aboutsummaryrefslogtreecommitdiff
path: root/src/test/key_tests.cpp
blob: 698cedbb1636e1ca95865ec51f4c12b92d8b704b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
// Copyright (c) 2012-2022 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.

#include <key.h>

#include <common/system.h>
#include <key_io.h>
#include <span.h>
#include <streams.h>
#include <secp256k1_extrakeys.h>
#include <test/util/random.h>
#include <test/util/setup_common.h>
#include <uint256.h>
#include <util/strencodings.h>
#include <util/string.h>

#include <string>
#include <vector>

#include <boost/test/unit_test.hpp>

using util::ToString;

static const std::string strSecret1 = "5HxWvvfubhXpYYpS3tJkw6fq9jE9j18THftkZjHHfmFiWtmAbrj";
static const std::string strSecret2 = "5KC4ejrDjv152FGwP386VD1i2NYc5KkfSMyv1nGy1VGDxGHqVY3";
static const std::string strSecret1C = "Kwr371tjA9u2rFSMZjTNun2PXXP3WPZu2afRHTcta6KxEUdm1vEw";
static const std::string strSecret2C = "L3Hq7a8FEQwJkW1M2GNKDW28546Vp5miewcCzSqUD9kCAXrJdS3g";
static const std::string addr1 = "1QFqqMUD55ZV3PJEJZtaKCsQmjLT6JkjvJ";
static const std::string addr2 = "1F5y5E5FMc5YzdJtB9hLaUe43GDxEKXENJ";
static const std::string addr1C = "1NoJrossxPBKfCHuJXT4HadJrXRE9Fxiqs";
static const std::string addr2C = "1CRj2HyM1CXWzHAXLQtiGLyggNT9WQqsDs";

static const std::string strAddressBad = "1HV9Lc3sNHZxwj4Zk6fB38tEmBryq2cBiF";


BOOST_FIXTURE_TEST_SUITE(key_tests, BasicTestingSetup)

BOOST_AUTO_TEST_CASE(key_test1)
{
    CKey key1  = DecodeSecret(strSecret1);
    BOOST_CHECK(key1.IsValid() && !key1.IsCompressed());
    CKey key2  = DecodeSecret(strSecret2);
    BOOST_CHECK(key2.IsValid() && !key2.IsCompressed());
    CKey key1C = DecodeSecret(strSecret1C);
    BOOST_CHECK(key1C.IsValid() && key1C.IsCompressed());
    CKey key2C = DecodeSecret(strSecret2C);
    BOOST_CHECK(key2C.IsValid() && key2C.IsCompressed());
    CKey bad_key = DecodeSecret(strAddressBad);
    BOOST_CHECK(!bad_key.IsValid());

    CPubKey pubkey1  = key1. GetPubKey();
    CPubKey pubkey2  = key2. GetPubKey();
    CPubKey pubkey1C = key1C.GetPubKey();
    CPubKey pubkey2C = key2C.GetPubKey();

    BOOST_CHECK(key1.VerifyPubKey(pubkey1));
    BOOST_CHECK(!key1.VerifyPubKey(pubkey1C));
    BOOST_CHECK(!key1.VerifyPubKey(pubkey2));
    BOOST_CHECK(!key1.VerifyPubKey(pubkey2C));

    BOOST_CHECK(!key1C.VerifyPubKey(pubkey1));
    BOOST_CHECK(key1C.VerifyPubKey(pubkey1C));
    BOOST_CHECK(!key1C.VerifyPubKey(pubkey2));
    BOOST_CHECK(!key1C.VerifyPubKey(pubkey2C));

    BOOST_CHECK(!key2.VerifyPubKey(pubkey1));
    BOOST_CHECK(!key2.VerifyPubKey(pubkey1C));
    BOOST_CHECK(key2.VerifyPubKey(pubkey2));
    BOOST_CHECK(!key2.VerifyPubKey(pubkey2C));

    BOOST_CHECK(!key2C.VerifyPubKey(pubkey1));
    BOOST_CHECK(!key2C.VerifyPubKey(pubkey1C));
    BOOST_CHECK(!key2C.VerifyPubKey(pubkey2));
    BOOST_CHECK(key2C.VerifyPubKey(pubkey2C));

