BOOST_AUTO_TEST_SUITE_END()