1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
|
// Copyright (c) 2021 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <consensus/amount.h>
#include <net_processing.h>
#include <netmessagemaker.h>
#include <pubkey.h>
#include <test/fuzz/util.h>
#include <test/util/script.h>
#include <util/overflow.h>
#include <util/rbf.h>
#include <util/time.h>
#include <version.h>
#include <memory>
FuzzedSock::FuzzedSock(FuzzedDataProvider& fuzzed_data_provider)
: m_fuzzed_data_provider{fuzzed_data_provider}
{
m_socket = fuzzed_data_provider.ConsumeIntegralInRange<SOCKET>(INVALID_SOCKET - 1, INVALID_SOCKET);
}
FuzzedSock::~FuzzedSock()
{
// Sock::~Sock() will be called after FuzzedSock::~FuzzedSock() and it will call
// close(m_socket) if m_socket is not INVALID_SOCKET.
// Avoid closing an arbitrary file descriptor (m_socket is just a random very high number which
// theoretically may concide with a real opened file descriptor).
m_socket = INVALID_SOCKET;
}
FuzzedSock& FuzzedSock::operator=(Sock&& other)
{
assert(false && "Move of Sock into FuzzedSock not allowed.");
return *this;
}
ssize_t FuzzedSock::Send(const void* data, size_t len, int flags) const
{
constexpr std::array send_errnos{
EACCES,
EAGAIN,
EALREADY,
EBADF,
ECONNRESET,
EDESTADDRREQ,
EFAULT,
EINTR,
EINVAL,
EISCONN,
EMSGSIZE,
ENOBUFS,
ENOMEM,
ENOTCONN,
ENOTSOCK,
EOPNOTSUPP,
EPIPE,
EWOULDBLOCK,
};
if (m_fuzzed_data_provider.ConsumeBool()) {
return len;
}
const ssize_t r = m_fuzzed_data_provider.ConsumeIntegralInRange<ssize_t>(-1, len);
if (r == -1) {
SetFuzzedErrNo(m_fuzzed_data_provider, send_errnos);
}
return r;
}
ssize_t FuzzedSock::Recv(void* buf, size_t len, int flags) const
{
// Have a permanent error at recv_errnos[0] because when the fuzzed data is exhausted
// SetFuzzedErrNo() will always return the first element and we want to avoid Recv()
// returning -1 and setting errno to EAGAIN repeatedly.
constexpr std::array recv_errnos{
ECONNREFUSED,
EAGAIN,
EBADF,
EFAULT,
EINTR,
EINVAL,
ENOMEM,
ENOTCONN,
ENOTSOCK,
EWOULDBLOCK,
};
assert(buf != nullptr || len == 0);
if (len == 0 || m_fuzzed_data_provider.ConsumeBool()) {
const ssize_t r = m_fuzzed_data_provider.ConsumeBool() ? 0 : -1;
if (r == -1) {
SetFuzzedErrNo(m_fuzzed_data_provider, recv_errnos);
}
return r;
}
std::vector<uint8_t> random_bytes;
bool pad_to_len_bytes{m_fuzzed_data_provider.ConsumeBool()};
if (m_peek_data.has_value()) {
// `MSG_PEEK` was used in the preceding `Recv()` call, return `m_peek_data`.
random_bytes.assign({m_peek_data.value()});
if ((flags & MSG_PEEK) == 0) {
m_peek_data.reset();
}
pad_to_len_bytes = false;
} else if ((flags & MSG_PEEK) != 0) {
// New call with `MSG_PEEK`.