    BOOST_CHECK(DecodeDestination(addr1)  == CTxDestination(PKHash(pubkey1)));
    BOOST_CHECK(DecodeDestination(addr2)  == CTxDestination(PKHash(pubkey2)));
    BOOST_CHECK(DecodeDestination(addr1C) == CTxDestination(PKHash(pubkey1C)));
    BOOST_CHECK(DecodeDestination(addr2C) == CTxDestination(PKHash(pubkey2C)));

    for (int n=0; n<16; n++)
    {
        std::string strMsg = strprintf("Very secret message %i: 11", n);
        uint256 hashMsg = Hash(strMsg);

        // normal signatures

        std::vector<unsigned char> sign1, sign2, sign1C, sign2C;

        BOOST_CHECK(key1.Sign (hashMsg, sign1));
        BOOST_CHECK(key2.Sign (hashMsg, sign2));
        BOOST_CHECK(key1C.Sign(hashMsg, sign1C));
        BOOST_CHECK(key2C.Sign(hashMsg, sign2C));

        BOOST_CHECK( pubkey1.Verify(hashMsg, sign1));
        BOOST_CHECK(!pubkey1.Verify(hashMsg, sign2));
        BOOST_CHECK( pubkey1.Verify(hashMsg, sign1C));
        BOOST_CHECK(!pubkey1.Verify(hashMsg, sign2C));

        BOOST_CHECK(!pubkey2.Verify(hashMsg, sign1));
        BOOST_CHECK( pubkey2.Verify(hashMsg, sign2));
        BOOST_CHECK(!pubkey2.Verify(hashMsg, sign1C));
        BOOST_CHECK( pubkey2.Verify(hashMsg, sign2C));

        BOOST_CHECK( pubkey1C.Verify(hashMsg, sign1));
        BOOST_CHECK(!pubkey1C.Verify(hashMsg, sign2));
        BOOST_CHECK( pubkey1C.Verify(hashMsg, sign1C));
        BOOST_CHECK(!pubkey1C.Verify(hashMsg, sign2C));

        BOOST_CHECK(!pubkey2C.Verify(hashMsg, sign1));
        BOOST_CHECK( pubkey2C.Verify(hashMsg, sign2));
        BOOST_CHECK(!pubkey2C.Verify(hashMsg, sign1C));
        BOOST_CHECK( pubkey2C.Verify(hashMsg, sign2C));

        // compact signatures (with key recovery)

        std::vector<unsigned char> csign1, csign2, csign1C, csign2C;

        BOOST_CHECK(key1.SignCompact (hashMsg, csign1));
        BOOST_CHECK(key2.SignCompact (hashMsg, csign2));
        BOOST_CHECK(key1C.SignCompact(hashMsg, csign1C));
        BOOST_CHECK(key2C.SignCompact(hashMsg, csign2C));

        CPubKey rkey1, rkey2, rkey1C, rkey2C;

        BOOST_CHECK(rkey1.RecoverCompact (hashMsg, csign1));
        BOOST_CHECK(rkey2.RecoverCompact (hashMsg, csign2));
        BOOST_CHECK(rkey1C.RecoverCompact(hashMsg, csign1C));
        BOOST_CHECK(rkey2C.RecoverCompact(hashMsg, csign2C));

        BOOST_CHECK(rkey1  == pubkey1);
        BOOST_CHECK(rkey2  == pubkey2);
        BOOST_CHECK(rkey1C == pubkey1C);
        BOOST_CHECK(rkey2C == pubkey2C);
    }

