1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
|
// Copyright (c) 2021-2022 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <core_io.h>
#include <hash.h>
#include <key.h>
#include <script/miniscript.h>
#include <script/script.h>
#include <script/signingprovider.h>
#include <test/fuzz/FuzzedDataProvider.h>
#include <test/fuzz/fuzz.h>
#include <test/fuzz/util.h>
#include <util/strencodings.h>
namespace {
using Fragment = miniscript::Fragment;
using NodeRef = miniscript::NodeRef<CPubKey>;
using Node = miniscript::Node<CPubKey>;
using Type = miniscript::Type;
using MsCtx = miniscript::MiniscriptContext;
using miniscript::operator"" _mst;
//! Some pre-computed data for more efficient string roundtrips and to simulate challenges.
struct TestData {
typedef CPubKey Key;
// Precomputed public keys, and a dummy signature for each of them.
std::vector<Key> dummy_keys;
std::map<Key, int> dummy_key_idx_map;
std::map<CKeyID, Key> dummy_keys_map;
std::map<Key, std::pair<std::vector<unsigned char>, bool>> dummy_sigs;
std::map<XOnlyPubKey, std::pair<std::vector<unsigned char>, bool>> schnorr_sigs;
// Precomputed hashes of each kind.
std::vector<std::vector<unsigned char>> sha256;
std::vector<std::vector<unsigned char>> ripemd160;
std::vector<std::vector<unsigned char>> hash256;
std::vector<std::vector<unsigned char>> hash160;
std::map<std::vector<unsigned char>, std::vector<unsigned char>> sha256_preimages;
std::map<std::vector<unsigned char>, std::vector<unsigned char>> ripemd160_preimages;
std::map<std::vector<unsigned char>, std::vector<unsigned char>> hash256_preimages;
std::map<std::vector<unsigned char>, std::vector<unsigned char>> hash160_preimages;
//! Set the precomputed data.
void Init() {
unsigned char keydata[32] = {1};
// All our signatures sign (and are required to sign) this constant message.
constexpr uint256 MESSAGE_HASH{"0000000000000000f5cd94e18b6fe77dd7aca9e35c2b0c9cbd86356c80a71065"};
// We don't pass additional randomness when creating a schnorr signature.
const auto EMPTY_AUX{uint256::ZERO};
for (size_t i = 0; i < 256; i++) {
keydata[31] = i;
CKey privkey;
privkey.Set(keydata, keydata + 32, true);
const Key pubkey = privkey.GetPubKey();
dummy_keys.push_back(pubkey);
dummy_key_idx_map.emplace(pubkey, i);
dummy_keys_map.insert({pubkey.GetID(), pubkey});
XOnlyPubKey xonly_pubkey{pubkey};
dummy_key_idx_map.emplace(xonly_pubkey, i);
uint160 xonly_hash{Hash160(xonly_pubkey)};
dummy_keys_map.emplace(xonly_hash, pubkey);
std::vector<unsigned char> sig, schnorr_sig(64);
privkey.Sign(MESSAGE_HASH, sig);
sig.push_back(1); // SIGHASH_ALL
dummy_sigs.insert({pubkey, {sig, i & 1}});
assert(privkey.SignSchnorr(MESSAGE_HASH, schnorr_sig, nullptr, EMPTY_AUX));
schnorr_sig.push_back(1); // Maximally-sized signature has sighash byte
schnorr_sigs.emplace(XOnlyPubKey{pubkey}, std::make_pair(std::move(schnorr_sig), i & 1));
std::vector<unsigned char> hash;
hash.resize(32);
CSHA256().Write(keydata, 32).Finalize(hash.data());
sha256.push_back(hash);
if (i & 1) sha256_preimages[hash] = std::vector<unsigned char>(keydata, keydata + 32);
CHash256().Write(keydata).Finalize(hash);
hash256.push_back(hash);
if (i & 1) hash256_preimages[hash] = std::vector<unsigned char>(keydata, keydata + 32);
hash.resize(20);
CRIPEMD160().Write(keydata, 32).Finalize(hash.data());
assert(hash.size() == 20);
ripemd160.push_back(hash);
if (i & 1) ripemd160_preimages[hash] = std::vector<unsigned char>(keydata, keydata + 32);
CHash160().Write(keydata).Finalize(hash);
hash160.push_back(hash);
if (i & 1) hash160_preimages[hash] = std::vector<unsigned char>(keydata, keydata + 32);
}
}
//! Get the (Schnorr or ECDSA, depending on context) signature for this pubkey.
const std::pair<std::vector<unsigned char>, bool>* GetSig(const MsCtx script_ctx, const Key& key) const {
if (!miniscript::IsTapscript(script_ctx)) {
const auto it = dummy_sigs.find(key);
if (it == dummy_sigs.end()) return nullptr;
return &it->second;
} else {
const auto it = schnorr_sigs.find(XOnlyPubKey{key});
if (it == schnorr_sigs.end()) return nullptr;
return &it->second;
}
}
} TEST_DATA;
/**
* Context to parse a Miniscript node to and from Script or text representation.
* Uses an integer (an index in the dummy keys array from the test data) as keys in order
* to focus on fuzzing the Miniscript nodes' test representation, not the key representation.
*/
struct ParserContext {
typedef CPubKey Key;
const MsCtx script_ctx;
constexpr ParserContext(MsCtx ctx) noexcept : script_ctx(ctx) {}
bool KeyCompare(const Key& a, const Key& b) const {
return a < b;
}
std::optional<std::string> ToString(const Key& key) const
{
auto it = TEST_DATA.dummy_key_idx_map.find(key);
if (it == TEST_DATA.dummy_key_idx_map.end()) return {};
uint8_t idx = it->second;
return HexStr(Span{&idx, 1});
}
std::vector<unsigned char> ToPKBytes(const Key& key) const {
if (!miniscript::IsTapscript(script_ctx)) {
return {key.begin(), key.end()};
}
const XOnlyPubKey xonly_pubkey{key};
return {xonly_pubkey.begin(), xonly_pubkey.end()};
}
std::vector<unsigned char> ToPKHBytes(const Key& key) const {
if (!miniscript::IsTapscript(script_ctx)) {
const auto h = Hash160(key);
return {h.begin(), h.end()};
}
const auto h = Hash160(XOnlyPubKey{key});
return {h.begin(), h.end()};
}
template<typename I>
std::optional<Key> FromString(I first, I last) const {
if (last - first != 2) return {};
auto idx = ParseHex(std::string(first, last));
if (idx.size() != 1) return {};
return TEST_DATA.dummy_keys[idx[0]];
}
template<typename I>
std::optional<Key> FromPKBytes(I first, I last) const {
if (!miniscript::IsTapscript(script_ctx)) {
Key key{first, last};
if (key.IsValid()) return key;
return {};
}
if (last - first != 32) return {};
XOnlyPubKey xonly_pubkey;
std::copy(first, last, xonly_pubkey.begin());
return xonly_pubkey.GetEvenCorrespondingCPubKey();
}
template<typename I>
std::optional<Key> FromPKHBytes(I first, I last) const {
assert(last - first == 20);
CKeyID keyid;
std::copy(first, last, keyid.begin());
const auto it = TEST_DATA.dummy_keys_map.find(keyid);
if (it == TEST_DATA.dummy_keys_map.end()) return {};
return it->second;
}
MsCtx MsContext() const {
return script_ctx;
}
};
//! Context that implements naive conversion from/to script only, for roundtrip testing.
