1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
|
// Copyright (c) 2020-2021 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <crypto/chacha20.h>
#include <test/fuzz/FuzzedDataProvider.h>
#include <test/fuzz/fuzz.h>
#include <test/fuzz/util.h>
#include <cstdint>
#include <vector>
/*
From https://cr.yp.to/chacha.html
chacha-merged.c version 20080118
D. J. Bernstein
Public domain.
*/
typedef unsigned int u32;
typedef unsigned char u8;
#define U8C(v) (v##U)
#define U32C(v) (v##U)
#define U8V(v) ((u8)(v)&U8C(0xFF))
#define U32V(v) ((u32)(v)&U32C(0xFFFFFFFF))
#define ROTL32(v, n) (U32V((v) << (n)) | ((v) >> (32 - (n))))
#define U8TO32_LITTLE(p) \
(((u32)((p)[0])) | ((u32)((p)[1]) << 8) | ((u32)((p)[2]) << 16) | \
((u32)((p)[3]) << 24))
#define U32TO8_LITTLE(p, v) \
do { \
(p)[0] = U8V((v)); \
(p)[1] = U8V((v) >> 8); \
(p)[2] = U8V((v) >> 16); \
(p)[3] = U8V((v) >> 24); \
} while (0)
/* ------------------------------------------------------------------------- */
/* Data structures */
typedef struct
{
u32 input[16];
} ECRYPT_ctx;
/* ------------------------------------------------------------------------- */
/* Mandatory functions */
void ECRYPT_keysetup(
ECRYPT_ctx* ctx,
const u8* key,
u32 keysize, /* Key size in bits. */
u32 ivsize); /* IV size in bits. */
void ECRYPT_ivsetup(
ECRYPT_ctx* ctx,
const u8* iv);
void ECRYPT_encrypt_bytes(
ECRYPT_ctx* ctx,
const u8* plaintext,
u8* ciphertext,
u32 msglen); /* Message length in bytes. */
/* ------------------------------------------------------------------------- */
/* Optional features */
void ECRYPT_keystream_bytes(
ECRYPT_ctx* ctx,
u8* keystream,
u32 length); /* Length of keystream in bytes. */
/* ------------------------------------------------------------------------- */
#define ROTATE(v, c) (ROTL32(v, c))
#define XOR(v, w) ((v) ^ (w))
#define PLUS(v, w) (U32V((v) + (w)))
#define PLUSONE(v) (PLUS((v), 1))
#define QUARTERROUND(a, b, c, d) \
a = PLUS(a, b); d = ROTATE(XOR(d, a), 16); \
c = PLUS(c, d); b = ROTATE(XOR(b, c), 12); \
a = PLUS(a, b); d = ROTATE(XOR(d, a), 8); \
c = PLUS(c, d); b = ROTATE(XOR(b, c), 7);
static const char sigma[] = "expand 32-byte k";
static const char tau[] = "expand 16-byte k";
void ECRYPT_keysetup(ECRYPT_ctx* x, const u8* k, u32 kbits, u32 ivbits)
{
const char* constants;
x->input[4] = U8TO32_LITTLE(k + 0);
x->input[5] = U8TO32_LITTLE(k + 4);
x->input[6] = U8TO32_LITTLE(k + 8);
x->input[7] = U8TO32_LITTLE(k + 12);
if (kbits == 256) { /* recommended */
k += 16;
constants = sigma;
} else { /* kbits == 128 */
constants = tau;
}
x->input[8] = U8TO32_LITTLE(k + 0);
x->input[9] = U8TO32_LITTLE(k + 4);
x->input[10] = U8TO32_LITTLE(k + 8);
x->input[11] = U8TO32_LITTLE(k + 12);
x->input[0] = U8TO32_LITTLE(constants + 0);
x->input[1] = U8TO32_LITTLE(constants + 4);
x->input[2] = U8TO32_LITTLE(constants + 8);
x->input[3] = U8TO32_LITTLE(constants + 12);
}
void ECRYPT_ivsetup(ECRYPT_ctx* x, const u8* iv)
