1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
|
// Copyright (c) The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <cluster_linearize.h>
#include <random.h>
#include <serialize.h>
#include <streams.h>
#include <test/fuzz/fuzz.h>
#include <test/fuzz/FuzzedDataProvider.h>
#include <test/util/cluster_linearize.h>
#include <util/bitset.h>
#include <util/feefrac.h>
#include <algorithm>
#include <stdint.h>
#include <vector>
#include <utility>
using namespace cluster_linearize;
namespace {
/** A simple finder class for candidate sets.
*
* This class matches SearchCandidateFinder in interface and behavior, though with fewer
* optimizations.
*/
template<typename SetType>
class SimpleCandidateFinder
{
/** Internal dependency graph. */
const DepGraph<SetType>& m_depgraph;
/** Which transaction are left to include. */
SetType m_todo;
public:
/** Construct an SimpleCandidateFinder for a given graph. */
SimpleCandidateFinder(const DepGraph<SetType>& depgraph LIFETIMEBOUND) noexcept :
m_depgraph(depgraph), m_todo{depgraph.Positions()} {}
/** Remove a set of transactions from the set of to-be-linearized ones. */
void MarkDone(SetType select) noexcept { m_todo -= select; }
/** Determine whether unlinearized transactions remain. */
bool AllDone() const noexcept { return m_todo.None(); }
/** Find a candidate set using at most max_iterations iterations, and the number of iterations
* actually performed. If that number is less than max_iterations, then the result is optimal.
*
* Complexity: O(N * M), where M is the number of connected topological subsets of the cluster.
* That number is bounded by M <= 2^(N-1).
*/
std::pair<SetInfo<SetType>, uint64_t> FindCandidateSet(uint64_t max_iterations) const noexcept
{
uint64_t iterations_left = max_iterations;
// Queue of work units. Each consists of:
// - inc: set of transactions definitely included
// - und: set of transactions that can be added to inc still
std::vector<std::pair<SetType, SetType>> queue;
// Initially we have just one queue element, with the entire graph in und.
queue.emplace_back(SetType{}, m_todo);
// Best solution so far.
SetInfo best(m_depgraph, m_todo);
// Process the queue.
while (!queue.empty() && iterations_left) {
--iterations_left;
// Pop top element of the queue.
auto [inc, und] = queue.back();
queue.pop_back();
// Look for a transaction to consider adding/removing.
bool inc_none = inc.None();
for (auto split : und) {
// If inc is empty, consider any split transaction. Otherwise only consider
// transactions that share ancestry with inc so far (which means only connected
// sets will be considered).
if (inc_none || inc.Overlaps(m_depgraph.Ancestors(split))) {
// Add a queue entry with split included.
SetInfo new_inc(m_depgraph, inc | (m_todo & m_depgraph.Ancestors(split)));
queue.emplace_back(new_inc.transactions, und - new_inc.transactions);
// Add a queue entry with split excluded.
queue.emplace_back(inc, und - m_depgraph.Descendants(split));
// Update statistics to account for the candidate new_inc.
if (new_inc.feerate > best.feerate) best = new_inc;
break;
}
}
}
return {std::move(best), max_iterations - iterations_left};
}
};
/** A very simple finder class for optimal candidate sets, which tries every subset.
*
* It is even simpler than SimpleCandidateFinder, and is primarily included here to test the
* correctness of SimpleCandidateFinder, which is then used to test the correctness of
* SearchCandidateFinder.
*/
template<typename SetType>
class ExhaustiveCandidateFinder
{
/** Internal dependency graph. */
const DepGraph<SetType>& m_depgraph;
/** Which transaction are left to include. */
SetType m_todo;
public:
/** Construct an ExhaustiveCandidateFinder for a given graph. */
ExhaustiveCandidateFinder(const DepGraph<SetType>& depgraph LIFETIMEBOUND) noexcept :
m_depgraph(depgraph), m_todo{depgraph.Positions()} {}
/** Remove a set of transactions from the set of to-be-linearized ones. */
void MarkDone(SetType select) noexcept { m_todo -= select; }
/** Determine whether unlinearized transactions remain. */
bool AllDone() const noexcept { return m_todo.None(); }
/** Find the optimal remaining candidate set.
*
* Complexity: O(N * 2^N).
*/
SetInfo<SetType> FindCandidateSet() const noexcept
{
// Best solution so far.