struct ScriptParserContext {
const MsCtx script_ctx;
constexpr ScriptParserContext(MsCtx ctx) noexcept : script_ctx(ctx) {}
//! For Script roundtrip we never need the key from a key hash.
struct Key {
bool is_hash;
std::vector<unsigned char> data;
};
bool KeyCompare(const Key& a, const Key& b) const {
return a.data < b.data;
}
const std::vector<unsigned char>& ToPKBytes(const Key& key) const
{
assert(!key.is_hash);
return key.data;
}
std::vector<unsigned char> ToPKHBytes(const Key& key) const
{
if (key.is_hash) return key.data;
const auto h = Hash160(key.data);
return {h.begin(), h.end()};
}
template<typename I>
std::optional<Key> FromPKBytes(I first, I last) const
{
Key key;
key.data.assign(first, last);
key.is_hash = false;
return key;
}
template<typename I>
std::optional<Key> FromPKHBytes(I first, I last) const
{
Key key;
key.data.assign(first, last);
key.is_hash = true;
return key;
}
MsCtx MsContext() const {
return script_ctx;
}
};
//! Context to produce a satisfaction for a Miniscript node using the pre-computed data.
struct SatisfierContext : ParserContext {
constexpr SatisfierContext(MsCtx ctx) noexcept : ParserContext(ctx) {}
// Timelock challenges satisfaction. Make the value (deterministically) vary to explore different
// paths.
bool CheckAfter(uint32_t value) const { return value % 2; }
bool CheckOlder(uint32_t value) const { return value % 2; }
// Signature challenges fulfilled with a dummy signature, if it was one of our dummy keys.
miniscript::Availability Sign(const CPubKey& key, std::vector<unsigned char>& sig) const {
bool sig_available{false};
if (auto res = TEST_DATA.GetSig(script_ctx, key)) {
std::tie(sig, sig_available) = *res;
}
return sig_available ? miniscript::Availability::YES : miniscript::Availability::NO;
}
//! Lookup generalization for all the hash satisfactions below
miniscript::Availability LookupHash(const std::vector<unsigned char>& hash, std::vector<unsigned char>& preimage,
const std::map<std::vector<unsigned char>, std::vector<unsigned char>>& map) const
{
const auto it = map.find(hash);
if (it == map.end()) return miniscript::Availability::NO;
preimage = it->second;
return miniscript::Availability::YES;
}
miniscript::Availability SatSHA256(const std::vector<unsigned char>& hash, std::vector<unsigned char>& preimage) const {
return LookupHash(hash, preimage, TEST_DATA.sha256_preimages);
}
miniscript::Availability SatRIPEMD160(const std::vector<unsigned char>& hash, std::vector<unsigned char>& preimage) const {
return LookupHash(hash, preimage, TEST_DATA.ripemd160_preimages);
}
miniscript::Availability SatHASH256(const std::vector<unsigned char>& hash, std::vector<unsigned char>& preimage) const {
return LookupHash(hash, preimage, TEST_DATA.hash256_preimages);
}
miniscript::Availability SatHASH160(const std::vector<unsigned char>& hash, std::vector<unsigned char>& preimage) const {
return LookupHash(hash, preimage, TEST_DATA.hash160_preimages);
}
};
//! Context to check a satisfaction against the pre-computed data.
const struct CheckerContext: BaseSignatureChecker {
// Signature checker methods. Checks the right dummy signature is used.
bool CheckECDSASignature(const std::vector<unsigned char>& sig, const std::vector<unsigned char>& vchPubKey,
const CScript& scriptCode, SigVersion sigversion) const override
{
const CPubKey key{vchPubKey};
const auto it = TEST_DATA.dummy_sigs.find(key);
if (it == TEST_DATA.dummy_sigs.end()) return false;
return it->second.first == sig;
}
bool CheckSchnorrSignature(Span<const unsigned char> sig, Span<const unsigned char> pubkey, SigVersion,
ScriptExecutionData&, ScriptError*) const override {
XOnlyPubKey pk{pubkey};
auto it = TEST_DATA.schnorr_sigs.find(pk);
if (it == TEST_DATA.schnorr_sigs.end()) return false;
return it->second.first == sig;
}
bool CheckLockTime(const CScriptNum& nLockTime) const override { return nLockTime.GetInt64() & 1; }
bool CheckSequence(const CScriptNum& nSequence) const override { return nSequence.GetInt64() & 1; }
} CHECKER_CTX;
//! Context to check for duplicates when instancing a Node.
const struct KeyComparator {
bool KeyCompare(const CPubKey& a, const CPubKey& b) const {
return a < b;
}
} KEY_COMP;
// A dummy scriptsig to pass to VerifyScript (we always use Segwit v0).
const CScript DUMMY_SCRIPTSIG;
//! Construct a miniscript node as a shared_ptr.
template<typename... Args> NodeRef MakeNodeRef(Args&&... args) {
return miniscript::MakeNodeRef<CPubKey>(miniscript::internal::NoDupCheck{}, std::forward<Args>(args)...);
}
/** Information about a yet to be constructed Miniscript node. */
struct NodeInfo {
//! The type of this node
Fragment fragment;
//! The timelock value for older() and after(), the threshold value for multi() and thresh()
uint32_t k;
//! Keys for this node, if it has some
std::vector<CPubKey> keys;
//! The hash value for this node, if it has one
std::vector<unsigned char> hash;
//! The type requirements for the children of this node.