random_bytes = m_fuzzed_data_provider.ConsumeBytes<uint8_t>(1);
if (!random_bytes.empty()) {
m_peek_data = random_bytes[0];
pad_to_len_bytes = false;
}
} else {
random_bytes = m_fuzzed_data_provider.ConsumeBytes<uint8_t>(
m_fuzzed_data_provider.ConsumeIntegralInRange<size_t>(0, len));
}
if (random_bytes.empty()) {
const ssize_t r = m_fuzzed_data_provider.ConsumeBool() ? 0 : -1;
if (r == -1) {
SetFuzzedErrNo(m_fuzzed_data_provider, recv_errnos);
}
return r;
}
std::memcpy(buf, random_bytes.data(), random_bytes.size());
if (pad_to_len_bytes) {
if (len > random_bytes.size()) {
std::memset((char*)buf + random_bytes.size(), 0, len - random_bytes.size());
}
return len;
}
if (m_fuzzed_data_provider.ConsumeBool() && std::getenv("FUZZED_SOCKET_FAKE_LATENCY") != nullptr) {
std::this_thread::sleep_for(std::chrono::milliseconds{2});
}
return random_bytes.size();
}
int FuzzedSock::Connect(const sockaddr*, socklen_t) const
{
// Have a permanent error at connect_errnos[0] because when the fuzzed data is exhausted
// SetFuzzedErrNo() will always return the first element and we want to avoid Connect()
// returning -1 and setting errno to EAGAIN repeatedly.
constexpr std::array connect_errnos{
ECONNREFUSED,
EAGAIN,
ECONNRESET,
EHOSTUNREACH,
EINPROGRESS,
EINTR,
ENETUNREACH,
ETIMEDOUT,
};
if (m_fuzzed_data_provider.ConsumeBool()) {
SetFuzzedErrNo(m_fuzzed_data_provider, connect_errnos);
return -1;
}
return 0;
}
int FuzzedSock::Bind(const sockaddr*, socklen_t) const
{
// Have a permanent error at bind_errnos[0] because when the fuzzed data is exhausted
// SetFuzzedErrNo() will always set the global errno to bind_errnos[0]. We want to
// avoid this method returning -1 and setting errno to a temporary error (like EAGAIN)
// repeatedly because proper code should retry on temporary errors, leading to an
// infinite loop.
constexpr std::array bind_errnos{
EACCES,
EADDRINUSE,
EADDRNOTAVAIL,
EAGAIN,
};
if (m_fuzzed_data_provider.ConsumeBool()) {
SetFuzzedErrNo(m_fuzzed_data_provider, bind_errnos);
return -1;
}
return 0;
}
int FuzzedSock::Listen(int) const
{
// Have a permanent error at listen_errnos[0] because when the fuzzed data is exhausted
// SetFuzzedErrNo() will always set the global errno to listen_errnos[0]. We want to
// avoid this method returning -1 and setting errno to a temporary error (like EAGAIN)
// repeatedly because proper code should retry on temporary errors, leading to an
// infinite loop.
constexpr std::array listen_errnos{
EADDRINUSE,
EINVAL,
EOPNOTSUPP,
};
if (m_fuzzed_data_provider.ConsumeBool()) {
SetFuzzedErrNo(m_fuzzed_data_provider, listen_errnos);
return -1;
}
return 0;
}
std::unique_ptr<Sock> FuzzedSock::Accept(sockaddr* addr, socklen_t* addr_len) const
{
constexpr std::array accept_errnos{
ECONNABORTED,
EINTR,
ENOMEM,
};
if (m_fuzzed_data_provider.ConsumeBool()) {
SetFuzzedErrNo(m_fuzzed_data_provider, accept_errnos);
return std::unique_ptr<FuzzedSock>();
}
return std::make_unique<FuzzedSock>(m_fuzzed_data_provider);
}
int FuzzedSock::GetSockOpt(int level, int opt_name, void* opt_val, socklen_t* opt_len) const
{
constexpr std::array getsockopt_errnos{
ENOMEM,
ENOBUFS,
};
if (m_fuzzed_data_provider.ConsumeBool()) {
SetFuzzedErrNo(m_fuzzed_data_provider, getsockopt_errnos);
return -1;
}
if (opt_val == nullptr) {
return 0;
}
std::memcpy(opt_val,
ConsumeFixedLengthByteVector(m_fuzzed_data_provider, *opt_len).data(),
*opt_len);
return 0;
}
int FuzzedSock::SetSockOpt(int, int, const void*, socklen_t) const
{
constexpr std::array setsockopt_errnos{
ENOMEM,
ENOBUFS,
};
