1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
|
// Copyright (c) 2020-2021 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <crypto/chacha20poly1305.h>
#include <random.h>
#include <span.h>
#include <test/fuzz/FuzzedDataProvider.h>
#include <test/fuzz/fuzz.h>
#include <test/fuzz/util.h>
#include <cstddef>
#include <cstdint>
#include <vector>
constexpr static inline void crypt_till_rekey(FSChaCha20Poly1305& aead, int rekey_interval, bool encrypt)
{
for (int i = 0; i < rekey_interval; ++i) {
std::byte dummy_tag[FSChaCha20Poly1305::EXPANSION] = {{}};
if (encrypt) {
aead.Encrypt(Span{dummy_tag}.first(0), Span{dummy_tag}.first(0), dummy_tag);
} else {
aead.Decrypt(dummy_tag, Span{dummy_tag}.first(0), Span{dummy_tag}.first(0));
}
}
}
FUZZ_TARGET(crypto_aeadchacha20poly1305)
{
FuzzedDataProvider provider{buffer.data(), buffer.size()};
auto key = provider.ConsumeBytes<std::byte>(32);
key.resize(32);
AEADChaCha20Poly1305 aead(key);
// Initialize RNG deterministically, to generate contents and AAD. We assume that there are no
// (potentially buggy) edge cases triggered by specific values of contents/AAD, so we can avoid
// reading the actual data for those from the fuzzer input (which would need large amounts of
// data).
InsecureRandomContext rng(provider.ConsumeIntegral<uint64_t>());
LIMITED_WHILE(provider.ConsumeBool(), 100)
{
// Mode:
// - Bit 0: whether to use single-plain Encrypt/Decrypt; otherwise use a split at prefix.
// - Bit 2: whether this ciphertext will be corrupted (making it the last sent one)
// - Bit 3-4: controls the maximum aad length (max 511 bytes)
// - Bit 5-7: controls the maximum content length (max 16383 bytes, for performance reasons)
unsigned mode = provider.ConsumeIntegral<uint8_t>();
bool use_splits = mode & 1;
bool damage = mode & 4;
unsigned aad_length_bits = 3 * ((mode >> 3) & 3);
unsigned aad_length = provider.ConsumeIntegralInRange<unsigned>(0, (1 << aad_length_bits) - 1);
unsigned length_bits = 2 * ((mode >> 5) & 7);
unsigned length = provider.ConsumeIntegralInRange<unsigned>(0, (1 << length_bits) - 1);
// Generate aad and content.
auto aad = rng.randbytes<std::byte>(aad_length);
auto plain = rng.randbytes<std::byte>(length);
std::vector<std::byte> cipher(length + AEADChaCha20Poly1305::EXPANSION);
// Generate nonce
AEADChaCha20Poly1305::Nonce96 nonce = {(uint32_t)rng(), rng()};
if (use_splits && length > 0) {
size_t split_index = provider.ConsumeIntegralInRange<size_t>(1, length);
aead.Encrypt(Span{plain}.first(split_index), Span{plain}.subspan(split_index), aad, nonce, cipher);
} else {
aead.Encrypt(plain, aad, nonce, cipher);
}
// Test Keystream output
std::vector<std::byte> keystream(length);
aead.Keystream(nonce, keystream);
for (size_t i = 0; i < length; ++i) {
assert((plain[i] ^ keystream[i]) == cipher[i]);
}
std::vector<std::byte> decrypted_contents(length);
bool ok{false};
// damage the key
unsigned key_position = provider.ConsumeIntegralInRange<unsigned>(0, 31);
std::byte damage_val{(uint8_t)(1U << (key_position & 7))};
std::vector<std::byte> bad_key = key;
bad_key[key_position] ^= damage_val;
AEADChaCha20Poly1305 bad_aead(bad_key);
ok = bad_aead.Decrypt(cipher, aad, nonce, decrypted_contents);
assert(!ok);
// Optionally damage 1 bit in either the cipher (corresponding to a change in transit)
// or the aad (to make sure that decryption will fail if the AAD mismatches).
if (damage) {
unsigned damage_bit = provider.ConsumeIntegralInRange<unsigned>(0, (cipher.size() + aad.size()) * 8U - 1U);
unsigned damage_pos = damage_bit >> 3;
std::byte damage_val{(uint8_t)(1U << (damage_bit & 7))};
if (damage_pos >= cipher.size()) {
aad[damage_pos - cipher.size()] ^= damage_val;
} else {
cipher[damage_pos] ^= damage_val;
}
}
if (use_splits && length > 0) {
size_t split_index = provider.ConsumeIntegralInRange<size_t>(1, length);
ok = aead.Decrypt(cipher, aad, nonce, Span{decrypted_contents}.first(split_index), Span{decrypted_contents}.subspan(split_index));
} else {
ok = aead.Decrypt(cipher, aad, nonce, decrypted_contents);
}
// Decryption *must* fail if the packet was damaged, and succeed if it wasn't.