std::vector<Type> subtypes;
NodeInfo(Fragment frag): fragment(frag), k(0) {}
NodeInfo(Fragment frag, CPubKey key): fragment(frag), k(0), keys({key}) {}
NodeInfo(Fragment frag, uint32_t _k): fragment(frag), k(_k) {}
NodeInfo(Fragment frag, std::vector<unsigned char> h): fragment(frag), k(0), hash(std::move(h)) {}
NodeInfo(std::vector<Type> subt, Fragment frag): fragment(frag), k(0), subtypes(std::move(subt)) {}
NodeInfo(std::vector<Type> subt, Fragment frag, uint32_t _k): fragment(frag), k(_k), subtypes(std::move(subt)) {}
NodeInfo(Fragment frag, uint32_t _k, std::vector<CPubKey> _keys): fragment(frag), k(_k), keys(std::move(_keys)) {}
};
/** Pick an index in a collection from a single byte in the fuzzer's output. */
template<typename T, typename A>
T ConsumeIndex(FuzzedDataProvider& provider, A& col) {
const uint8_t i = provider.ConsumeIntegral<uint8_t>();
return col[i];
}
CPubKey ConsumePubKey(FuzzedDataProvider& provider) {
return ConsumeIndex<CPubKey>(provider, TEST_DATA.dummy_keys);
}
std::vector<unsigned char> ConsumeSha256(FuzzedDataProvider& provider) {
return ConsumeIndex<std::vector<unsigned char>>(provider, TEST_DATA.sha256);
}
std::vector<unsigned char> ConsumeHash256(FuzzedDataProvider& provider) {
return ConsumeIndex<std::vector<unsigned char>>(provider, TEST_DATA.hash256);
}
std::vector<unsigned char> ConsumeRipemd160(FuzzedDataProvider& provider) {
return ConsumeIndex<std::vector<unsigned char>>(provider, TEST_DATA.ripemd160);
}
std::vector<unsigned char> ConsumeHash160(FuzzedDataProvider& provider) {
return ConsumeIndex<std::vector<unsigned char>>(provider, TEST_DATA.hash160);
}
std::optional<uint32_t> ConsumeTimeLock(FuzzedDataProvider& provider) {
const uint32_t k = provider.ConsumeIntegral<uint32_t>();
if (k == 0 || k >= 0x80000000) return {};
return k;
}
/**
* Consume a Miniscript node from the fuzzer's output.
*
* This version is intended to have a fixed, stable, encoding for Miniscript nodes:
* - The first byte sets the type of the fragment. 0, 1 and all non-leaf fragments but thresh() are a
* single byte.
* - For the other leaf fragments, the following bytes depend on their type.
* - For older() and after(), the next 4 bytes define the timelock value.
* - For pk_k(), pk_h(), and all hashes, the next byte defines the index of the value in the test data.
* - For multi(), the next 2 bytes define respectively the threshold and the number of keys. Then as many
* bytes as the number of keys define the index of each key in the test data.
* - For multi_a(), same as for multi() but the threshold and the keys count are encoded on two bytes.
* - For thresh(), the next byte defines the threshold value and the following one the number of subs.
*/
std::optional<NodeInfo> ConsumeNodeStable(MsCtx script_ctx, FuzzedDataProvider& provider, Type type_needed) {
bool allow_B = (type_needed == ""_mst) || (type_needed << "B"_mst);
bool allow_K = (type_needed == ""_mst) || (type_needed << "K"_mst);
bool allow_V = (type_needed == ""_mst) || (type_needed << "V"_mst);
bool allow_W = (type_needed == ""_mst) || (type_needed << "W"_mst);
static constexpr auto B{"B"_mst}, K{"K"_mst}, V{"V"_mst}, W{"W"_mst};
switch (provider.ConsumeIntegral<uint8_t>()) {
case 0:
if (!allow_B) return {};
return {{Fragment::JUST_0}};
case 1:
if (!allow_B) return {};
return {{Fragment::JUST_1}};
case 2:
if (!allow_K) return {};
return {{Fragment::PK_K, ConsumePubKey(provider)}};
case 3:
if (!allow_K) return {};
return {{Fragment::PK_H, ConsumePubKey(provider)}};
case 4: {
if (!allow_B) return {};
const auto k = ConsumeTimeLock(provider);
if (!k) return {};
return {{Fragment::OLDER, *k}};
}
case 5: {
if (!allow_B) return {};
const auto k = ConsumeTimeLock(provider);
if (!k) return {};
return {{Fragment::AFTER, *k}};
}
case 6:
if (!allow_B) return {};
return {{Fragment::SHA256, ConsumeSha256(provider)}};
case 7:
if (!allow_B) return {};
return {{Fragment::HASH256, ConsumeHash256(provider)}};
case 8:
if (!allow_B) return {};
return {{Fragment::RIPEMD160, ConsumeRipemd160(provider)}};
case 9:
if (!allow_B) return {};
return {{Fragment::HASH160, ConsumeHash160(provider)}};
case 10: {
if (!allow_B || IsTapscript(script_ctx)) return {};
const auto k = provider.ConsumeIntegral<uint8_t>();
const auto n_keys = provider.ConsumeIntegral<uint8_t>();
if (n_keys > 20 || k == 0 || k > n_keys) return {};
std::vector<CPubKey> keys{n_keys};
for (auto& key: keys) key = ConsumePubKey(provider);
return {{Fragment::MULTI, k, std::move(keys)}};
}
case 11:
if (!(allow_B || allow_K || allow_V)) return {};
return {{{B, type_needed, type_needed}, Fragment::ANDOR}};
case 12:
if (!(allow_B || allow_K || allow_V)) return {};
return {{{V, type_needed}, Fragment::AND_V}};
case 13:
if (!allow_B) return {};
return {{{B, W}, Fragment::AND_B}};
case 15:
if (!allow_B) return {};
return {{{B, W}, Fragment::OR_B}};
case 16:
if (!allow_V) return {};
return {{{B, V}, Fragment::OR_C}};
case 17:
if (!allow_B) return {};
return {{{B, B}, Fragment::OR_D}};
case 18:
if (!(allow_B || allow_K || allow_V)) return {};
return {{{type_needed, type_needed}, Fragment::OR_I}};
case 19: {
if (!allow_B) return {};
auto k = provider.ConsumeIntegral<uint8_t>();
auto n_subs = provider.ConsumeIntegral<uint8_t>();
if (k == 0 || k > n_subs) return {};
std::vector<Type> subtypes;
subtypes.reserve(n_subs);
subtypes.emplace_back("B"_mst);
for (size_t i = 1; i < n_subs; ++i) subtypes.emplace_back("W"_mst);
return {{std::move(subtypes), Fragment::THRESH, k}};
}
case 20:
if (!allow_W) return {};
return {{{B}, Fragment::WRAP_A}};
case 21:
if (!allow_W) return {};
return {{{B}, Fragment::WRAP_S}};
case 22:
if (!allow_B) return {};
return {{{K}, Fragment::WRAP_C}};
case 23:
if (!allow_B) return {};
return {{{V}, Fragment::WRAP_D}};
case 24:
if (!allow_V) return {};
return {{{B}, Fragment::WRAP_V}};
case 25:
if (!allow_B) return {};
return {{{B}, Fragment::WRAP_J}};
case 26:
if (!allow_B) return {};
return {{{B}, Fragment::WRAP_N}};
case 27: {
if (!allow_B || !IsTapscript(script_ctx)) return {};
const auto k = provider.ConsumeIntegral<uint16_t>();
const auto n_keys = provider.ConsumeIntegral<uint16_t>();
if (n_keys > 999 || k == 0 || k > n_keys) return {};
std::vector<CPubKey> keys{n_keys};
for (auto& key: keys) key = ConsumePubKey(provider);
return {{Fragment::MULTI_A, k, std::move(keys)}};
}
default:
break;
}
return {};
}
/* This structure contains a table which for each "target" Type a list of recipes
* to construct it, automatically inferred from the behavior of ComputeType.