if (m_fuzzed_data_provider.ConsumeBool()) {
SetFuzzedErrNo(m_fuzzed_data_provider, setsockopt_errnos);
return -1;
}
return 0;
}
int FuzzedSock::GetSockName(sockaddr* name, socklen_t* name_len) const
{
constexpr std::array getsockname_errnos{
ECONNRESET,
ENOBUFS,
};
if (m_fuzzed_data_provider.ConsumeBool()) {
SetFuzzedErrNo(m_fuzzed_data_provider, getsockname_errnos);
return -1;
}
*name_len = m_fuzzed_data_provider.ConsumeData(name, *name_len);
return 0;
}
bool FuzzedSock::Wait(std::chrono::milliseconds timeout, Event requested, Event* occurred) const
{
constexpr std::array wait_errnos{
EBADF,
EINTR,
EINVAL,
};
if (m_fuzzed_data_provider.ConsumeBool()) {
SetFuzzedErrNo(m_fuzzed_data_provider, wait_errnos);
return false;
}
if (occurred != nullptr) {
*occurred = m_fuzzed_data_provider.ConsumeBool() ? requested : 0;
}
return true;
}
bool FuzzedSock::WaitMany(std::chrono::milliseconds timeout, EventsPerSock& events_per_sock) const
{
for (auto& [sock, events] : events_per_sock) {
(void)sock;
events.occurred = m_fuzzed_data_provider.ConsumeBool() ? events.requested : 0;
}
return true;
}
bool FuzzedSock::IsConnected(std::string& errmsg) const
{
if (m_fuzzed_data_provider.ConsumeBool()) {
return true;
}
errmsg = "disconnected at random by the fuzzer";
return false;
}
void FillNode(FuzzedDataProvider& fuzzed_data_provider, ConnmanTestMsg& connman, PeerManager& peerman, CNode& node) noexcept
{
const bool successfully_connected{fuzzed_data_provider.ConsumeBool()};
const ServiceFlags remote_services = ConsumeWeakEnum(fuzzed_data_provider, ALL_SERVICE_FLAGS);
const NetPermissionFlags permission_flags = ConsumeWeakEnum(fuzzed_data_provider, ALL_NET_PERMISSION_FLAGS);
const int32_t version = fuzzed_data_provider.ConsumeIntegralInRange<int32_t>(MIN_PEER_PROTO_VERSION, std::numeric_limits<int32_t>::max());
const bool relay_txs{fuzzed_data_provider.ConsumeBool()};
const CNetMsgMaker mm{0};
CSerializedNetMsg msg_version{
mm.Make(NetMsgType::VERSION,
version, //
Using<CustomUintFormatter<8>>(remote_services), //
int64_t{}, // dummy time
int64_t{}, // ignored service bits
CService{}, // dummy
int64_t{}, // ignored service bits
CService{}, // ignored
uint64_t{1}, // dummy nonce
std::string{}, // dummy subver
int32_t{}, // dummy starting_height
relay_txs),
};
(void)connman.ReceiveMsgFrom(node, msg_version);
node.fPauseSend = false;
connman.ProcessMessagesOnce(node);
{
LOCK(node.cs_sendProcessing);
peerman.SendMessages(&node);
}
if (node.fDisconnect) return;
assert(node.nVersion == version);
assert(node.GetCommonVersion() == std::min(version, PROTOCOL_VERSION));
assert(node.nServices == remote_services);
CNodeStateStats statestats;
assert(peerman.GetNodeStateStats(node.GetId(), statestats));
assert(statestats.m_relay_txs == (relay_txs && !node.IsBlockOnlyConn()));
node.m_permissionFlags = permission_flags;
if (successfully_connected) {
CSerializedNetMsg msg_verack{mm.Make(NetMsgType::VERACK)};
(void)connman.ReceiveMsgFrom(node, msg_verack);
node.fPauseSend = false;
connman.ProcessMessagesOnce(node);
{
LOCK(node.cs_sendProcessing);
peerman.SendMessages(&node);
}
assert(node.fSuccessfullyConnected == true);
}
}
CAmount ConsumeMoney(FuzzedDataProvider& fuzzed_data_provider, const std::optional<CAmount>& max) noexcept
{
return fuzzed_data_provider.ConsumeIntegralInRange<CAmount>(0, max.value_or(MAX_MONEY));
}
int64_t ConsumeTime(FuzzedDataProvider& fuzzed_data_provider, const std::optional<int64_t>& min, const std::optional<int64_t>& max) noexcept
{
// Avoid t=0 (1970-01-01T00:00:00Z) since SetMockTime(0) disables mocktime.
