aboutsummaryrefslogtreecommitdiff
path: root/src/test/fuzz/prevector.cpp
blob: aeceb38a58ca81a6348f91eb791c521fc38d1a12 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
// Copyright (c) 2015-2022 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.

#include <prevector.h>
#include <serialize.h>
#include <streams.h>
#include <test/fuzz/FuzzedDataProvider.h>
#include <test/fuzz/fuzz.h>

#include <ranges>
#include <vector>
namespace {

template <unsigned int N, typename T>
class prevector_tester
{
    typedef std::vector<T> realtype;
    realtype real_vector;
    realtype real_vector_alt;

    typedef prevector<N, T> pretype;
    pretype pre_vector;
    pretype pre_vector_alt;

    typedef typename pretype::size_type Size;

public:
    void test() const
    {
        const pretype& const_pre_vector = pre_vector;
        assert(real_vector.size() == pre_vector.size());
        assert(real_vector.empty() == pre_vector.empty());
        for (Size s = 0; s < real_vector.size(); s++) {
            assert(real_vector[s] == pre_vector[s]);
            assert(&(pre_vector[s]) == &(pre_vector.begin()[s]));
            assert(&(pre_vector[s]) == &*(pre_vector.begin() + s));
            assert(&(pre_vector[s]) == &*((pre_vector.end() + s) - real_vector.size()));
        }
        // assert(realtype(pre_vector) == real_vector);
        assert(pretype(real_vector.begin(), real_vector.end()) == pre_vector);
        assert(pretype(pre_vector.begin(), pre_vector.end()) == pre_vector);
        size_t pos = 0;
        for (const T& v : pre_vector) {
            assert(v == real_vector[pos]);
            ++pos;
        }
        for (const T& v : pre_vector | std::views::reverse) {
            --pos;
            assert(v == real_vector[pos]);
        }
        for (const T& v : const_pre_vector) {
            assert(v == real_vector[pos]);
            ++pos;
        }
        for (const T& v : const_pre_vector | std::views::reverse) {
            --pos;
            assert(v == real_vector[pos]);
        }
        DataStream ss1{};
        DataStream ss2{};
        ss1 << real_vector;
        ss2 << pre_vector;
        assert(ss1.size() == ss2.size());
        for (Size s = 0; s < ss1.size(); s++) {
            assert(ss1[s] == ss2[s]);
        }
    }

    void resize(Size s)
    {
        real_vector.resize(s);
        assert(real_vector.size() == s);
        pre_vector.resize(s);
        assert(pre_vector.size() == s);
    }

    void reserve(Size s)
    {
        real_vector.reserve(s);
        assert(real_vector.capacity() >= s);
        pre_vector.reserve(s);
        assert(pre_vector.capacity() >= s);
    }

    void insert(Size position, const T& value)
    {
        real_vector.insert(real_vector.begin() + position, value);
        pre_vector.insert(pre_vector.begin() + position, value);
    }

    void insert(Size position, Size count, const T& value)
    {
        real_vector.insert(real_vector.begin() + position, count, value);
        pre_vector.insert(pre_vector.begin() + position, count, value);
    }

    template <typename I>
    void insert_range(Size position, I first, I last)
    {
        real_vector.insert(real_vector.begin() + position, first, last);
        pre_vector.insert(pre_vector.begin() + position, first, last);
    }

    void erase(Size position)
    {
        real_vector.erase(real_vector.begin() + position);
        pre_vector.erase(pre_vector.begin() + position);
    }

    void erase(Size first, Size last)
    {
        real_vector.erase(real_vector.begin() + first, real_vector.begin() + last);
        pre_vector.erase(pre_vector.begin() + first, pre_vector.begin() + last);
    }

    void update(Size pos, const T& value)
    {
        real_vector[pos] = value;
        pre_vector[pos] = value;
    }

    void push_back(const T& value)
    {
        real_vector.push_back(value);
        pre_vector.push_back(value);
    }

    void pop_back()
    {
        real_vector.pop_back();
        pre_vector.pop_back();
    }

    void clear()
    {
        real_vector.clear();
        pre_vector.clear();
    }

    void assign(Size n, const T& value)
    {
        real_vector.assign(n, value);
        pre_vector.assign(n, value);
    }

