aboutsummaryrefslogtreecommitdiff
path: root/src/test/fuzz/vecdeque.cpp
blob: 3bb858ee8ae49e471d908d7a42985f3e15b66e9a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
// Copyright (c) The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.

#include <random.h>
#include <span.h>
#include <test/fuzz/util.h>
#include <util/vecdeque.h>

#include <deque>
#include <stdint.h>

namespace {

/** The maximum number of simultaneous buffers kept by the test. */
static constexpr size_t MAX_BUFFERS{3};
/** How many elements are kept in a buffer at most. */
static constexpr size_t MAX_BUFFER_SIZE{48};
/** How many operations are performed at most on the buffers in one test. */
static constexpr size_t MAX_OPERATIONS{1024};

/** Perform a simulation fuzz test on VecDeque type T.
 *
 * T must be constructible from a uint64_t seed, comparable to other T, copyable, and movable.
 */
template<typename T, bool CheckNoneLeft>
void TestType(Span<const uint8_t> buffer, uint64_t rng_tweak)
{
    FuzzedDataProvider provider(buffer.data(), buffer.size());
    // Local RNG, only used for the seeds to initialize T objects with.
    InsecureRandomContext rng(provider.ConsumeIntegral<uint64_t>() ^ rng_tweak);

    // Real circular buffers.
    std::vector<VecDeque<T>> real;
    real.reserve(MAX_BUFFERS);
    // Simulated circular buffers.
    std::vector<std::deque<T>> sim;
    sim.reserve(MAX_BUFFERS);
    // Temporary object of type T.
    std::optional<T> tmp;

    // Compare a real and a simulated buffer.
    auto compare_fn = [](const VecDeque<T>& r, const std::deque<T>& s) {
        assert(r.size() == s.size());
        assert(r.empty() == s.empty());
        assert(r.capacity() >= r.size());
        if (s.size() == 0) return;
        assert(r.front() == s.front());
        assert(r.back() == s.back());
        for (size_t i = 0; i < s.size(); ++i) {
            assert(r[i] == s[i]);
        }
    };