static const int64_t time_min{ParseISO8601DateTime("2000-01-01T00:00:01Z")};
static const int64_t time_max{ParseISO8601DateTime("2100-12-31T23:59:59Z")};
return fuzzed_data_provider.ConsumeIntegralInRange<int64_t>(min.value_or(time_min), max.value_or(time_max));
}
CMutableTransaction ConsumeTransaction(FuzzedDataProvider& fuzzed_data_provider, const std::optional<std::vector<uint256>>& prevout_txids, const int max_num_in, const int max_num_out) noexcept
{
CMutableTransaction tx_mut;
const auto p2wsh_op_true = fuzzed_data_provider.ConsumeBool();
tx_mut.nVersion = fuzzed_data_provider.ConsumeBool() ?
CTransaction::CURRENT_VERSION :
fuzzed_data_provider.ConsumeIntegral<int32_t>();
tx_mut.nLockTime = fuzzed_data_provider.ConsumeIntegral<uint32_t>();
const auto num_in = fuzzed_data_provider.ConsumeIntegralInRange<int>(0, max_num_in);
const auto num_out = fuzzed_data_provider.ConsumeIntegralInRange<int>(0, max_num_out);
for (int i = 0; i < num_in; ++i) {
const auto& txid_prev = prevout_txids ?
PickValue(fuzzed_data_provider, *prevout_txids) :
ConsumeUInt256(fuzzed_data_provider);
const auto index_out = fuzzed_data_provider.ConsumeIntegralInRange<uint32_t>(0, max_num_out);
const auto sequence = ConsumeSequence(fuzzed_data_provider);
const auto script_sig = p2wsh_op_true ? CScript{} : ConsumeScript(fuzzed_data_provider);
CScriptWitness script_wit;
if (p2wsh_op_true) {
script_wit.stack = std::vector<std::vector<uint8_t>>{WITNESS_STACK_ELEM_OP_TRUE};
} else {
script_wit = ConsumeScriptWitness(fuzzed_data_provider);
}
CTxIn in;
in.prevout = COutPoint{txid_prev, index_out};
in.nSequence = sequence;
in.scriptSig = script_sig;
in.scriptWitness = script_wit;
tx_mut.vin.push_back(in);
}
for (int i = 0; i < num_out; ++i) {
const auto amount = fuzzed_data_provider.ConsumeIntegralInRange<CAmount>(-10, 50 * COIN + 10);
const auto script_pk = p2wsh_op_true ?
P2WSH_OP_TRUE :
ConsumeScript(fuzzed_data_provider, /*maybe_p2wsh=*/true);
tx_mut.vout.emplace_back(amount, script_pk);
}
return tx_mut;
}
CScriptWitness ConsumeScriptWitness(FuzzedDataProvider& fuzzed_data_provider, const size_t max_stack_elem_size) noexcept
{
CScriptWitness ret;
const auto n_elements = fuzzed_data_provider.ConsumeIntegralInRange<size_t>(0, max_stack_elem_size);
for (size_t i = 0; i < n_elements; ++i) {
ret.stack.push_back(ConsumeRandomLengthByteVector(fuzzed_data_provider));
}
return ret;
}
CScript ConsumeScript(FuzzedDataProvider& fuzzed_data_provider, const bool maybe_p2wsh) noexcept
{
CScript r_script{};
{
// Keep a buffer of bytes to allow the fuzz engine to produce smaller
// inputs to generate CScripts with repeated data.