SetInfo<SetType> best{m_todo, m_depgraph.FeeRate(m_todo)};
// The number of combinations to try.
uint64_t limit = (uint64_t{1} << m_todo.Count()) - 1;
// Try the transitive closure of every non-empty subset of m_todo.
for (uint64_t x = 1; x < limit; ++x) {
// If bit number b is set in x, then the remaining ancestors of the b'th remaining
// transaction in m_todo are included.
SetType txn;
auto x_shifted{x};
for (auto i : m_todo) {
if (x_shifted & 1) txn |= m_depgraph.Ancestors(i);
x_shifted >>= 1;
}
SetInfo cur(m_depgraph, txn & m_todo);
if (cur.feerate > best.feerate) best = cur;
}
return best;
}
};
/** A simple linearization algorithm.
*
* This matches Linearize() in interface and behavior, though with fewer optimizations, lacking
* the ability to pass in an existing linearization, and using just SimpleCandidateFinder rather
* than AncestorCandidateFinder and SearchCandidateFinder.
*/
template<typename SetType>
std::pair<std::vector<ClusterIndex>, bool> SimpleLinearize(const DepGraph<SetType>& depgraph, uint64_t max_iterations)
{
std::vector<ClusterIndex> linearization;
SimpleCandidateFinder finder(depgraph);
SetType todo = depgraph.Positions();
bool optimal = true;
while (todo.Any()) {
auto [candidate, iterations_done] = finder.FindCandidateSet(max_iterations);
if (iterations_done == max_iterations) optimal = false;
depgraph.AppendTopo(linearization, candidate.transactions);
todo -= candidate.transactions;
finder.MarkDone(candidate.transactions);
max_iterations -= iterations_done;
}
return {std::move(linearization), optimal};
}
/** Stitch connected components together in a DepGraph, guaranteeing its corresponding cluster is connected. */
template<typename BS>
void MakeConnected(DepGraph<BS>& depgraph)
{
auto todo = depgraph.Positions();
auto comp = depgraph.FindConnectedComponent(todo);
Assume(depgraph.IsConnected(comp));
todo -= comp;
while (todo.Any()) {
auto nextcomp = depgraph.FindConnectedComponent(todo);
Assume(depgraph.IsConnected(nextcomp));
depgraph.AddDependencies(BS::Singleton(comp.Last()), nextcomp.First());
todo -= nextcomp;
comp = nextcomp;
}
}
/** Given a dependency graph, and a todo set, read a topological subset of todo from reader. */
template<typename SetType>
SetType ReadTopologicalSet(const DepGraph<SetType>& depgraph, const SetType& todo, SpanReader& reader)
{
uint64_t mask{0};
try {
reader >> VARINT(mask);
} catch(const std::ios_base::failure&) {}
SetType ret;
for (auto i : todo) {
if (!ret[i]) {
if (mask & 1) ret |= depgraph.Ancestors(i);
mask >>= 1;
}
}
return ret & todo;
}
/** Given a dependency graph, construct any valid linearization for it, reading from a SpanReader. */
template<typename BS>
std::vector<ClusterIndex> ReadLinearization(const DepGraph<BS>& depgraph, SpanReader& reader)
{
std::vector<ClusterIndex> linearization;
TestBitSet todo = depgraph.Positions();
// In every iteration one topologically-valid transaction is appended to linearization.
while (todo.Any()) {
// Compute the set of transactions with no not-yet-included ancestors.
TestBitSet potential_next;
for (auto j : todo) {
if ((depgraph.Ancestors(j) & todo) == TestBitSet::Singleton(j)) {
potential_next.Set(j);
}
}
// There must always be one (otherwise there is a cycle in the graph).
assert(potential_next.Any());
// Read a number from reader, and interpret it as index into potential_next.
uint64_t idx{0};
try {
reader >> VARINT(idx);
} catch (const std::ios_base::failure&) {}
idx %= potential_next.Count();
// Find out which transaction that corresponds to.
for (auto j : potential_next) {
if (idx == 0) {
// When found, add it to linearization and remove it from todo.
linearization.push_back(j);
assert(todo[j]);
todo.Reset(j);
break;
}
--idx;
}
}
return linearization;
}
} // namespace
FUZZ_TARGET(clusterlin_depgraph_sim)
{
// Simulation test to verify the full behavior of DepGraph.