* Note that the Types here are not the final types of the constructed Nodes, but
* just the subset that are required. For example, a recipe for the "Bo" type
* might construct a "Bondu" sha256() NodeInfo, but cannot construct a "Bz" older().
* Each recipe is a Fragment together with a list of required types for its subnodes.
*/
struct SmartInfo
{
using recipe = std::pair<Fragment, std::vector<Type>>;
std::map<Type, std::vector<recipe>> wsh_table, tap_table;
void Init()
{
Init(wsh_table, MsCtx::P2WSH);
Init(tap_table, MsCtx::TAPSCRIPT);
}
void Init(std::map<Type, std::vector<recipe>>& table, MsCtx script_ctx)
{
/* Construct a set of interesting type requirements to reason with (sections of BKVWzondu). */
std::vector<Type> types;
static constexpr auto B_mst{"B"_mst}, K_mst{"K"_mst}, V_mst{"V"_mst}, W_mst{"W"_mst};
static constexpr auto d_mst{"d"_mst}, n_mst{"n"_mst}, o_mst{"o"_mst}, u_mst{"u"_mst}, z_mst{"z"_mst};
static constexpr auto NONE_mst{""_mst};
for (int base = 0; base < 4; ++base) { /* select from B,K,V,W */
Type type_base = base == 0 ? B_mst : base == 1 ? K_mst : base == 2 ? V_mst : W_mst;
for (int zo = 0; zo < 3; ++zo) { /* select from z,o,(none) */
Type type_zo = zo == 0 ? z_mst : zo == 1 ? o_mst : NONE_mst;
for (int n = 0; n < 2; ++n) { /* select from (none),n */
if (zo == 0 && n == 1) continue; /* z conflicts with n */
if (base == 3 && n == 1) continue; /* W conflicts with n */
Type type_n = n == 0 ? NONE_mst : n_mst;
for (int d = 0; d < 2; ++d) { /* select from (none),d */
if (base == 2 && d == 1) continue; /* V conflicts with d */
Type type_d = d == 0 ? NONE_mst : d_mst;
for (int u = 0; u < 2; ++u) { /* select from (none),u */
if (base == 2 && u == 1) continue; /* V conflicts with u */
Type type_u = u == 0 ? NONE_mst : u_mst;
Type type = type_base | type_zo | type_n | type_d | type_u;
types.push_back(type);
}
}
}
}
}
/* We define a recipe a to be a super-recipe of recipe b if they use the same
* fragment, the same number of subexpressions, and each of a's subexpression
* types is a supertype of the corresponding subexpression type of b.
* Within the set of recipes for the construction of a given type requirement,
* no recipe should be a super-recipe of another (as the super-recipe is
* applicable in every place the sub-recipe is, the sub-recipe is redundant). */
auto is_super_of = [](const recipe& a, const recipe& b) {
if (a.first != b.first) return false;
if (a.second.size() != b.second.size()) return false;
for (size_t i = 0; i < a.second.size(); ++i) {
if (!(b.second[i] << a.second[i])) return false;
}
return true;
};
/* Sort the type requirements. Subtypes will always sort later (e.g. Bondu will
* sort after Bo or Bu). As we'll be constructing recipes using these types, in
* order, in what follows, we'll construct super-recipes before sub-recipes.
* That means we never need to go back and delete a sub-recipe because a
* super-recipe got added. */
std::sort(types.begin(), types.end());
// Iterate over all possible fragments.
for (int fragidx = 0; fragidx <= int(Fragment::MULTI_A); ++fragidx) {
int sub_count = 0; //!< The minimum number of child nodes this recipe has.
int sub_range = 1; //!< The maximum number of child nodes for this recipe is sub_count+sub_range-1.
size_t data_size = 0;
size_t n_keys = 0;
uint32_t k = 0;
Fragment frag{fragidx};
// Only produce recipes valid in the given context.
if ((!miniscript::IsTapscript(script_ctx) && frag == Fragment::MULTI_A)
|| (miniscript::IsTapscript(script_ctx) && frag == Fragment::MULTI)) {
continue;
}
// Based on the fragment, determine #subs/data/k/keys to pass to ComputeType. */
switch (frag) {
case Fragment::PK_K:
case Fragment::PK_H:
n_keys = 1;
break;
case Fragment::MULTI:
case Fragment::MULTI_A:
n_keys = 1;
k = 1;
break;
case Fragment::OLDER:
case Fragment::AFTER:
k = 1;
break;
case Fragment::SHA256:
case Fragment::HASH256:
data_size = 32;
break;
case Fragment::RIPEMD160:
case Fragment::HASH160:
data_size = 20;
break;
case Fragment::JUST_0:
case Fragment::JUST_1:
break;
case Fragment::WRAP_A:
case Fragment::WRAP_S:
case Fragment::WRAP_C:
case Fragment::WRAP_D:
case Fragment::WRAP_V:
case Fragment::WRAP_J:
case Fragment::WRAP_N:
sub_count = 1;
break;
case Fragment::AND_V:
case Fragment::AND_B:
case Fragment::OR_B:
case Fragment::OR_C:
case Fragment::OR_D:
case Fragment::OR_I:
sub_count = 2;
break;
case Fragment::ANDOR:
sub_count = 3;
break;
case Fragment::THRESH:
// Thresh logic is executed for 1 and 2 arguments. Larger numbers use ad-hoc code to extend.