    Size size() const
    {
        return real_vector.size();
    }

    Size capacity() const
    {
        return pre_vector.capacity();
    }

    void shrink_to_fit()
    {
        pre_vector.shrink_to_fit();
    }

    void swap() noexcept
    {
        real_vector.swap(real_vector_alt);
        pre_vector.swap(pre_vector_alt);
    }

    void move()
    {
        real_vector = std::move(real_vector_alt);
        real_vector_alt.clear();
        pre_vector = std::move(pre_vector_alt);
        pre_vector_alt.clear();
    }

    void copy()
    {
        real_vector = real_vector_alt;
        pre_vector = pre_vector_alt;
    }

    void resize_uninitialized(realtype values)
    {
        size_t r = values.size();
        size_t s = real_vector.size() / 2;
        if (real_vector.capacity() < s + r) {
            real_vector.reserve(s + r);
        }
        real_vector.resize(s);
        pre_vector.resize_uninitialized(s);
        for (auto v : values) {
            real_vector.push_back(v);
        }
        auto p = pre_vector.size();
        pre_vector.resize_uninitialized(p + r);
        for (auto v : values) {
            pre_vector[p] = v;
            ++p;
        }
    }
};

} // namespace

FUZZ_TARGET(prevector)
{
    FuzzedDataProvider prov(buffer.data(), buffer.size());
    prevector_tester<8, int> test;

    LIMITED_WHILE(prov.remaining_bytes(), 3000)
    {
        switch (prov.ConsumeIntegralInRange<int>(0, 13 + 3 * (test.size() > 0))) {
        case 0:
            test.insert(prov.ConsumeIntegralInRange<size_t>(0, test.size()), prov.ConsumeIntegral<int>());
            break;
        case 1:
            test.resize(std::max(0, std::min(30, (int)test.size() + prov.ConsumeIntegralInRange<int>(0, 4) - 2)));
            break;
        case 2:
            test.insert(prov.ConsumeIntegralInRange<size_t>(0, test.size()), 1 + prov.ConsumeBool(), prov.ConsumeIntegral<int>());
            break;
        case 3: {
            int del = prov.ConsumeIntegralInRange<int>(0, test.size());
            int beg = prov.ConsumeIntegralInRange<int>(0, test.size() - del);
            test.erase(beg, beg + del);
            break;
        }
        case 4:
            test.push_back(prov.ConsumeIntegral<int>());
            break;
        case 5: {
            int values[4];
            int num = 1 + prov.ConsumeIntegralInRange<int>(0, 3);
            for (int k = 0; k < num; ++k) {
                values[k] = prov.ConsumeIntegral<int>();
            }
            test.insert_range(prov.ConsumeIntegralInRange<size_t>(0, test.size()), values, values + num);
            break;
        }
        case 6: {
            int num = 1 + prov.ConsumeIntegralInRange<int>(0, 15);
            std::vector<int> values(num);
            for (auto& v : values) {
                v = prov.ConsumeIntegral<int>();
            }
            test.resize_uninitialized(values);
            break;
        }
        case 7:
            test.reserve(prov.ConsumeIntegralInRange<size_t>(0, 32767));
            break;
        case 8:
            test.shrink_to_fit();
            break;
        case 9:
            test.clear();
            break;
        case 10:
            test.assign(prov.ConsumeIntegralInRange<size_t>(0, 32767), prov.ConsumeIntegral<int>());
            break;
        case 11:
            test.swap();
            break;
        case 12:
            test.copy();
            break;
        case 13:
            test.move();
            break;
        case 14:
            test.update(prov.ConsumeIntegralInRange<size_t>(0, test.size() - 1), prov.ConsumeIntegral<int>());
            break;
        case 15:
            test.erase(prov.ConsumeIntegralInRange<size_t>(0, test.size() - 1));
            break;
        case 16:
            test.pop_back();
            break;
        }
    }

    test.test();
}