FuzzedDataProvider provider(buffer.data(), buffer.size());
/** Real DepGraph being tested. */
DepGraph<TestBitSet> real;
/** Simulated DepGraph (sim[i] is std::nullopt if position i does not exist; otherwise,
* sim[i]->first is its individual feerate, and sim[i]->second is its set of ancestors. */
std::array<std::optional<std::pair<FeeFrac, TestBitSet>>, TestBitSet::Size()> sim;
/** The number of non-nullopt position in sim. */
ClusterIndex num_tx_sim{0};
/** Read a valid index of a transaction from the provider. */
auto idx_fn = [&]() {
auto offset = provider.ConsumeIntegralInRange<ClusterIndex>(0, num_tx_sim - 1);
for (ClusterIndex i = 0; i < sim.size(); ++i) {
if (!sim[i].has_value()) continue;
if (offset == 0) return i;
--offset;
}
assert(false);
return ClusterIndex(-1);
};
/** Read a valid subset of the transactions from the provider. */
auto subset_fn = [&]() {
auto range = (uint64_t{1} << num_tx_sim) - 1;
const auto mask = provider.ConsumeIntegralInRange<uint64_t>(0, range);
auto mask_shifted = mask;
TestBitSet subset;
for (ClusterIndex i = 0; i < sim.size(); ++i) {
if (!sim[i].has_value()) continue;
if (mask_shifted & 1) {
subset.Set(i);
}
mask_shifted >>= 1;
}
assert(mask_shifted == 0);
return subset;
};
/** Read any set of transactions from the provider (including unused positions). */
auto set_fn = [&]() {
auto range = (uint64_t{1} << sim.size()) - 1;
const auto mask = provider.ConsumeIntegralInRange<uint64_t>(0, range);
TestBitSet set;
for (ClusterIndex i = 0; i < sim.size(); ++i) {
if ((mask >> i) & 1) {
set.Set(i);
}
}
return set;
};
/** Propagate ancestor information in sim. */
auto anc_update_fn = [&]() {
while (true) {
bool updates{false};
for (ClusterIndex chl = 0; chl < sim.size(); ++chl) {
if (!sim[chl].has_value()) continue;
for (auto par : sim[chl]->second) {
if (!sim[chl]->second.IsSupersetOf(sim[par]->second)) {
sim[chl]->second |= sim[par]->second;
updates = true;
}
}
}
if (!updates) break;
}
};
/** Compare the state of transaction i in the simulation with the real one. */
auto check_fn = [&](ClusterIndex i) {
// Compare used positions.
assert(real.Positions()[i] == sim[i].has_value());
if (sim[i].has_value()) {
// Compare feerate.
assert(real.FeeRate(i) == sim[i]->first);
// Compare ancestors (note that SanityCheck verifies correspondence between ancestors
// and descendants, so we can restrict ourselves to ancestors here).
assert(real.Ancestors(i) == sim[i]->second);
}
};
LIMITED_WHILE(provider.remaining_bytes() > 0, 1000) {
uint8_t command = provider.ConsumeIntegral<uint8_t>();
if (num_tx_sim == 0 || ((command % 3) <= 0 && num_tx_sim < TestBitSet::Size())) {
// AddTransaction.
auto fee = provider.ConsumeIntegralInRange<int64_t>(-0x8000000000000, 0x7ffffffffffff);
auto size = provider.ConsumeIntegralInRange<int32_t>(1, 0x3fffff);
FeeFrac feerate{fee, size};
// Apply to DepGraph.
auto idx = real.AddTransaction(feerate);
// Verify that the returned index is correct.
assert(!sim[idx].has_value());
for (ClusterIndex i = 0; i < TestBitSet::Size(); ++i) {
if (!sim[i].has_value()) {
assert(idx == i);
break;
}
}
// Update sim.
sim[idx] = {feerate, TestBitSet::Singleton(idx)};
++num_tx_sim;
continue;
}
if ((command % 3) <= 1 && num_tx_sim > 0) {
// AddDependencies.