    // test deterministic signing

    std::vector<unsigned char> detsig, detsigc;
    std::string strMsg = "Very deterministic message";
    uint256 hashMsg = Hash(strMsg);
    BOOST_CHECK(key1.Sign(hashMsg, detsig));
    BOOST_CHECK(key1C.Sign(hashMsg, detsigc));
    BOOST_CHECK(detsig == detsigc);
    BOOST_CHECK(detsig == ParseHex("304402205dbbddda71772d95ce91cd2d14b592cfbc1dd0aabd6a394b6c2d377bbe59d31d022014ddda21494a4e221f0824f0b8b924c43fa43c0ad57dccdaa11f81a6bd4582f6"));
    BOOST_CHECK(key2.Sign(hashMsg, detsig));
    BOOST_CHECK(key2C.Sign(hashMsg, detsigc));
    BOOST_CHECK(detsig == detsigc);
    BOOST_CHECK(detsig == ParseHex("3044022052d8a32079c11e79db95af63bb9600c5b04f21a9ca33dc129c2bfa8ac9dc1cd5022061d8ae5e0f6c1a16bde3719c64c2fd70e404b6428ab9a69566962e8771b5944d"));
    BOOST_CHECK(key1.SignCompact(hashMsg, detsig));
    BOOST_CHECK(key1C.SignCompact(hashMsg, detsigc));
    BOOST_CHECK(detsig == ParseHex("1c5dbbddda71772d95ce91cd2d14b592cfbc1dd0aabd6a394b6c2d377bbe59d31d14ddda21494a4e221f0824f0b8b924c43fa43c0ad57dccdaa11f81a6bd4582f6"));
    BOOST_CHECK(detsigc == ParseHex("205dbbddda71772d95ce91cd2d14b592cfbc1dd0aabd6a394b6c2d377bbe59d31d14ddda21494a4e221f0824f0b8b924c43fa43c0ad57dccdaa11f81a6bd4582f6"));
    BOOST_CHECK(key2.SignCompact(hashMsg, detsig));
    BOOST_CHECK(key2C.SignCompact(hashMsg, detsigc));
    BOOST_CHECK(detsig == ParseHex("1c52d8a32079c11e79db95af63bb9600c5b04f21a9ca33dc129c2bfa8ac9dc1cd561d8ae5e0f6c1a16bde3719c64c2fd70e404b6428ab9a69566962e8771b5944d"));
    BOOST_CHECK(detsigc == ParseHex("2052d8a32079c11e79db95af63bb9600c5b04f21a9ca33dc129c2bfa8ac9dc1cd561d8ae5e0f6c1a16bde3719c64c2fd70e404b6428ab9a69566962e8771b5944d"));
}

BOOST_AUTO_TEST_CASE(key_signature_tests)
{
    // When entropy is specified, we should see at least one high R signature within 20 signatures
    CKey key = DecodeSecret(strSecret1);
    std::string msg = "A message to be signed";
    uint256 msg_hash = Hash(msg);
    std::vector<unsigned char> sig;
    bool found = false;

    for (int i = 1; i <=20; ++i) {
        sig.clear();
        BOOST_CHECK(key.Sign(msg_hash, sig, false, i));
        found = sig[3] == 0x21 && sig[4] == 0x00;
        if (found) {
            break;
        }
    }
    BOOST_CHECK(found);

    // When entropy is not specified, we should always see low R signatures that are less than or equal to 70 bytes in 256 tries
    // The low R signatures should always have the value of their "length of R" byte less than or equal to 32
    // We should see at least one signature that is less than 70 bytes.
    bool found_small = false;
    bool found_big = false;
    bool bad_sign = false;
    for (int i = 0; i < 256; ++i) {
        sig.clear();
        std::string msg = "A message to be signed" + ToString(i);
        msg_hash = Hash(msg);
        if (!key.Sign(msg_hash, sig)) {
            bad_sign = true;
            break;
        }
        // sig.size() > 70 implies sig[3] > 32, because S is always low.
        // But check both conditions anyway, just in case this implication is broken for some reason
        if (sig[3] > 32 || sig.size() > 70) {
            found_big = true;
            break;
        }
        found_small |= sig.size() < 70;
    }
    BOOST_CHECK(!bad_sign);
    BOOST_CHECK(!found_big);
    BOOST_CHECK(found_small);
}

static CPubKey UnserializePubkey(const std::vector<uint8_t>& data)
{
    DataStream stream{};
    stream << data;
    CPubKey pubkey;
    stream >> pubkey;
    return pubkey;
}

static unsigned int GetLen(unsigned char chHeader)
{
    if (chHeader == 2 || chHeader == 3)
        return CPubKey::COMPRESSED_SIZE;
    if (chHeader == 4 || chHeader == 6 || chHeader == 7)
        return CPubKey::SIZE;
    return 0;
}

static void CmpSerializationPubkey(const CPubKey& pubkey)
{
    DataStream stream{};
    stream << pubkey;
    CPubKey pubkey2;
    stream >> pubkey2;
    BOOST_CHECK(pubkey == pubkey2);
}