sub_count = 1;
sub_range = 2;
k = 1;
break;
}
// Iterate over the number of subnodes (sub_count...sub_count+sub_range-1).
std::vector<Type> subt;
for (int subs = sub_count; subs < sub_count + sub_range; ++subs) {
// Iterate over the possible subnode types (at most 3).
for (Type x : types) {
for (Type y : types) {
for (Type z : types) {
// Compute the resulting type of a node with the selected fragment / subnode types.
subt.clear();
if (subs > 0) subt.push_back(x);
if (subs > 1) subt.push_back(y);
if (subs > 2) subt.push_back(z);
Type res = miniscript::internal::ComputeType(frag, x, y, z, subt, k, data_size, subs, n_keys, script_ctx);
// Continue if the result is not a valid node.
if ((res << "K"_mst) + (res << "V"_mst) + (res << "B"_mst) + (res << "W"_mst) != 1) continue;
recipe entry{frag, subt};
auto super_of_entry = [&](const recipe& rec) { return is_super_of(rec, entry); };
// Iterate over all supertypes of res (because if e.g. our selected fragment/subnodes result
// in a Bondu, they can form a recipe that is also applicable for constructing a B, Bou, Bdu, ...).
for (Type s : types) {
if ((res & "BKVWzondu"_mst) << s) {
auto& recipes = table[s];
// If we don't already have a super-recipe to the new one, add it.
if (!std::any_of(recipes.begin(), recipes.end(), super_of_entry)) {
recipes.push_back(entry);
}
}
}
if (subs <= 2) break;
}
if (subs <= 1) break;
}
if (subs <= 0) break;
}
}
}
/* Find which types are useful. The fuzzer logic only cares about constructing
* B,V,K,W nodes, so any type that isn't needed in any recipe (directly or
* indirectly) for the construction of those is uninteresting. */
std::set<Type> useful_types{B_mst, V_mst, K_mst, W_mst};
// Find the transitive closure by adding types until the set of types does not change.
while (true) {
size_t set_size = useful_types.size();
for (const auto& [type, recipes] : table) {
if (useful_types.count(type) != 0) {
for (const auto& [_, subtypes] : recipes) {
for (auto subtype : subtypes) useful_types.insert(subtype);
}
}
}
if (useful_types.size() == set_size) break;
}
// Remove all rules that construct uninteresting types.
for (auto type_it = table.begin(); type_it != table.end();) {
if (useful_types.count(type_it->first) == 0) {
type_it = table.erase(type_it);
} else {
++type_it;
}
}
/* Find which types are constructible. A type is constructible if there is a leaf
* node recipe for constructing it, or a recipe whose subnodes are all constructible.
* Types can be non-constructible because they have no recipes to begin with,
* because they can only be constructed using recipes that involve otherwise
* non-constructible types, or because they require infinite recursion. */
std::set<Type> constructible_types{};
auto known_constructible = [&](Type type) { return constructible_types.count(type) != 0; };
// Find the transitive closure by adding types until the set of types does not change.
while (true) {
size_t set_size = constructible_types.size();
// Iterate over all types we have recipes for.
for (const auto& [type, recipes] : table) {
if (!known_constructible(type)) {
// For not (yet known to be) constructible types, iterate over their recipes.
for (const auto& [_, subt] : recipes) {
// If any recipe involves only (already known to be) constructible types,
// add the recipe's type to the set.
if (std::all_of(subt.begin(), subt.end(), known_constructible)) {
constructible_types.insert(type);
break;
}
}
}
}
if (constructible_types.size() == set_size) break;
}
for (auto type_it = table.begin(); type_it != table.end();) {
// Remove all recipes which involve non-constructible types.
type_it->second.erase(std::remove_if(type_it->second.begin(), type_it->second.end(),
[&](const recipe& rec) {
return !std::all_of(rec.second.begin(), rec.second.end(), known_constructible);
}), type_it->second.end());
// Delete types entirely which have no recipes left.
if (type_it->second.empty()) {
type_it = table.erase(type_it);
} else {
++type_it;
}
}
for (auto& [type, recipes] : table) {
// Sort recipes for determinism, and place those using fewer subnodes first.
// This avoids runaway expansion (when reaching the end of the fuzz input,
// all zeroes are read, resulting in the first available recipe being picked).
std::sort(recipes.begin(), recipes.end(),
[](const recipe& a, const recipe& b) {
if (a.second.size() < b.second.size()) return true;
if (a.second.size() > b.second.size()) return false;
return a < b;
}
);
}
}
} SMARTINFO;
/**
* Consume a Miniscript node from the fuzzer's output.
*
* This is similar to ConsumeNodeStable, but uses a precomputed table with permitted
* fragments/subnode type for each required type. It is intended to more quickly explore
* interesting miniscripts, at the cost of higher implementation complexity (which could
* cause it miss things if incorrect), and with less regard for stability of the seeds
* (as improvements to the tables or changes to the typing rules could invalidate
* everything).
*/
std::optional<NodeInfo> ConsumeNodeSmart(MsCtx script_ctx, FuzzedDataProvider& provider, Type type_needed) {
/** Table entry for the requested type. */
const auto& table{IsTapscript(script_ctx) ? SMARTINFO.tap_table : SMARTINFO.wsh_table};
auto recipes_it = table.find(type_needed);
assert(recipes_it != table.end());
/** Pick one recipe from the available ones for that type. */
const auto& [frag, subt] = PickValue(provider, recipes_it->second);
// Based on the fragment the recipe uses, fill in other data (k, keys, data).