ClusterIndex child = idx_fn();
auto parents = subset_fn();
// Apply to DepGraph.
real.AddDependencies(parents, child);
// Apply to sim.
sim[child]->second |= parents;
continue;
}
if (num_tx_sim > 0) {
// Remove transactions.
auto del = set_fn();
// Propagate all ancestry information before deleting anything in the simulation (as
// intermediary transactions may be deleted which impact connectivity).
anc_update_fn();
// Compare the state of the transactions being deleted.
for (auto i : del) check_fn(i);
// Apply to DepGraph.
real.RemoveTransactions(del);
// Apply to sim.
for (ClusterIndex i = 0; i < sim.size(); ++i) {
if (sim[i].has_value()) {
if (del[i]) {
--num_tx_sim;
sim[i] = std::nullopt;
} else {
sim[i]->second -= del;
}
}
}
continue;
}
// This should be unreachable (one of the 3 above actions should always be possible).
assert(false);
}
// Compare the real obtained depgraph against the simulation.
anc_update_fn();
for (ClusterIndex i = 0; i < sim.size(); ++i) check_fn(i);
assert(real.TxCount() == num_tx_sim);
// Sanity check the result (which includes round-tripping serialization, if applicable).
SanityCheck(real);
}
FUZZ_TARGET(clusterlin_depgraph_serialization)
{
// Verify that any deserialized depgraph is acyclic and roundtrips to an identical depgraph.
// Construct a graph by deserializing.
SpanReader reader(buffer);
DepGraph<TestBitSet> depgraph;
try {
reader >> Using<DepGraphFormatter>(depgraph);
} catch (const std::ios_base::failure&) {}
SanityCheck(depgraph);
// Verify the graph is a DAG.
assert(IsAcyclic(depgraph));
}
FUZZ_TARGET(clusterlin_components)
{
// Verify the behavior of DepGraphs's FindConnectedComponent and IsConnected functions.
// Construct a depgraph.
SpanReader reader(buffer);
DepGraph<TestBitSet> depgraph;
try {
reader >> Using<DepGraphFormatter>(depgraph);
} catch (const std::ios_base::failure&) {}
TestBitSet todo = depgraph.Positions();
while (todo.Any()) {
// Find a connected component inside todo.
auto component = depgraph.FindConnectedComponent(todo);
// The component must be a subset of todo and non-empty.
assert(component.IsSubsetOf(todo));
assert(component.Any());
// If todo is the entire graph, and the entire graph is connected, then the component must
// be the entire graph.
if (todo == depgraph.Positions()) {
assert((component == todo) == depgraph.IsConnected());
}
// If subset is connected, then component must match subset.
assert((component == todo) == depgraph.IsConnected(todo));
// The component cannot have any ancestors or descendants outside of component but in todo.
for (auto i : component) {
assert((depgraph.Ancestors(i) & todo).IsSubsetOf(component));
assert((depgraph.Descendants(i) & todo).IsSubsetOf(component));
}
// Starting from any component element, we must be able to reach every element.
for (auto i : component) {
// Start with just i as reachable.
TestBitSet reachable = TestBitSet::Singleton(i);
// Add in-todo descendants and ancestors to reachable until it does not change anymore.
while (true) {
TestBitSet new_reachable = reachable;
for (auto j : new_reachable) {
new_reachable |= depgraph.Ancestors(j) & todo;
new_reachable |= depgraph.Descendants(j) & todo;
}
if (new_reachable == reachable) break;
reachable = new_reachable;
}
// Verify that the result is the entire component.
assert(component == reachable);
}
// Construct an arbitrary subset of todo.
uint64_t subset_bits{0};
try {
reader >> VARINT(subset_bits);
} catch (const std::ios_base::failure&) {}
TestBitSet subset;
for (ClusterIndex i : depgraph.Positions()) {
if (todo[i]) {
if (subset_bits & 1) subset.Set(i);
subset_bits >>= 1;
}
}
// Which must be non-empty.
if (subset.None()) subset = TestBitSet::Singleton(todo.First());
// Remove it from todo.
todo -= subset;
}
// No components can be found in an empty subset.
assert(depgraph.FindConnectedComponent(todo).None());
}
FUZZ_TARGET(clusterlin_make_connected)
{
// Verify that MakeConnected makes graphs connected.
SpanReader reader(buffer);
DepGraph<TestBitSet> depgraph;
try {
reader >> Using<DepGraphFormatter>(depgraph);
} catch (const std::ios_base::failure&) {}
MakeConnected(depgraph);
SanityCheck(depgraph);
assert(depgraph.IsConnected());
}
FUZZ_TARGET(clusterlin_chunking)
{
// Verify the correctness of the ChunkLinearization function.
// Construct a graph by deserializing.