{
x->input[12] = 0;
x->input[13] = 0;
x->input[14] = U8TO32_LITTLE(iv + 0);
x->input[15] = U8TO32_LITTLE(iv + 4);
}
void ECRYPT_encrypt_bytes(ECRYPT_ctx* x, const u8* m, u8* c, u32 bytes)
{
u32 x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15;
u32 j0, j1, j2, j3, j4, j5, j6, j7, j8, j9, j10, j11, j12, j13, j14, j15;
u8* ctarget = nullptr;
u8 tmp[64];
uint32_t i;
if (!bytes) return;
j0 = x->input[0];
j1 = x->input[1];
j2 = x->input[2];
j3 = x->input[3];
j4 = x->input[4];
j5 = x->input[5];
j6 = x->input[6];
j7 = x->input[7];
j8 = x->input[8];
j9 = x->input[9];
j10 = x->input[10];
j11 = x->input[11];
j12 = x->input[12];
j13 = x->input[13];
j14 = x->input[14];
j15 = x->input[15];
for (;;) {
if (bytes < 64) {
for (i = 0; i < bytes; ++i)
tmp[i] = m[i];
m = tmp;
ctarget = c;
c = tmp;
}
x0 = j0;
x1 = j1;
x2 = j2;
x3 = j3;
x4 = j4;
x5 = j5;
x6 = j6;
x7 = j7;
x8 = j8;
x9 = j9;
x10 = j10;
x11 = j11;
x12 = j12;
x13 = j13;
x14 = j14;
x15 = j15;
for (i = 20; i > 0; i -= 2) {
QUARTERROUND(x0, x4, x8, x12)
QUARTERROUND(x1, x5, x9, x13)
QUARTERROUND(x2, x6, x10, x14)
QUARTERROUND(x3, x7, x11, x15)
QUARTERROUND(x0, x5, x10, x15)
QUARTERROUND(x1, x6, x11, x12)
QUARTERROUND(x2, x7, x8, x13)
QUARTERROUND(x3, x4, x9, x14)
}
x0 = PLUS(x0, j0);
x1 = PLUS(x1, j1);
x2 = PLUS(x2, j2);
x3 = PLUS(x3, j3);
x4 = PLUS(x4, j4);
x5 = PLUS(x5, j5);
x6 = PLUS(x6, j6);
x7 = PLUS(x7, j7);
x8 = PLUS(x8, j8);
x9 = PLUS(x9, j9);
x10 = PLUS(x10, j10);
x11 = PLUS(x11, j11);
x12 = PLUS(x12, j12);
x13 = PLUS(x13, j13);
x14 = PLUS(x14, j14);
x15 = PLUS(x15, j15);
x0 = XOR(x0, U8TO32_LITTLE(m + 0));
x1 = XOR(x1, U8TO32_LITTLE(m + 4));
x2 = XOR(x2, U8TO32_LITTLE(m + 8));
x3 = XOR(x3, U8TO32_LITTLE(m + 12));
x4 = XOR(x4, U8TO32_LITTLE(m + 16));
x5 = XOR(x5, U8TO32_LITTLE(m + 20));
x6 = XOR(x6, U8TO32_LITTLE(m + 24));
x7 = XOR(x7, U8TO32_LITTLE(m + 28));
x8 = XOR(x8, U8TO32_LITTLE(m + 32));
x9 = XOR(x9, U8TO32_LITTLE(m + 36));
x10 = XOR(x10, U8TO32_LITTLE(m + 40));
x11 = XOR(x11, U8TO32_LITTLE(m + 44));
x12 = XOR(x12, U8TO32_LITTLE(m + 48));
x13 = XOR(x13, U8TO32_LITTLE(m + 52));
x14 = XOR(x14, U8TO32_LITTLE(m + 56));
x15 = XOR(x15, U8TO32_LITTLE(m + 60));
j12 = PLUSONE(j12);
if (!j12) {
j13 = PLUSONE(j13);
/* stopping at 2^70 bytes per nonce is user's responsibility */
}
U32TO8_LITTLE(c + 0, x0);
U32TO8_LITTLE(c + 4, x1);
U32TO8_LITTLE(c + 8, x2);
U32TO8_LITTLE(c + 12, x3);
U32TO8_LITTLE(c + 16, x4);
U32TO8_LITTLE(c + 20, x5);
U32TO8_LITTLE(c + 24, x6);
U32TO8_LITTLE(c + 28, x7);
U32TO8_LITTLE(c + 32, x8);
U32TO8_LITTLE(c + 36, x9);
U32TO8_LITTLE(c + 40, x10);
U32TO8_LITTLE(c + 44, x11);
U32TO8_LITTLE(c + 48, x12);
U32TO8_LITTLE(c + 52, x13);
U32TO8_LITTLE(c + 56, x14);
U32TO8_LITTLE(c + 60, x15);
if (bytes <= 64) {
if (bytes < 64) {
for (i = 0; i < bytes; ++i)
ctarget[i] = c[i];
}
x->input[12] = j12;
x->input[13] = j13;
return;
}
bytes -= 64;
c += 64;
m += 64;
}
}