static constexpr unsigned MAX_BUFFER_SZ{128};
std::vector<uint8_t> buffer(MAX_BUFFER_SZ, uint8_t{'a'});
while (fuzzed_data_provider.ConsumeBool()) {
CallOneOf(
fuzzed_data_provider,
[&] {
// Insert byte vector directly to allow malformed or unparsable scripts
r_script.insert(r_script.end(), buffer.begin(), buffer.begin() + fuzzed_data_provider.ConsumeIntegralInRange(0U, MAX_BUFFER_SZ));
},
[&] {
// Push a byte vector from the buffer
r_script << std::vector<uint8_t>{buffer.begin(), buffer.begin() + fuzzed_data_provider.ConsumeIntegralInRange(0U, MAX_BUFFER_SZ)};
},
[&] {
// Push multisig
// There is a special case for this to aid the fuzz engine
// navigate the highly structured multisig format.
r_script << fuzzed_data_provider.ConsumeIntegralInRange<int64_t>(0, 22);
int num_data{fuzzed_data_provider.ConsumeIntegralInRange(1, 22)};
std::vector<uint8_t> pubkey_comp{buffer.begin(), buffer.begin() + CPubKey::COMPRESSED_SIZE};
pubkey_comp.front() = fuzzed_data_provider.ConsumeIntegralInRange(2, 3); // Set first byte for GetLen() to pass
std::vector<uint8_t> pubkey_uncomp{buffer.begin(), buffer.begin() + CPubKey::SIZE};
pubkey_uncomp.front() = fuzzed_data_provider.ConsumeIntegralInRange(4, 7); // Set first byte for GetLen() to pass
while (num_data--) {
auto& pubkey{fuzzed_data_provider.ConsumeBool() ? pubkey_uncomp : pubkey_comp};
if (fuzzed_data_provider.ConsumeBool()) {
pubkey.back() = num_data; // Make each pubkey different
}
r_script << pubkey;
}
r_script << fuzzed_data_provider.ConsumeIntegralInRange<int64_t>(0, 22);
},
[&] {
// Mutate the buffer
const auto vec{ConsumeRandomLengthByteVector(fuzzed_data_provider, /*max_length=*/MAX_BUFFER_SZ)};
std::copy(vec.begin(), vec.end(), buffer.begin());
},
[&] {
// Push an integral
r_script << fuzzed_data_provider.ConsumeIntegral<int64_t>();
},
[&] {
// Push an opcode
r_script << ConsumeOpcodeType(fuzzed_data_provider);
},
[&] {
// Push a scriptnum
r_script << ConsumeScriptNum(fuzzed_data_provider);
});
}
}
if (maybe_p2wsh && fuzzed_data_provider.ConsumeBool()) {
uint256 script_hash;
CSHA256().Write(r_script.data(), r_script.size()).Finalize(script_hash.begin());
r_script.clear();
r_script << OP_0 << ToByteVector(script_hash);
}
return r_script;
}
uint32_t ConsumeSequence(FuzzedDataProvider& fuzzed_data_provider) noexcept
{
return fuzzed_data_provider.ConsumeBool() ?