assert(!ok == damage);
if (!ok) break;
assert(decrypted_contents == plain);
}
}
FUZZ_TARGET(crypto_fschacha20poly1305)
{
FuzzedDataProvider provider{buffer.data(), buffer.size()};
uint32_t rekey_interval = provider.ConsumeIntegralInRange<size_t>(32, 512);
auto key = provider.ConsumeBytes<std::byte>(32);
key.resize(32);
FSChaCha20Poly1305 enc_aead(key, rekey_interval);
FSChaCha20Poly1305 dec_aead(key, rekey_interval);
// Initialize RNG deterministically, to generate contents and AAD. We assume that there are no
// (potentially buggy) edge cases triggered by specific values of contents/AAD, so we can avoid
// reading the actual data for those from the fuzzer input (which would need large amounts of
// data).
InsecureRandomContext rng(provider.ConsumeIntegral<uint64_t>());
LIMITED_WHILE(provider.ConsumeBool(), 100)
{
// Mode:
// - Bit 0: whether to use single-plain Encrypt/Decrypt; otherwise use a split at prefix.
// - Bit 2: whether this ciphertext will be corrupted (making it the last sent one)
// - Bit 3-4: controls the maximum aad length (max 511 bytes)
// - Bit 5-7: controls the maximum content length (max 16383 bytes, for performance reasons)
unsigned mode = provider.ConsumeIntegral<uint8_t>();
bool use_splits = mode & 1;
bool damage = mode & 4;
unsigned aad_length_bits = 3 * ((mode >> 3) & 3);
unsigned aad_length = provider.ConsumeIntegralInRange<unsigned>(0, (1 << aad_length_bits) - 1);
unsigned length_bits = 2 * ((mode >> 5) & 7);
unsigned length = provider.ConsumeIntegralInRange<unsigned>(0, (1 << length_bits) - 1);
// Generate aad and content.
auto aad = rng.randbytes<std::byte>(aad_length);
auto plain = rng.randbytes<std::byte>(length);
std::vector<std::byte> cipher(length + FSChaCha20Poly1305::EXPANSION);
crypt_till_rekey(enc_aead, rekey_interval, true);
if (use_splits && length > 0) {
size_t split_index = provider.ConsumeIntegralInRange<size_t>(1, length);
enc_aead.Encrypt(Span{plain}.first(split_index), Span{plain}.subspan(split_index), aad, cipher);
} else {
enc_aead.Encrypt(plain, aad, cipher);
}
std::vector<std::byte> decrypted_contents(length);
bool ok{false};
// damage the key
unsigned key_position = provider.ConsumeIntegralInRange<unsigned>(0, 31);
std::byte damage_val{(uint8_t)(1U << (key_position & 7))};
std::vector<std::byte> bad_key = key;
bad_key[key_position] ^= damage_val;
FSChaCha20Poly1305 bad_fs_aead(bad_key, rekey_interval);
crypt_till_rekey(bad_fs_aead, rekey_interval, false);
ok = bad_fs_aead.Decrypt(cipher, aad, decrypted_contents);
assert(!ok);
// Optionally damage 1 bit in either the cipher (corresponding to a change in transit)
// or the aad (to make sure that decryption will fail if the AAD mismatches).
if (damage) {
unsigned damage_bit = provider.ConsumeIntegralInRange<unsigned>(0, (cipher.size() + aad.size()) * 8U - 1U);
unsigned damage_pos = damage_bit >> 3;
std::byte damage_val{(uint8_t)(1U << (damage_bit & 7))};
if (damage_pos >= cipher.size()) {
aad[damage_pos - cipher.size()] ^= damage_val;
} else {
cipher[damage_pos] ^= damage_val;
}
}
crypt_till_rekey(dec_aead, rekey_interval, false);
if (use_splits && length > 0) {
size_t split_index = provider.ConsumeIntegralInRange<size_t>(1, length);
ok = dec_aead.Decrypt(cipher, aad, Span{decrypted_contents}.first(split_index), Span{decrypted_contents}.subspan(split_index));
} else {
ok = dec_aead.Decrypt(cipher, aad, decrypted_contents);
}
// Decryption *must* fail if the packet was damaged, and succeed if it wasn't.
assert(!ok == damage);
if (!ok) break;
assert(decrypted_contents == plain);
}
}
|