void ECRYPT_keystream_bytes(ECRYPT_ctx* x, u8* stream, u32 bytes)
{
u32 i;
for (i = 0; i < bytes; ++i)
stream[i] = 0;
ECRYPT_encrypt_bytes(x, stream, stream, bytes);
}
FUZZ_TARGET(crypto_diff_fuzz_chacha20)
{
FuzzedDataProvider fuzzed_data_provider{buffer.data(), buffer.size()};
ECRYPT_ctx ctx;
const std::vector<unsigned char> key = ConsumeFixedLengthByteVector(fuzzed_data_provider, 32);
ChaCha20 chacha20{MakeByteSpan(key)};
ECRYPT_keysetup(&ctx, key.data(), key.size() * 8, 0);
// ECRYPT_keysetup() doesn't set the counter and nonce to 0 while SetKey() does
static const uint8_t iv[8] = {0, 0, 0, 0, 0, 0, 0, 0};
ChaCha20::Nonce96 nonce{0, 0};
uint32_t counter{0};
ECRYPT_ivsetup(&ctx, iv);
LIMITED_WHILE (fuzzed_data_provider.ConsumeBool(), 3000) {
CallOneOf(
fuzzed_data_provider,
[&] {
const std::vector<unsigned char> key = ConsumeFixedLengthByteVector(fuzzed_data_provider, 32);
chacha20.SetKey(MakeByteSpan(key));
nonce = {0, 0};
counter = 0;
ECRYPT_keysetup(&ctx, key.data(), key.size() * 8, 0);
// ECRYPT_keysetup() doesn't set the counter and nonce to 0 while SetKey() does
uint8_t iv[8] = {0, 0, 0, 0, 0, 0, 0, 0};
ECRYPT_ivsetup(&ctx, iv);
},
[&] {
uint32_t iv_prefix = fuzzed_data_provider.ConsumeIntegral<uint32_t>();
uint64_t iv = fuzzed_data_provider.ConsumeIntegral<uint64_t>();
nonce = {iv_prefix, iv};
counter = fuzzed_data_provider.ConsumeIntegral<uint32_t>();
chacha20.Seek(nonce, counter);
ctx.input[12] = counter;
ctx.input[13] = iv_prefix;
ctx.input[14] = iv;
ctx.input[15] = iv >> 32;
},
[&] {
uint32_t integralInRange = fuzzed_data_provider.ConsumeIntegralInRange<size_t>(0, 4096);
std::vector<uint8_t> output(integralInRange);
chacha20.Keystream(MakeWritableByteSpan(output));
std::vector<uint8_t> djb_output(integralInRange);
ECRYPT_keystream_bytes(&ctx, djb_output.data(), djb_output.size());
assert(output == djb_output);
// DJB's version seeks forward to a multiple of 64 bytes after every operation. Correct for that.
uint32_t old_counter = counter;
counter += (integralInRange + 63) >> 6;
if (counter < old_counter) ++nonce.first;
if (integralInRange & 63) {
chacha20.Seek(nonce, counter);
}
assert(counter == ctx.input[12]);
},
[&] {
uint32_t integralInRange = fuzzed_data_provider.ConsumeIntegralInRange<size_t>(0, 4096);
std::vector<uint8_t> output(integralInRange);
const std::vector<uint8_t> input = ConsumeFixedLengthByteVector(fuzzed_data_provider, output.size());
chacha20.Crypt(MakeByteSpan(input), MakeWritableByteSpan(output));
std::vector<uint8_t> djb_output(integralInRange);
ECRYPT_encrypt_bytes(&ctx, input.data(), djb_output.data(), input.size());
assert(output == djb_output);
// DJB's version seeks forward to a multiple of 64 bytes after every operation. Correct for that.
uint32_t old_counter = counter;
counter += (integralInRange + 63) >> 6;
if (counter < old_counter) ++nonce.first;
if (integralInRange & 63) {
chacha20.Seek(nonce, counter);
}
assert(counter == ctx.input[12]);
});
}
}
|