switch (frag) {
case Fragment::PK_K:
case Fragment::PK_H:
return {{frag, ConsumePubKey(provider)}};
case Fragment::MULTI: {
const auto n_keys = provider.ConsumeIntegralInRange<uint8_t>(1, 20);
const auto k = provider.ConsumeIntegralInRange<uint8_t>(1, n_keys);
std::vector<CPubKey> keys{n_keys};
for (auto& key: keys) key = ConsumePubKey(provider);
return {{frag, k, std::move(keys)}};
}
case Fragment::MULTI_A: {
const auto n_keys = provider.ConsumeIntegralInRange<uint16_t>(1, 999);
const auto k = provider.ConsumeIntegralInRange<uint16_t>(1, n_keys);
std::vector<CPubKey> keys{n_keys};
for (auto& key: keys) key = ConsumePubKey(provider);
return {{frag, k, std::move(keys)}};
}
case Fragment::OLDER:
case Fragment::AFTER:
return {{frag, provider.ConsumeIntegralInRange<uint32_t>(1, 0x7FFFFFF)}};
case Fragment::SHA256:
return {{frag, PickValue(provider, TEST_DATA.sha256)}};
case Fragment::HASH256:
return {{frag, PickValue(provider, TEST_DATA.hash256)}};
case Fragment::RIPEMD160:
return {{frag, PickValue(provider, TEST_DATA.ripemd160)}};
case Fragment::HASH160:
return {{frag, PickValue(provider, TEST_DATA.hash160)}};
case Fragment::JUST_0:
case Fragment::JUST_1:
case Fragment::WRAP_A:
case Fragment::WRAP_S:
case Fragment::WRAP_C:
case Fragment::WRAP_D:
case Fragment::WRAP_V:
case Fragment::WRAP_J:
case Fragment::WRAP_N:
case Fragment::AND_V:
case Fragment::AND_B:
case Fragment::OR_B:
case Fragment::OR_C:
case Fragment::OR_D:
case Fragment::OR_I:
case Fragment::ANDOR:
return {{subt, frag}};
case Fragment::THRESH: {
uint32_t children;
if (subt.size() < 2) {
children = subt.size();
} else {
// If we hit a thresh with 2 subnodes, artificially extend it to any number
// (2 or larger) by replicating the type of the last subnode.
children = provider.ConsumeIntegralInRange<uint32_t>(2, MAX_OPS_PER_SCRIPT / 2);
}
auto k = provider.ConsumeIntegralInRange<uint32_t>(1, children);
std::vector<Type> subs = subt;
while (subs.size() < children) subs.push_back(subs.back());
return {{std::move(subs), frag, k}};
}
}
assert(false);
}
/**
* Generate a Miniscript node based on the fuzzer's input.
*
* - ConsumeNode is a function object taking a Type, and returning an std::optional<NodeInfo>.
* - root_type is the required type properties of the constructed NodeRef.
* - strict_valid sets whether ConsumeNode is expected to guarantee a NodeInfo that results in
* a NodeRef whose Type() matches the type fed to ConsumeNode.
*/
template<typename F>
NodeRef GenNode(MsCtx script_ctx, F ConsumeNode, Type root_type, bool strict_valid = false) {
/** A stack of miniscript Nodes being built up. */
std::vector<NodeRef> stack;
/** The queue of instructions. */
std::vector<std::pair<Type, std::optional<NodeInfo>>> todo{{root_type, {}}};
/** Predict the number of (static) script ops. */
uint32_t ops{0};
/** Predict the total script size (every unexplored subnode is counted as one, as every leaf is
* at least one script byte). */
uint32_t scriptsize{1};
while (!todo.empty()) {
// The expected type we have to construct.
auto type_needed = todo.back().first;
if (!todo.back().second) {
// Fragment/children have not been decided yet. Decide them.
auto node_info = ConsumeNode(type_needed);
if (!node_info) return {};
// Update predicted resource limits. Since every leaf Miniscript node is at least one
// byte long, we move one byte from each child to their parent. A similar technique is
// used in the miniscript::internal::Parse function to prevent runaway string parsing.
scriptsize += miniscript::internal::ComputeScriptLen(node_info->fragment, ""_mst, node_info->subtypes.size(), node_info->k, node_info->subtypes.size(),
node_info->keys.size(), script_ctx) - 1;
if (scriptsize > MAX_STANDARD_P2WSH_SCRIPT_SIZE) return {};
switch (node_info->fragment) {
case Fragment::JUST_0:
case Fragment::JUST_1:
break;
case Fragment::PK_K:
break;
case Fragment::PK_H:
ops += 3;
break;
case Fragment::OLDER:
case Fragment::AFTER:
ops += 1;
break;
case Fragment::RIPEMD160:
case Fragment::SHA256:
case Fragment::HASH160:
case Fragment::HASH256:
ops += 4;
break;
case Fragment::ANDOR:
ops += 3;
break;
case Fragment::AND_V:
break;
case Fragment::AND_B:
case Fragment::OR_B:
ops += 1;
break;
case Fragment::OR_C:
ops += 2;
break;
case Fragment::OR_D:
ops += 3;
break;
case Fragment::OR_I:
ops += 3;
break;
case Fragment::THRESH:
ops += node_info->subtypes.size();
break;
case Fragment::MULTI:
ops += 1;
break;
case Fragment::MULTI_A:
ops += node_info->keys.size() + 1;
break;
case Fragment::WRAP_A:
ops += 2;
break;
case Fragment::WRAP_S:
ops += 1;
break;
case Fragment::WRAP_C:
ops += 1;
break;
case Fragment::WRAP_D:
ops += 3;
break;
case Fragment::WRAP_V:
// We don't account for OP_VERIFY here; that will be corrected for when the actual
// node is constructed below.
break;
case Fragment::WRAP_J:
ops += 4;
break;
case Fragment::WRAP_N:
ops += 1;
break;
}
if (ops > MAX_OPS_PER_SCRIPT) return {};
auto subtypes = node_info->subtypes;
todo.back().second = std::move(node_info);
todo.reserve(todo.size() + subtypes.size());
// As elements on the todo stack are processed back to front, construct
// them in reverse order (so that the first subnode is generated first).
for (size_t i = 0; i < subtypes.size(); ++i) {
todo.emplace_back(*(subtypes.rbegin() + i), std::nullopt);
}
} else {
// The back of todo has fragment and number of children decided, and
// those children have been constructed at the back of stack. Pop
// that entry off todo, and use it to construct a new NodeRef on
// stack.
NodeInfo& info = *todo.back().second;
// Gather children from the back of stack.
std::vector<NodeRef> sub;
sub.reserve(info.subtypes.size());
for (size_t i = 0; i < info.subtypes.size(); ++i) {
sub.push_back(std::move(*(stack.end() - info.subtypes.size() + i)));
}
stack.erase(stack.end() - info.subtypes.size(), stack.end());
// Construct new NodeRef.