BOOST_AUTO_TEST_CASE(pubkey_unserialize)
{
    for (uint8_t i = 2; i <= 7; ++i) {
        CPubKey key = UnserializePubkey({0x02});
        BOOST_CHECK(!key.IsValid());
        CmpSerializationPubkey(key);
        key = UnserializePubkey(std::vector<uint8_t>(GetLen(i), i));
        CmpSerializationPubkey(key);
        if (i == 5) {
            BOOST_CHECK(!key.IsValid());
        } else {
            BOOST_CHECK(key.IsValid());
        }
    }
}

BOOST_AUTO_TEST_CASE(bip340_test_vectors)
{
    static const std::vector<std::pair<std::array<std::string, 3>, bool>> VECTORS = {
        {{"F9308A019258C31049344F85F89D5229B531C845836F99B08601F113BCE036F9", "0000000000000000000000000000000000000000000000000000000000000000", "E907831F80848D1069A5371B402410364BDF1C5F8307B0084C55F1CE2DCA821525F66A4A85EA8B71E482A74F382D2CE5EBEEE8FDB2172F477DF4900D310536C0"}, true},
        {{"DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659", "243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89", "6896BD60EEAE296DB48A229FF71DFE071BDE413E6D43F917DC8DCF8C78DE33418906D11AC976ABCCB20B091292BFF4EA897EFCB639EA871CFA95F6DE339E4B0A"}, true},
        {{"DD308AFEC5777E13121FA72B9CC1B7CC0139715309B086C960E18FD969774EB8", "7E2D58D8B3BCDF1ABADEC7829054F90DDA9805AAB56C77333024B9D0A508B75C", "5831AAEED7B44BB74E5EAB94BA9D4294C49BCF2A60728D8B4C200F50DD313C1BAB745879A5AD954A72C45A91C3A51D3C7ADEA98D82F8481E0E1E03674A6F3FB7"}, true},
        {{"25D1DFF95105F5253C4022F628A996AD3A0D95FBF21D468A1B33F8C160D8F517", "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", "7EB0509757E246F19449885651611CB965ECC1A187DD51B64FDA1EDC9637D5EC97582B9CB13DB3933705B32BA982AF5AF25FD78881EBB32771FC5922EFC66EA3"}, true},
        {{"D69C3509BB99E412E68B0FE8544E72837DFA30746D8BE2AA65975F29D22DC7B9", "4DF3C3F68FCC83B27E9D42C90431A72499F17875C81A599B566C9889B9696703", "00000000000000000000003B78CE563F89A0ED9414F5AA28AD0D96D6795F9C6376AFB1548AF603B3EB45C9F8207DEE1060CB71C04E80F593060B07D28308D7F4"}, true},
        {{"EEFDEA4CDB677750A420FEE807EACF21EB9898AE79B9768766E4FAA04A2D4A34", "243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89", "6CFF5C3BA86C69EA4B7376F31A9BCB4F74C1976089B2D9963DA2E5543E17776969E89B4C5564D00349106B8497785DD7D1D713A8AE82B32FA79D5F7FC407D39B"}, false},
        {{"DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659", "243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89", "FFF97BD5755EEEA420453A14355235D382F6472F8568A18B2F057A14602975563CC27944640AC607CD107AE10923D9EF7A73C643E166BE5EBEAFA34B1AC553E2"}, false},
        {{"DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659", "243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89", "1FA62E331EDBC21C394792D2AB1100A7B432B013DF3F6FF4F99FCB33E0E1515F28890B3EDB6E7189B630448B515CE4F8622A954CFE545735AAEA5134FCCDB2BD"}, false},
        {{"DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659", "243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89", "6CFF5C3BA86C69EA4B7376F31A9BCB4F74C1976089B2D9963DA2E5543E177769961764B3AA9B2FFCB6EF947B6887A226E8D7C93E00C5ED0C1834FF0D0C2E6DA6"}, false},
        {{"DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659", "243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89", "0000000000000000000000000000000000000000000000000000000000000000123DDA8328AF9C23A94C1FEECFD123BA4FB73476F0D594DCB65C6425BD186051"}, false},
        {{"DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659", "243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89", "00000000000000000000000000000000000000000000000000000000000000017615FBAF5AE28864013C099742DEADB4DBA87F11AC6754F93780D5A1837CF197"}, false},
        {{"DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659", "243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89", "4A298DACAE57395A15D0795DDBFD1DCB564DA82B0F269BC70A74F8220429BA1D69E89B4C5564D00349106B8497785DD7D1D713A8AE82B32FA79D5F7FC407D39B"}, false},
        {{"DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659", "243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89", "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F69E89B4C5564D00349106B8497785DD7D1D713A8AE82B32FA79D5F7FC407D39B"}, false},
        {{"DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659", "243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89", "6CFF5C3BA86C69EA4B7376F31A9BCB4F74C1976089B2D9963DA2E5543E177769FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141"}, false},
        {{"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC30", "243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89", "6CFF5C3BA86C69EA4B7376F31A9BCB4F74C1976089B2D9963DA2E5543E17776969E89B4C5564D00349106B8497785DD7D1D713A8AE82B32FA79D5F7FC407D39B"}, false}
    };

