1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
|
// Copyright (c) 2024 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <util/feefrac.h>
#include <test/fuzz/FuzzedDataProvider.h>
#include <test/fuzz/fuzz.h>
#include <test/fuzz/util.h>
#include <compare>
#include <cstdint>
#include <iostream>
namespace {
/** Compute a * b, represented in 4x32 bits, highest limb first. */
std::array<uint32_t, 4> Mul128(uint64_t a, uint64_t b)
{
std::array<uint32_t, 4> ret{0, 0, 0, 0};
/** Perform ret += v << (32 * pos), at 128-bit precision. */
auto add_fn = [&](uint64_t v, int pos) {
uint64_t accum{0};
for (int i = 0; i + pos < 4; ++i) {
// Add current value at limb pos in ret.
accum += ret[3 - pos - i];
// Add low or high half of v.
if (i == 0) accum += v & 0xffffffff;
if (i == 1) accum += v >> 32;
// Store lower half of result in limb pos in ret.
ret[3 - pos - i] = accum & 0xffffffff;
// Leave carry in accum.
accum >>= 32;
}
// Make sure no overflow.
assert(accum == 0);
};
// Multiply the 4 individual limbs (schoolbook multiply, with base 2^32).
add_fn((a & 0xffffffff) * (b & 0xffffffff), 0);
add_fn((a >> 32) * (b & 0xffffffff), 1);
add_fn((a & 0xffffffff) * (b >> 32), 1);
add_fn((a >> 32) * (b >> 32), 2);
return ret;
}
/* comparison helper for std::array */
std::strong_ordering compare_arrays(const std::array<uint32_t, 4>& a, const std::array<uint32_t, 4>& b) {
for (size_t i = 0; i < a.size(); ++i) {
if (a[i] != b[i]) return a[i] <=> b[i];
}
return std::strong_ordering::equal;
}
std::strong_ordering MulCompare(int64_t a1, int64_t a2, int64_t b1, int64_t b2)
{
// Compute and compare signs.
int sign_a = (a1 == 0 ? 0 : a1 < 0 ? -1 : 1) * (a2 == 0 ? 0 : a2 < 0 ? -1 : 1);
int sign_b = (b1 == 0 ? 0 : b1 < 0 ? -1 : 1) * (b2 == 0 ? 0 : b2 < 0 ? -1 : 1);
if (sign_a != sign_b) return sign_a <=> sign_b;
// Compute absolute values.
uint64_t abs_a1 = static_cast<uint64_t>(a1), abs_a2 = static_cast<uint64_t>(a2);
uint64_t abs_b1 = static_cast<uint64_t>(b1), abs_b2 = static_cast<uint64_t>(b2);
// Use (~x + 1) instead of the equivalent (-x) to silence the linter; mod 2^64 behavior is
// intentional here.
if (a1 < 0) abs_a1 = ~abs_a1 + 1;
if (a2 < 0) abs_a2 = ~abs_a2 + 1;
if (b1 < 0) abs_b1 = ~abs_b1 + 1;
if (b2 < 0) abs_b2 = ~abs_b2 + 1;
// Compute products of absolute values.
auto mul_abs_a = Mul128(abs_a1, abs_a2);
auto mul_abs_b = Mul128(abs_b1, abs_b2);
if (sign_a < 0) {
return compare_arrays(mul_abs_b, mul_abs_a);
} else {
return compare_arrays(mul_abs_a, mul_abs_b);
}
}
} // namespace
FUZZ_TARGET(feefrac)
{
FuzzedDataProvider provider(buffer.data(), buffer.size());
int64_t f1 = provider.ConsumeIntegral<int64_t>();
int32_t s1 = provider.ConsumeIntegral<int32_t>();
if (s1 == 0) f1 = 0;
FeeFrac fr1(f1, s1);
assert(fr1.IsEmpty() == (s1 == 0));
int64_t f2 = provider.ConsumeIntegral<int64_t>();
int32_t s2 = provider.ConsumeIntegral<int32_t>();
if (s2 == 0) f2 = 0;
FeeFrac fr2(f2, s2);
assert(fr2.IsEmpty() == (s2 == 0));
// Feerate comparisons
auto cmp_feerate = MulCompare(f1, s2, f2, s1);
assert(FeeRateCompare(fr1, fr2) == cmp_feerate);
assert((fr1 << fr2) == std::is_lt(cmp_feerate));
assert((fr1 >> fr2) == std::is_gt(cmp_feerate));
// Compare with manual invocation of FeeFrac::Mul.
auto cmp_mul = FeeFrac::Mul(f1, s2) <=> FeeFrac::Mul(f2, s1);
assert(cmp_mul == cmp_feerate);
// Same, but using FeeFrac::MulFallback.
auto cmp_fallback = FeeFrac::MulFallback(f1, s2) <=> FeeFrac::MulFallback(f2, s1);
assert(cmp_fallback == cmp_feerate);
// Total order comparisons
auto cmp_total = std::is_eq(cmp_feerate) ? (s2 <=> s1) : cmp_feerate;
assert((fr1 <=> fr2) == cmp_total);
assert((fr1 < fr2) == std::is_lt(cmp_total));
assert((fr1 > fr2) == std::is_gt(cmp_total));
assert((fr1 <= fr2) == std::is_lteq(cmp_total));
assert((fr1 >= fr2) == std::is_gteq(cmp_total));
assert((fr1 == fr2) == std::is_eq(cmp_total));
assert((fr1 != fr2) == std::is_neq(cmp_total));
}
|