SpanReader reader(buffer);
DepGraph<TestBitSet> depgraph;
try {
reader >> Using<DepGraphFormatter>(depgraph);
} catch (const std::ios_base::failure&) {}
// Read a valid linearization for depgraph.
auto linearization = ReadLinearization(depgraph, reader);
// Invoke the chunking function.
auto chunking = ChunkLinearization(depgraph, linearization);
// Verify that chunk feerates are monotonically non-increasing.
for (size_t i = 1; i < chunking.size(); ++i) {
assert(!(chunking[i] >> chunking[i - 1]));
}
// Naively recompute the chunks (each is the highest-feerate prefix of what remains).
auto todo = depgraph.Positions();
for (const auto& chunk_feerate : chunking) {
assert(todo.Any());
SetInfo<TestBitSet> accumulator, best;
for (ClusterIndex idx : linearization) {
if (todo[idx]) {
accumulator.Set(depgraph, idx);
if (best.feerate.IsEmpty() || accumulator.feerate >> best.feerate) {
best = accumulator;
}
}
}
assert(chunk_feerate == best.feerate);
assert(best.transactions.IsSubsetOf(todo));
todo -= best.transactions;
}
assert(todo.None());
}
FUZZ_TARGET(clusterlin_ancestor_finder)
{
// Verify that AncestorCandidateFinder works as expected.
// Retrieve a depgraph from the fuzz input.
SpanReader reader(buffer);
DepGraph<TestBitSet> depgraph;
try {
reader >> Using<DepGraphFormatter>(depgraph);
} catch (const std::ios_base::failure&) {}
AncestorCandidateFinder anc_finder(depgraph);
auto todo = depgraph.Positions();
while (todo.Any()) {
// Call the ancestor finder's FindCandidateSet for what remains of the graph.
assert(!anc_finder.AllDone());
assert(todo.Count() == anc_finder.NumRemaining());
auto best_anc = anc_finder.FindCandidateSet();
// Sanity check the result.
assert(best_anc.transactions.Any());
assert(best_anc.transactions.IsSubsetOf(todo));
assert(depgraph.FeeRate(best_anc.transactions) == best_anc.feerate);
assert(depgraph.IsConnected(best_anc.transactions));
// Check that it is topologically valid.
for (auto i : best_anc.transactions) {
assert((depgraph.Ancestors(i) & todo).IsSubsetOf(best_anc.transactions));
}
// Compute all remaining ancestor sets.
std::optional<SetInfo<TestBitSet>> real_best_anc;
for (auto i : todo) {
SetInfo info(depgraph, todo & depgraph.Ancestors(i));
if (!real_best_anc.has_value() || info.feerate > real_best_anc->feerate) {
real_best_anc = info;
}
}
// The set returned by anc_finder must equal the real best ancestor sets.
assert(real_best_anc.has_value());
assert(*real_best_anc == best_anc);
// Find a topologically valid subset of transactions to remove from the graph.
auto del_set = ReadTopologicalSet(depgraph, todo, reader);
// If we did not find anything, use best_anc itself, because we should remove something.
if (del_set.None()) del_set = best_anc.transactions;
todo -= del_set;
anc_finder.MarkDone(del_set);
}
assert(anc_finder.AllDone());
assert(anc_finder.NumRemaining() == 0);
}
static constexpr auto MAX_SIMPLE_ITERATIONS = 300000;
FUZZ_TARGET(clusterlin_search_finder)
{
// Verify that SearchCandidateFinder works as expected by sanity checking the results
// and comparing with the results from SimpleCandidateFinder, ExhaustiveCandidateFinder, and
// AncestorCandidateFinder.
// Retrieve an RNG seed, a depgraph, and whether to make it connected, from the fuzz input.
SpanReader reader(buffer);
DepGraph<TestBitSet> depgraph;
uint64_t rng_seed{0};
uint8_t make_connected{1};
try {
reader >> Using<DepGraphFormatter>(depgraph) >> rng_seed >> make_connected;
} catch (const std::ios_base::failure&) {}
// The most complicated graphs are connected ones (other ones just split up). Optionally force
// the graph to be connected.
if (make_connected) MakeConnected(depgraph);
// Instantiate ALL the candidate finders.