    LIMITED_WHILE(provider.remaining_bytes(), MAX_OPERATIONS) {
        int command = provider.ConsumeIntegral<uint8_t>() % 64;
        unsigned idx = real.empty() ? 0 : provider.ConsumeIntegralInRange<unsigned>(0, real.size() - 1);
        const size_t num_buffers = sim.size();
        // Pick one operation based on value of command. Not all operations are always applicable.
        // Loop through the applicable ones until command reaches 0 (which avoids the need to
        // compute the number of applicable commands ahead of time).
        const bool non_empty{num_buffers != 0};
        const bool non_full{num_buffers < MAX_BUFFERS};
        const bool partially_full{non_empty && non_full};
        const bool multiple_exist{num_buffers > 1};
        const bool existing_buffer_non_full{non_empty && sim[idx].size() < MAX_BUFFER_SIZE};
        const bool existing_buffer_non_empty{non_empty && !sim[idx].empty()};
        assert(non_full || non_empty);
        while (true) {
            if (non_full && command-- == 0) {
                /* Default construct. */
                real.emplace_back();
                sim.emplace_back();
                break;
            }
            if (non_empty && command-- == 0) {
                /* resize() */
                compare_fn(real[idx], sim[idx]);
                size_t new_size = provider.ConsumeIntegralInRange<size_t>(0, MAX_BUFFER_SIZE);
                real[idx].resize(new_size);
                sim[idx].resize(new_size);
                assert(real[idx].size() == new_size);
                break;
            }
            if (non_empty && command-- == 0) {
                /* clear() */
                compare_fn(real[idx], sim[idx]);
                real[idx].clear();
                sim[idx].clear();
                assert(real[idx].empty());
                break;
            }
            if (non_empty && command-- == 0) {
                /* Copy construct default. */
                compare_fn(real[idx], sim[idx]);
                real[idx] = VecDeque<T>();
                sim[idx].clear();
                assert(real[idx].size() == 0);
                break;
            }
            if (non_empty && command-- == 0) {
                /* Destruct. */
                compare_fn(real.back(), sim.back());
                real.pop_back();
                sim.pop_back();
                break;
            }
            if (partially_full && command-- == 0) {
                /* Copy construct. */
                real.emplace_back(real[idx]);
                sim.emplace_back(sim[idx]);
                break;
            }
            if (partially_full && command-- == 0) {
                /* Move construct. */
                VecDeque<T> copy(real[idx]);
                real.emplace_back(std::move(copy));
                sim.emplace_back(sim[idx]);
                break;
            }
            if (multiple_exist && command-- == 0) {
                /* swap() */
                swap(real[idx], real[(idx + 1) % num_buffers]);
                swap(sim[idx], sim[(idx + 1) % num_buffers]);
                break;
            }
            if (multiple_exist && command-- == 0) {
                /* Copy assign. */
                compare_fn(real[idx], sim[idx]);
                real[idx] = real[(idx + 1) % num_buffers];
                sim[idx] = sim[(idx + 1) % num_buffers];
                break;
            }
            if (multiple_exist && command-- == 0) {
                /* Move assign. */
                VecDeque<T> copy(real[(idx + 1) % num_buffers]);
                compare_fn(real[idx], sim[idx]);
                real[idx] = std::move(copy);
                sim[idx] = sim[(idx + 1) % num_buffers];
                break;
            }
            if (non_empty && command-- == 0) {
                /* Self swap() */
                swap(real[idx], real[idx]);
                break;
            }
            if (non_empty && command-- == 0) {
                /* Self-copy assign. */
                real[idx] = real[idx];
                break;
            }
            if (non_empty && command-- == 0) {
                /* Self-move assign. */
                // Do not use std::move(real[idx]) here: -Wself-move correctly warns about that.
                real[idx] = static_cast<VecDeque<T>&&>(real[idx]);
                break;
            }
            if (non_empty && command-- == 0) {
                /* reserve() */
                size_t res_size = provider.ConsumeIntegralInRange<size_t>(0, MAX_BUFFER_SIZE);
                size_t old_cap = real[idx].capacity();
                size_t old_size = real[idx].size();
                real[idx].reserve(res_size);
                assert(real[idx].size() == old_size);
                assert(real[idx].capacity() == std::max(old_cap, res_size));
                break;
            }
            if (non_empty && command-- == 0) {
                /* shrink_to_fit() */
                size_t old_size = real[idx].size();
                real[idx].shrink_to_fit();
                assert(real[idx].size() == old_size);
                assert(real[idx].capacity() == old_size);
                break;
            }
            if (existing_buffer_non_full && command-- == 0) {
                /* push_back() (copying) */
                tmp = T(rng.rand64());
                size_t old_size = real[idx].size();
                size_t old_cap = real[idx].capacity();
                real[idx].push_back(*tmp);
                sim[idx].push_back(*tmp);
                assert(real[idx].size() == old_size + 1);
                if (old_cap > old_size) {
                    assert(real[idx].capacity() == old_cap);
                } else {
                    assert(real[idx].capacity() > old_cap);
                    assert(real[idx].capacity() <= 2 * (old_cap + 1));