    for (const auto& test : VECTORS) {
        auto pubkey = ParseHex(test.first[0]);
        auto msg = ParseHex(test.first[1]);
        auto sig = ParseHex(test.first[2]);
        BOOST_CHECK_EQUAL(XOnlyPubKey(pubkey).VerifySchnorr(uint256(msg), sig), test.second);
    }

    static const std::vector<std::array<std::string, 5>> SIGN_VECTORS = {
        {{"0000000000000000000000000000000000000000000000000000000000000003", "F9308A019258C31049344F85F89D5229B531C845836F99B08601F113BCE036F9", "0000000000000000000000000000000000000000000000000000000000000000", "0000000000000000000000000000000000000000000000000000000000000000", "E907831F80848D1069A5371B402410364BDF1C5F8307B0084C55F1CE2DCA821525F66A4A85EA8B71E482A74F382D2CE5EBEEE8FDB2172F477DF4900D310536C0"}},
        {{"B7E151628AED2A6ABF7158809CF4F3C762E7160F38B4DA56A784D9045190CFEF", "DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659", "0000000000000000000000000000000000000000000000000000000000000001", "243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89", "6896BD60EEAE296DB48A229FF71DFE071BDE413E6D43F917DC8DCF8C78DE33418906D11AC976ABCCB20B091292BFF4EA897EFCB639EA871CFA95F6DE339E4B0A"}},
        {{"C90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBEA63B14E5C9", "DD308AFEC5777E13121FA72B9CC1B7CC0139715309B086C960E18FD969774EB8", "C87AA53824B4D7AE2EB035A2B5BBBCCC080E76CDC6D1692C4B0B62D798E6D906", "7E2D58D8B3BCDF1ABADEC7829054F90DDA9805AAB56C77333024B9D0A508B75C", "5831AAEED7B44BB74E5EAB94BA9D4294C49BCF2A60728D8B4C200F50DD313C1BAB745879A5AD954A72C45A91C3A51D3C7ADEA98D82F8481E0E1E03674A6F3FB7"}},
        {{"0B432B2677937381AEF05BB02A66ECD012773062CF3FA2549E44F58ED2401710", "25D1DFF95105F5253C4022F628A996AD3A0D95FBF21D468A1B33F8C160D8F517", "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", "7EB0509757E246F19449885651611CB965ECC1A187DD51B64FDA1EDC9637D5EC97582B9CB13DB3933705B32BA982AF5AF25FD78881EBB32771FC5922EFC66EA3"}},
    };

    for (const auto& [sec_hex, pub_hex, aux_hex, msg_hex, sig_hex] : SIGN_VECTORS) {
        auto sec = ParseHex(sec_hex);
        auto pub = ParseHex(pub_hex);
        uint256 aux256(ParseHex(aux_hex));
        uint256 msg256(ParseHex(msg_hex));
        auto sig = ParseHex(sig_hex);
        unsigned char sig64[64];

        // Run the untweaked test vectors above, comparing with exact expected signature.
        CKey key;
        key.Set(sec.begin(), sec.end(), true);
        XOnlyPubKey pubkey(key.GetPubKey());
        BOOST_CHECK(std::equal(pubkey.begin(), pubkey.end(), pub.begin(), pub.end()));
        bool ok = key.SignSchnorr(msg256, sig64, nullptr, aux256);
        BOOST_CHECK(ok);
        BOOST_CHECK(std::vector<unsigned char>(sig64, sig64 + 64) == sig);
        // Verify those signatures for good measure.
        BOOST_CHECK(pubkey.VerifySchnorr(msg256, sig64));