NodeRef node;
if (info.keys.empty()) {
node = MakeNodeRef(script_ctx, info.fragment, std::move(sub), std::move(info.hash), info.k);
} else {
assert(sub.empty());
assert(info.hash.empty());
node = MakeNodeRef(script_ctx, info.fragment, std::move(info.keys), info.k);
}
// Verify acceptability.
if (!node || (node->GetType() & "KVWB"_mst) == ""_mst) {
assert(!strict_valid);
return {};
}
if (!(type_needed == ""_mst)) {
assert(node->GetType() << type_needed);
}
if (!node->IsValid()) return {};
// Update resource predictions.
if (node->fragment == Fragment::WRAP_V && node->subs[0]->GetType() << "x"_mst) {
ops += 1;
scriptsize += 1;
}
if (!miniscript::IsTapscript(script_ctx) && ops > MAX_OPS_PER_SCRIPT) return {};
if (scriptsize > miniscript::internal::MaxScriptSize(script_ctx)) {
return {};
}
// Move it to the stack.
stack.push_back(std::move(node));
todo.pop_back();
}
}
assert(stack.size() == 1);
assert(stack[0]->GetStaticOps() == ops);
assert(stack[0]->ScriptSize() == scriptsize);
stack[0]->DuplicateKeyCheck(KEY_COMP);
return std::move(stack[0]);
}
//! The spk for this script under the given context. If it's a Taproot output also record the spend data.
CScript ScriptPubKey(MsCtx ctx, const CScript& script, TaprootBuilder& builder)
{
if (!miniscript::IsTapscript(ctx)) return CScript() << OP_0 << WitnessV0ScriptHash(script);
// For Taproot outputs we always use a tree with a single script and a dummy internal key.
builder.Add(0, script, TAPROOT_LEAF_TAPSCRIPT);
builder.Finalize(XOnlyPubKey::NUMS_H);
return GetScriptForDestination(builder.GetOutput());
}
//! Fill the witness with the data additional to the script satisfaction.
void SatisfactionToWitness(MsCtx ctx, CScriptWitness& witness, const CScript& script, TaprootBuilder& builder) {
// For P2WSH, it's only the witness script.
witness.stack.emplace_back(script.begin(), script.end());
if (!miniscript::IsTapscript(ctx)) return;
// For Tapscript we also need the control block.
witness.stack.push_back(*builder.GetSpendData().scripts.begin()->second.begin());
}
/** Perform various applicable tests on a miniscript Node. */
void TestNode(const MsCtx script_ctx, const NodeRef& node, FuzzedDataProvider& provider)
{
if (!node) return;
// Check that it roundtrips to text representation
const ParserContext parser_ctx{script_ctx};
std::optional<std::string> str{node->ToString(parser_ctx)};
assert(str);
auto parsed = miniscript::FromString(*str, parser_ctx);
assert(parsed);
assert(*parsed == *node);
// Check consistency between script size estimation and real size.
auto script = node->ToScript(parser_ctx);
assert(node->ScriptSize() == script.size());
// Check consistency of "x" property with the script (type K is excluded, because it can end
// with a push of a key, which could match these opcodes).
if (!(node->GetType() << "K"_mst)) {
bool ends_in_verify = !(node->GetType() << "x"_mst);
assert(ends_in_verify == (script.back() == OP_CHECKSIG || script.back() == OP_CHECKMULTISIG || script.back() == OP_EQUAL || script.back() == OP_NUMEQUAL));
}
// The rest of the checks only apply when testing a valid top-level script.
if (!node->IsValidTopLevel()) return;
// Check roundtrip to script
auto decoded = miniscript::FromScript(script, parser_ctx);
assert(decoded);
// Note we can't use *decoded == *node because the miniscript representation may differ, so we check that:
// - The script corresponding to that decoded form matches exactly
// - The type matches exactly
assert(decoded->ToScript(parser_ctx) == script);
assert(decoded->GetType() == node->GetType());
// Optionally pad the script or the witness in order to increase the sensitivity of the tests of
// the resources limits logic.
CScriptWitness witness_mal, witness_nonmal;
if (provider.ConsumeBool()) {
// Under P2WSH, optionally pad the script with OP_NOPs to max op the ops limit of the constructed script.
// This makes the script obviously not actually miniscript-compatible anymore, but the
// signatures constructed in this test don't commit to the script anyway, so the same
// miniscript satisfier will work. This increases the sensitivity of the test to the ops
// counting logic being too low, especially for simple scripts.
// Do this optionally because we're not solely interested in cases where the number of ops is
// maximal.
// Do not pad more than what would cause MAX_STANDARD_P2WSH_SCRIPT_SIZE to be reached, however,
// as that also invalidates scripts.
const auto node_ops{node->GetOps()};
if (!IsTapscript(script_ctx) && node_ops && *node_ops < MAX_OPS_PER_SCRIPT
&& node->ScriptSize() < MAX_STANDARD_P2WSH_SCRIPT_SIZE) {
int add = std::min<int>(
MAX_OPS_PER_SCRIPT - *node_ops,
MAX_STANDARD_P2WSH_SCRIPT_SIZE - node->ScriptSize());
for (int i = 0; i < add; ++i) script.push_back(OP_NOP);
}
// Under Tapscript, optionally pad the stack up to the limit minus the calculated maximum execution stack
// size to assert a Miniscript would never add more elements to the stack during execution than anticipated.
const auto node_exec_ss{node->GetExecStackSize()};
if (miniscript::IsTapscript(script_ctx) && node_exec_ss && *node_exec_ss < MAX_STACK_SIZE) {
unsigned add{(unsigned)MAX_STACK_SIZE - *node_exec_ss};
witness_mal.stack.resize(add);
witness_nonmal.stack.resize(add);
script.reserve(add);
for (unsigned i = 0; i < add; ++i) script.push_back(OP_NIP);
}
}
const SatisfierContext satisfier_ctx{script_ctx};
// Get the ScriptPubKey for this script, filling spend data if it's Taproot.
TaprootBuilder builder;
const CScript script_pubkey{ScriptPubKey(script_ctx, script, builder)};
// Run malleable satisfaction algorithm.
std::vector<std::vector<unsigned char>> stack_mal;
const bool mal_success = node->Satisfy(satisfier_ctx, stack_mal, false) == miniscript::Availability::YES;
// Run non-malleable satisfaction algorithm.
std::vector<std::vector<unsigned char>> stack_nonmal;
const bool nonmal_success = node->Satisfy(satisfier_ctx, stack_nonmal, true) == miniscript::Availability::YES;
if (nonmal_success) {
// Non-malleable satisfactions are bounded by the satisfaction size plus:
// - For P2WSH spends, the witness script
// - For Tapscript spends, both the witness script and the control block
const size_t max_stack_size{*node->GetStackSize() + 1 + miniscript::IsTapscript(script_ctx)};
assert(stack_nonmal.size() <= max_stack_size);
// If a non-malleable satisfaction exists, the malleable one must also exist, and be identical to it.
assert(mal_success);
assert(stack_nonmal == stack_mal);
// Compute witness size (excluding script push, control block, and witness count encoding).