                }
                break;
            }
            if (existing_buffer_non_full && command-- == 0) {
                /* push_back() (moving) */
                tmp = T(rng.rand64());
                size_t old_size = real[idx].size();
                size_t old_cap = real[idx].capacity();
                sim[idx].push_back(*tmp);
                real[idx].push_back(std::move(*tmp));
                assert(real[idx].size() == old_size + 1);
                if (old_cap > old_size) {
                    assert(real[idx].capacity() == old_cap);
                } else {
                    assert(real[idx].capacity() > old_cap);
                    assert(real[idx].capacity() <= 2 * (old_cap + 1));
                }
                break;
            }
            if (existing_buffer_non_full && command-- == 0) {
                /* emplace_back() */
                uint64_t seed{rng.rand64()};
                size_t old_size = real[idx].size();
                size_t old_cap = real[idx].capacity();
                sim[idx].emplace_back(seed);
                real[idx].emplace_back(seed);
                assert(real[idx].size() == old_size + 1);
                if (old_cap > old_size) {
                    assert(real[idx].capacity() == old_cap);
                } else {
                    assert(real[idx].capacity() > old_cap);
                    assert(real[idx].capacity() <= 2 * (old_cap + 1));
                }
                break;
            }
            if (existing_buffer_non_full && command-- == 0) {
                /* push_front() (copying) */
                tmp = T(rng.rand64());
                size_t old_size = real[idx].size();
                size_t old_cap = real[idx].capacity();
                real[idx].push_front(*tmp);
                sim[idx].push_front(*tmp);
                assert(real[idx].size() == old_size + 1);
                if (old_cap > old_size) {
                    assert(real[idx].capacity() == old_cap);
                } else {
                    assert(real[idx].capacity() > old_cap);
                    assert(real[idx].capacity() <= 2 * (old_cap + 1));
                }
                break;
            }
            if (existing_buffer_non_full && command-- == 0) {
                /* push_front() (moving) */
                tmp = T(rng.rand64());
                size_t old_size = real[idx].size();
                size_t old_cap = real[idx].capacity();
                sim[idx].push_front(*tmp);
                real[idx].push_front(std::move(*tmp));
                assert(real[idx].size() == old_size + 1);
                if (old_cap > old_size) {
                    assert(real[idx].capacity() == old_cap);
                } else {
                    assert(real[idx].capacity() > old_cap);
                    assert(real[idx].capacity() <= 2 * (old_cap + 1));
                }
                break;
            }
            if (existing_buffer_non_full && command-- == 0) {
                /* emplace_front() */
                uint64_t seed{rng.rand64()};
                size_t old_size = real[idx].size();
                size_t old_cap = real[idx].capacity();
                sim[idx].emplace_front(seed);
                real[idx].emplace_front(seed);
                assert(real[idx].size() == old_size + 1);
                if (old_cap > old_size) {
                    assert(real[idx].capacity() == old_cap);
                } else {
                    assert(real[idx].capacity() > old_cap);
                    assert(real[idx].capacity() <= 2 * (old_cap + 1));
                }
                break;
            }
            if (existing_buffer_non_empty && command-- == 0) {
                /* front() [modifying] */
                tmp = T(rng.rand64());
                size_t old_size = real[idx].size();
                assert(sim[idx].front() == real[idx].front());
                sim[idx].front() = *tmp;
                real[idx].front() = std::move(*tmp);
                assert(real[idx].size() == old_size);
                break;
            }
            if (existing_buffer_non_empty && command-- == 0) {
                /* back() [modifying] */
                tmp = T(rng.rand64());
                size_t old_size = real[idx].size();
                assert(sim[idx].back() == real[idx].back());
                sim[idx].back() = *tmp;
                real[idx].back() = *tmp;
                assert(real[idx].size() == old_size);
                break;
            }
            if (existing_buffer_non_empty && command-- == 0) {
                /* operator[] [modifying] */
                tmp = T(rng.rand64());
                size_t pos = provider.ConsumeIntegralInRange<size_t>(0, sim[idx].size() - 1);
                size_t old_size = real[idx].size();
                assert(sim[idx][pos] == real[idx][pos]);
                sim[idx][pos] = *tmp;
                real[idx][pos] = std::move(*tmp);
                assert(real[idx].size() == old_size);
                break;
            }
            if (existing_buffer_non_empty && command-- == 0) {
                /* pop_front() */
                assert(sim[idx].front() == real[idx].front());
                size_t old_size = real[idx].size();
                sim[idx].pop_front();
                real[idx].pop_front();
                assert(real[idx].size() == old_size - 1);
                break;
            }
            if (existing_buffer_non_empty && command-- == 0) {
                /* pop_back() */
                assert(sim[idx].back() == real[idx].back());
                size_t old_size = real[idx].size();
                sim[idx].pop_back();
                real[idx].pop_back();
                assert(real[idx].size() == old_size - 1);
                break;
            }
        }
    }