fuzzed_data_provider.PickValueInArray({
CTxIn::SEQUENCE_FINAL,
CTxIn::MAX_SEQUENCE_NONFINAL,
MAX_BIP125_RBF_SEQUENCE,
}) :
fuzzed_data_provider.ConsumeIntegral<uint32_t>();
}
CTxDestination ConsumeTxDestination(FuzzedDataProvider& fuzzed_data_provider) noexcept
{
CTxDestination tx_destination;
const size_t call_size{CallOneOf(
fuzzed_data_provider,
[&] {
tx_destination = CNoDestination{};
},
[&] {
tx_destination = PKHash{ConsumeUInt160(fuzzed_data_provider)};
},
[&] {
tx_destination = ScriptHash{ConsumeUInt160(fuzzed_data_provider)};
},
[&] {
tx_destination = WitnessV0ScriptHash{ConsumeUInt256(fuzzed_data_provider)};
},
[&] {
tx_destination = WitnessV0KeyHash{ConsumeUInt160(fuzzed_data_provider)};
},
[&] {
tx_destination = WitnessV1Taproot{XOnlyPubKey{ConsumeUInt256(fuzzed_data_provider)}};
},
[&] {
WitnessUnknown witness_unknown{};
witness_unknown.version = fuzzed_data_provider.ConsumeIntegralInRange(2, 16);
std::vector<uint8_t> witness_unknown_program_1{fuzzed_data_provider.ConsumeBytes<uint8_t>(40)};
if (witness_unknown_program_1.size() < 2) {
witness_unknown_program_1 = {0, 0};
}
witness_unknown.length = witness_unknown_program_1.size();
std::copy(witness_unknown_program_1.begin(), witness_unknown_program_1.end(), witness_unknown.program);
tx_destination = witness_unknown;
})};
Assert(call_size == std::variant_size_v<CTxDestination>);
return tx_destination;
}
CTxMemPoolEntry ConsumeTxMemPoolEntry(FuzzedDataProvider& fuzzed_data_provider, const CTransaction& tx) noexcept
{
// Avoid:
// policy/feerate.cpp:28:34: runtime error: signed integer overflow: 34873208148477500 * 1000 cannot be represented in type 'long'
//
// Reproduce using CFeeRate(348732081484775, 10).GetFeePerK()
const CAmount fee = std::min<CAmount>(ConsumeMoney(fuzzed_data_provider), std::numeric_limits<CAmount>::max() / static_cast<CAmount>(100000));
assert(MoneyRange(fee));
const int64_t time = fuzzed_data_provider.ConsumeIntegral<int64_t>();
const unsigned int entry_height = fuzzed_data_provider.ConsumeIntegral<unsigned int>();
const bool spends_coinbase = fuzzed_data_provider.ConsumeBool();
const unsigned int sig_op_cost = fuzzed_data_provider.ConsumeIntegralInRange<unsigned int>(0, MAX_BLOCK_SIGOPS_COST);
return CTxMemPoolEntry{MakeTransactionRef(tx), fee, time, entry_height, spends_coinbase, sig_op_cost, {}};
}
bool ContainsSpentInput(const CTransaction& tx, const CCoinsViewCache& inputs) noexcept
{
for (const CTxIn& tx_in : tx.vin) {
const Coin& coin = inputs.AccessCoin(tx_in.prevout);
if (coin.IsSpent()) {
return true;
}
}
return false;
}
CNetAddr ConsumeNetAddr(FuzzedDataProvider& fuzzed_data_provider) noexcept
{
const Network network = fuzzed_data_provider.PickValueInArray({Network::NET_IPV4, Network::NET_IPV6, Network::NET_INTERNAL, Network::NET_ONION});
CNetAddr net_addr;
if (network == Network::NET_IPV4) {
in_addr v4_addr = {};
v4_addr.s_addr = fuzzed_data_provider.ConsumeIntegral<uint32_t>();
net_addr = CNetAddr{v4_addr};
} else if (network == Network::NET_IPV6) {
if (fuzzed_data_provider.remaining_bytes() >= 16) {
in6_addr v6_addr = {};
memcpy(v6_addr.s6_addr, fuzzed_data_provider.ConsumeBytes<uint8_t>(16).data(), 16);