const size_t wit_size = GetSerializeSize(stack_nonmal) - GetSizeOfCompactSize(stack_nonmal.size());
assert(wit_size <= *node->GetWitnessSize());
// Test non-malleable satisfaction.
witness_nonmal.stack.insert(witness_nonmal.stack.end(), std::make_move_iterator(stack_nonmal.begin()), std::make_move_iterator(stack_nonmal.end()));
SatisfactionToWitness(script_ctx, witness_nonmal, script, builder);
ScriptError serror;
bool res = VerifyScript(DUMMY_SCRIPTSIG, script_pubkey, &witness_nonmal, STANDARD_SCRIPT_VERIFY_FLAGS, CHECKER_CTX, &serror);
// Non-malleable satisfactions are guaranteed to be valid if ValidSatisfactions().
if (node->ValidSatisfactions()) assert(res);
// More detailed: non-malleable satisfactions must be valid, or could fail with ops count error (if CheckOpsLimit failed),
// or with a stack size error (if CheckStackSize check failed).
assert(res ||
(!node->CheckOpsLimit() && serror == ScriptError::SCRIPT_ERR_OP_COUNT) ||
(!node->CheckStackSize() && serror == ScriptError::SCRIPT_ERR_STACK_SIZE));
}
if (mal_success && (!nonmal_success || witness_mal.stack != witness_nonmal.stack)) {
// Test malleable satisfaction only if it's different from the non-malleable one.
witness_mal.stack.insert(witness_mal.stack.end(), std::make_move_iterator(stack_mal.begin()), std::make_move_iterator(stack_mal.end()));
SatisfactionToWitness(script_ctx, witness_mal, script, builder);
ScriptError serror;
bool res = VerifyScript(DUMMY_SCRIPTSIG, script_pubkey, &witness_mal, STANDARD_SCRIPT_VERIFY_FLAGS, CHECKER_CTX, &serror);
// Malleable satisfactions are not guaranteed to be valid under any conditions, but they can only
// fail due to stack or ops limits.
assert(res || serror == ScriptError::SCRIPT_ERR_OP_COUNT || serror == ScriptError::SCRIPT_ERR_STACK_SIZE);
}
if (node->IsSane()) {
// For sane nodes, the two algorithms behave identically.
assert(mal_success == nonmal_success);
}
// Verify that if a node is policy-satisfiable, the malleable satisfaction
// algorithm succeeds. Given that under IsSane() both satisfactions
// are identical, this implies that for such nodes, the non-malleable
// satisfaction will also match the expected policy.
const auto is_key_satisfiable = [script_ctx](const CPubKey& pubkey) -> bool {
auto sig_ptr{TEST_DATA.GetSig(script_ctx, pubkey)};
return sig_ptr != nullptr && sig_ptr->second;
};
bool satisfiable = node->IsSatisfiable([&](const Node& node) -> bool {
switch (node.fragment) {
case Fragment::PK_K:
case Fragment::PK_H:
return is_key_satisfiable(node.keys[0]);
case Fragment::MULTI:
case Fragment::MULTI_A: {
size_t sats = std::count_if(node.keys.begin(), node.keys.end(), [&](const auto& key) {
return size_t(is_key_satisfiable(key));
});
return sats >= node.k;
}
case Fragment::OLDER:
case Fragment::AFTER:
return node.k & 1;
case Fragment::SHA256:
return TEST_DATA.sha256_preimages.count(node.data);
case Fragment::HASH256:
return TEST_DATA.hash256_preimages.count(node.data);
case Fragment::RIPEMD160:
return TEST_DATA.ripemd160_preimages.count(node.data);
case Fragment::HASH160:
return TEST_DATA.hash160_preimages.count(node.data);
default:
assert(false);
}
return false;
});
assert(mal_success == satisfiable);
}
} // namespace
void FuzzInit()
{
static ECC_Context ecc_context{};
TEST_DATA.Init();
}
void FuzzInitSmart()
{
FuzzInit();
SMARTINFO.Init();
}
/** Fuzz target that runs TestNode on nodes generated using ConsumeNodeStable. */
FUZZ_TARGET(miniscript_stable, .init = FuzzInit)
{
// Run it under both P2WSH and Tapscript contexts.
for (const auto script_ctx: {MsCtx::P2WSH, MsCtx::TAPSCRIPT}) {
FuzzedDataProvider provider(buffer.data(), buffer.size());
TestNode(script_ctx, GenNode(script_ctx, [&](Type needed_type) {
return ConsumeNodeStable(script_ctx, provider, needed_type);
}, ""_mst), provider);
}
}
/** Fuzz target that runs TestNode on nodes generated using ConsumeNodeSmart. */
FUZZ_TARGET(miniscript_smart, .init = FuzzInitSmart)
{
/** The set of types we aim to construct nodes for. Together they cover all. */
static constexpr std::array<Type, 4> BASE_TYPES{"B"_mst, "V"_mst, "K"_mst, "W"_mst};
FuzzedDataProvider provider(buffer.data(), buffer.size());
const auto script_ctx{(MsCtx)provider.ConsumeBool()};
TestNode(script_ctx, GenNode(script_ctx, [&](Type needed_type) {
return ConsumeNodeSmart(script_ctx, provider, needed_type);
}, PickValue(provider, BASE_TYPES), true), provider);
}
/* Fuzz tests that test parsing from a string, and roundtripping via string. */
FUZZ_TARGET(miniscript_string, .init = FuzzInit)
{
if (buffer.empty()) return;
FuzzedDataProvider provider(buffer.data(), buffer.size());
auto str = provider.ConsumeBytesAsString(provider.remaining_bytes() - 1);
const ParserContext parser_ctx{(MsCtx)provider.ConsumeBool()};
auto parsed = miniscript::FromString(str, parser_ctx);
if (!parsed) return;
const auto str2 = parsed->ToString(parser_ctx);
assert(str2);
auto parsed2 = miniscript::FromString(*str2, parser_ctx);
assert(parsed2);
assert(*parsed == *parsed2);
}
/* Fuzz tests that test parsing from a script, and roundtripping via script. */
FUZZ_TARGET(miniscript_script)
{
FuzzedDataProvider fuzzed_data_provider(buffer.data(), buffer.size());
const std::optional<CScript> script = ConsumeDeserializable<CScript>(fuzzed_data_provider);
if (!script) return;
const ScriptParserContext script_parser_ctx{(MsCtx)fuzzed_data_provider.ConsumeBool()};
const auto ms = miniscript::FromScript(*script, script_parser_ctx);
if (!ms) return;
assert(ms->ToScript(script_parser_ctx) == *script);
}
|