    /* Fully compare the final state. */
    for (unsigned i = 0; i < sim.size(); ++i) {
        // Make sure const getters work.
        const VecDeque<T>& realbuf = real[i];
        const std::deque<T>& simbuf = sim[i];
        compare_fn(realbuf, simbuf);
        for (unsigned j = 0; j < sim.size(); ++j) {
            assert((realbuf == real[j]) == (simbuf == sim[j]));
            assert(((realbuf <=> real[j]) >= 0) == (simbuf >= sim[j]));
            assert(((realbuf <=> real[j]) <= 0) == (simbuf <= sim[j]));
        }
        // Clear out the buffers so we can check below that no objects exist anymore.
        sim[i].clear();
        real[i].clear();
    }

    if constexpr (CheckNoneLeft) {
        tmp = std::nullopt;
        T::CheckNoneExist();
    }
}

/** Data structure with built-in tracking of all existing objects. */
template<size_t Size>
class TrackedObj
{
    static_assert(Size > 0);

    /* Data type for map that actually stores the object data.
     *
     * The key is a pointer to the TrackedObj, the value is the uint64_t it was initialized with.
     * Default-constructed and moved-from objects hold an std::nullopt.
     */
    using track_map_type = std::map<const TrackedObj<Size>*, std::optional<uint64_t>>;

private:

    /** Actual map. */
    static inline track_map_type g_tracker;

    /** Iterators into the tracker map for this object.
     *
     * This is an array of size Size, all holding the same value, to give the object configurable
     * size. The value is g_tracker.end() if this object is not fully initialized. */
    typename track_map_type::iterator m_track_entry[Size];

    void Check() const
    {
        auto it = g_tracker.find(this);
        for (size_t i = 0; i < Size; ++i) {
            assert(m_track_entry[i] == it);
        }
    }

    /** Create entry for this object in g_tracker and populate m_track_entry. */
    void Register()
    {
        auto [it, inserted] = g_tracker.emplace(this, std::nullopt);
        assert(inserted);
        for (size_t i = 0; i < Size; ++i) {
            m_track_entry[i] = it;
        }
    }

    void Deregister()
    {
        Check();
        assert(m_track_entry[0] != g_tracker.end());
        g_tracker.erase(m_track_entry[0]);
        for (size_t i = 0; i < Size; ++i) {
            m_track_entry[i] = g_tracker.end();
        }
    }

    /** Get value corresponding to this object in g_tracker. */
    std::optional<uint64_t>& Deref()
    {
        Check();
        assert(m_track_entry[0] != g_tracker.end());
        return m_track_entry[0]->second;
    }

    /** Get value corresponding to this object in g_tracker. */
    const std::optional<uint64_t>& Deref() const
    {
        Check();
        assert(m_track_entry[0] != g_tracker.end());
        return m_track_entry[0]->second;
    }

public:
    ~TrackedObj() { Deregister(); }
    TrackedObj() { Register(); }

    TrackedObj(uint64_t value)
    {
        Register();
        Deref() = value;
    }

    TrackedObj(const TrackedObj& other)
    {
        Register();
        Deref() = other.Deref();
    }

    TrackedObj(TrackedObj&& other)
    {
        Register();
        Deref() = other.Deref();
        other.Deref() = std::nullopt;
    }

    TrackedObj& operator=(const TrackedObj& other)
    {
        if (this == &other) return *this;
        Deref() = other.Deref();
        return *this;
    }

    TrackedObj& operator=(TrackedObj&& other)
    {
        if (this == &other) return *this;
        Deref() = other.Deref();
        other.Deref() = std::nullopt;
        return *this;
    }

    friend bool operator==(const TrackedObj& a, const TrackedObj& b)
    {
        return a.Deref() == b.Deref();
    }

    friend std::strong_ordering operator<=>(const TrackedObj& a, const TrackedObj& b)
    {
        // Libc++ 15 & 16 do not support std::optional<T>::operator<=> yet. See
        // https://reviews.llvm.org/D146392.
        if (!a.Deref().has_value() || !b.Deref().has_value()) {
            return a.Deref().has_value() <=> b.Deref().has_value();
        }
        return *a.Deref() <=> *b.Deref();
    }

    static void CheckNoneExist()
    {
        assert(g_tracker.empty());
    }
};

} // namespace

FUZZ_TARGET(vecdeque)
{
    // Run the test with simple uints (which satisfy all the trivial properties).
    static_assert(std::is_trivially_copyable_v<uint32_t>);
    static_assert(std::is_trivially_destructible_v<uint64_t>);
    TestType<uint8_t, false>(buffer, 1);
    TestType<uint16_t, false>(buffer, 2);
    TestType<uint32_t, false>(buffer, 3);
    TestType<uint64_t, false>(buffer, 4);

    // Run the test with TrackedObjs (which do not).
    static_assert(!std::is_trivially_copyable_v<TrackedObj<3>>);
    static_assert(!std::is_trivially_destructible_v<TrackedObj<17>>);
    TestType<TrackedObj<1>, true>(buffer, 5);
    TestType<TrackedObj<3>, true>(buffer, 6);
    TestType<TrackedObj<17>, true>(buffer, 7);
}