net_addr = CNetAddr{v6_addr, fuzzed_data_provider.ConsumeIntegral<uint32_t>()};
}
} else if (network == Network::NET_INTERNAL) {
net_addr.SetInternal(fuzzed_data_provider.ConsumeBytesAsString(32));
} else if (network == Network::NET_ONION) {
net_addr.SetSpecial(fuzzed_data_provider.ConsumeBytesAsString(32));
}
return net_addr;
}
FILE* FuzzedFileProvider::open()
{
SetFuzzedErrNo(m_fuzzed_data_provider);
if (m_fuzzed_data_provider.ConsumeBool()) {
return nullptr;
}
std::string mode;
CallOneOf(
m_fuzzed_data_provider,
[&] {
mode = "r";
},
[&] {
mode = "r+";
},
[&] {
mode = "w";
},
[&] {
mode = "w+";
},
[&] {
mode = "a";
},
[&] {
mode = "a+";
});
#if defined _GNU_SOURCE && !defined __ANDROID__
const cookie_io_functions_t io_hooks = {
FuzzedFileProvider::read,
FuzzedFileProvider::write,
FuzzedFileProvider::seek,
FuzzedFileProvider::close,
};
return fopencookie(this, mode.c_str(), io_hooks);
#else
(void)mode;
return nullptr;
#endif
}
ssize_t FuzzedFileProvider::read(void* cookie, char* buf, size_t size)
{
FuzzedFileProvider* fuzzed_file = (FuzzedFileProvider*)cookie;
SetFuzzedErrNo(fuzzed_file->m_fuzzed_data_provider);
if (buf == nullptr || size == 0 || fuzzed_file->m_fuzzed_data_provider.ConsumeBool()) {
return fuzzed_file->m_fuzzed_data_provider.ConsumeBool() ? 0 : -1;
}
const std::vector<uint8_t> random_bytes = fuzzed_file->m_fuzzed_data_provider.ConsumeBytes<uint8_t>(size);
if (random_bytes.empty()) {
return 0;
}
std::memcpy(buf, random_bytes.data(), random_bytes.size());
if (AdditionOverflow(fuzzed_file->m_offset, (int64_t)random_bytes.size())) {
return fuzzed_file->m_fuzzed_data_provider.ConsumeBool() ? 0 : -1;
}
fuzzed_file->m_offset += random_bytes.size();
return random_bytes.size();
}
ssize_t FuzzedFileProvider::write(void* cookie, const char* buf, size_t size)
{
FuzzedFileProvider* fuzzed_file = (FuzzedFileProvider*)cookie;
SetFuzzedErrNo(fuzzed_file->m_fuzzed_data_provider);
const ssize_t n = fuzzed_file->m_fuzzed_data_provider.ConsumeIntegralInRange<ssize_t>(0, size);
if (AdditionOverflow(fuzzed_file->m_offset, (int64_t)n)) {
return 0;
}
fuzzed_file->m_offset += n;
return n;
}
int FuzzedFileProvider::seek(void* cookie, int64_t* offset, int whence)
{
assert(whence == SEEK_SET || whence == SEEK_CUR || whence == SEEK_END);
FuzzedFileProvider* fuzzed_file = (FuzzedFileProvider*)cookie;
SetFuzzedErrNo(fuzzed_file->m_fuzzed_data_provider);
int64_t new_offset = 0;
if (whence == SEEK_SET) {
new_offset = *offset;
} else if (whence == SEEK_CUR) {
if (AdditionOverflow(fuzzed_file->m_offset, *offset)) {
return -1;
}
new_offset = fuzzed_file->m_offset + *offset;
} else if (whence == SEEK_END) {
const int64_t n = fuzzed_file->m_fuzzed_data_provider.ConsumeIntegralInRange<int64_t>(0, 4096);
if (AdditionOverflow(n, *offset)) {
return -1;
}
new_offset = n + *offset;
}
if (new_offset < 0) {
return -1;
}
fuzzed_file->m_offset = new_offset;
*offset = new_offset;
return fuzzed_file->m_fuzzed_data_provider.ConsumeIntegralInRange<int>(-1, 0);
}
int FuzzedFileProvider::close(void* cookie)
{
FuzzedFileProvider* fuzzed_file = (FuzzedFileProvider*)cookie;
SetFuzzedErrNo(fuzzed_file->m_fuzzed_data_provider);
return fuzzed_file->m_fuzzed_data_provider.ConsumeIntegralInRange<int>(-1, 0);
}
|