        // Repeat the same check, but use the KeyPair directly without any merkle tweak
        KeyPair keypair = key.ComputeKeyPair(/*merkle_root=*/nullptr);
        bool kp_ok = keypair.SignSchnorr(msg256, sig64, aux256);
        BOOST_CHECK(kp_ok);
        BOOST_CHECK(pubkey.VerifySchnorr(msg256, sig64));
        BOOST_CHECK(std::vector<unsigned char>(sig64, sig64 + 64) == sig);

        // Do 10 iterations where we sign with a random Merkle root to tweak,
        // and compare against the resulting tweaked keys, with random aux.
        // In iteration i=0 we tweak with empty Merkle tree.
        for (int i = 0; i < 10; ++i) {
            uint256 merkle_root;
            if (i) merkle_root = m_rng.rand256();
            auto tweaked = pubkey.CreateTapTweak(i ? &merkle_root : nullptr);
            BOOST_CHECK(tweaked);
            XOnlyPubKey tweaked_key = tweaked->first;
            aux256 = m_rng.rand256();
            bool ok = key.SignSchnorr(msg256, sig64, &merkle_root, aux256);
            BOOST_CHECK(ok);
            BOOST_CHECK(tweaked_key.VerifySchnorr(msg256, sig64));

            // Repeat the same check, but use the KeyPair class directly
            KeyPair keypair = key.ComputeKeyPair(&merkle_root);
            bool kp_ok = keypair.SignSchnorr(msg256, sig64, aux256);
            BOOST_CHECK(kp_ok);
            BOOST_CHECK(tweaked_key.VerifySchnorr(msg256, sig64));
        }
    }
}

BOOST_AUTO_TEST_CASE(key_ellswift)
{
    for (const auto& secret : {strSecret1, strSecret2, strSecret1C, strSecret2C}) {
        CKey key = DecodeSecret(secret);
        BOOST_CHECK(key.IsValid());

        uint256 ent32 = m_rng.rand256();
        auto ellswift = key.EllSwiftCreate(AsBytes(Span{ent32}));

        CPubKey decoded_pubkey = ellswift.Decode();
        if (!key.IsCompressed()) {
            // The decoding constructor returns a compressed pubkey. If the
            // original was uncompressed, we must decompress the decoded one
            // to compare.
            decoded_pubkey.Decompress();
        }
        BOOST_CHECK(key.GetPubKey() == decoded_pubkey);
    }
}

BOOST_AUTO_TEST_CASE(bip341_test_h)
{
    std::vector<unsigned char> G_uncompressed = ParseHex("0479be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8");
    HashWriter hw;
    hw.write(MakeByteSpan(G_uncompressed));
    XOnlyPubKey H{hw.GetSHA256()};
    BOOST_CHECK(XOnlyPubKey::NUMS_H == H);
}

BOOST_AUTO_TEST_CASE(key_schnorr_tweak_smoke_test)
{
    // Sanity check to ensure we get the same tweak using CPubKey vs secp256k1 functions
    secp256k1_context* secp256k1_context_sign = secp256k1_context_create(SECP256K1_CONTEXT_NONE);

    CKey key;
    key.MakeNewKey(true);
    uint256 merkle_root = m_rng.rand256();

    // secp256k1 functions
    secp256k1_keypair keypair;
    BOOST_CHECK(secp256k1_keypair_create(secp256k1_context_sign, &keypair, UCharCast(key.begin())));
    secp256k1_xonly_pubkey xonly_pubkey;
    BOOST_CHECK(secp256k1_keypair_xonly_pub(secp256k1_context_sign, &xonly_pubkey, nullptr, &keypair));
    unsigned char xonly_bytes[32];
    BOOST_CHECK(secp256k1_xonly_pubkey_serialize(secp256k1_context_sign, xonly_bytes, &xonly_pubkey));
    uint256 tweak_old = XOnlyPubKey(xonly_bytes).ComputeTapTweakHash(&merkle_root);

    // CPubKey
    CPubKey pubkey = key.GetPubKey();
    uint256 tweak_new = XOnlyPubKey(pubkey).ComputeTapTweakHash(&merkle_root);

    BOOST_CHECK_EQUAL(tweak_old, tweak_new);

    secp256k1_context_destroy(secp256k1_context_sign);
}

BOOST_AUTO_TEST_SUITE_END()