SearchCandidateFinder src_finder(depgraph, rng_seed);
SimpleCandidateFinder smp_finder(depgraph);
ExhaustiveCandidateFinder exh_finder(depgraph);
AncestorCandidateFinder anc_finder(depgraph);
auto todo = depgraph.Positions();
while (todo.Any()) {
assert(!src_finder.AllDone());
assert(!smp_finder.AllDone());
assert(!exh_finder.AllDone());
assert(!anc_finder.AllDone());
assert(anc_finder.NumRemaining() == todo.Count());
// For each iteration, read an iteration count limit from the fuzz input.
uint64_t max_iterations = 1;
try {
reader >> VARINT(max_iterations);
} catch (const std::ios_base::failure&) {}
max_iterations &= 0xfffff;
// Read an initial subset from the fuzz input.
SetInfo init_best(depgraph, ReadTopologicalSet(depgraph, todo, reader));
// Call the search finder's FindCandidateSet for what remains of the graph.
auto [found, iterations_done] = src_finder.FindCandidateSet(max_iterations, init_best);
// Sanity check the result.
assert(iterations_done <= max_iterations);
assert(found.transactions.Any());
assert(found.transactions.IsSubsetOf(todo));
assert(depgraph.FeeRate(found.transactions) == found.feerate);
if (!init_best.feerate.IsEmpty()) assert(found.feerate >= init_best.feerate);
// Check that it is topologically valid.
for (auto i : found.transactions) {
assert(found.transactions.IsSupersetOf(depgraph.Ancestors(i) & todo));
}
// At most 2^(N-1) iterations can be required: the maximum number of non-empty topological
// subsets a (connected) cluster with N transactions can have. Even when the cluster is no
// longer connected after removing certain transactions, this holds, because the connected
// components are searched separately.
assert(iterations_done <= (uint64_t{1} << (todo.Count() - 1)));
// Additionally, test that no more than sqrt(2^N)+1 iterations are required. This is just
// an empirical bound that seems to hold, without proof. Still, add a test for it so we
// can learn about counterexamples if they exist.
if (iterations_done >= 1 && todo.Count() <= 63) {
Assume((iterations_done - 1) * (iterations_done - 1) <= uint64_t{1} << todo.Count());
}
// Perform quality checks only if SearchCandidateFinder claims an optimal result.
if (iterations_done < max_iterations) {
// Optimal sets are always connected.
assert(depgraph.IsConnected(found.transactions));
// Compare with SimpleCandidateFinder.
auto [simple, simple_iters] = smp_finder.FindCandidateSet(MAX_SIMPLE_ITERATIONS);
assert(found.feerate >= simple.feerate);
if (simple_iters < MAX_SIMPLE_ITERATIONS) {
assert(found.feerate == simple.feerate);
}
// Compare with AncestorCandidateFinder;
auto anc = anc_finder.FindCandidateSet();
assert(found.feerate >= anc.feerate);
// Compare with ExhaustiveCandidateFinder. This quickly gets computationally expensive
// for large clusters (O(2^n)), so only do it for sufficiently small ones.
if (todo.Count() <= 12) {
auto exhaustive = exh_finder.FindCandidateSet();
assert(exhaustive.feerate == found.feerate);
// Also compare ExhaustiveCandidateFinder with SimpleCandidateFinder (this is
// primarily a test for SimpleCandidateFinder's correctness).
assert(exhaustive.feerate >= simple.feerate);
if (simple_iters < MAX_SIMPLE_ITERATIONS) {
assert(exhaustive.feerate == simple.feerate);
}
}
}
// Find a topologically valid subset of transactions to remove from the graph.
auto del_set = ReadTopologicalSet(depgraph, todo, reader);
// If we did not find anything, use found itself, because we should remove something.
if (del_set.None()) del_set = found.transactions;
todo -= del_set;
src_finder.MarkDone(del_set);
smp_finder.MarkDone(del_set);
exh_finder.MarkDone(del_set);
anc_finder.MarkDone(del_set);
}
assert(src_finder.AllDone());
assert(smp_finder.AllDone());
assert(exh_finder.AllDone());
assert(anc_finder.AllDone());
assert(anc_finder.NumRemaining() == 0);
}
FUZZ_TARGET(clusterlin_linearization_chunking)
{
// Verify the behavior of LinearizationChunking.
// Retrieve a depgraph from the fuzz input.
SpanReader reader(buffer);
DepGraph<TestBitSet> depgraph;
try {
reader >> Using<DepGraphFormatter>(depgraph);
} catch (const std::ios_base::failure&) {}
// Retrieve a topologically-valid subset of depgraph.
auto todo = depgraph.Positions();
auto subset = SetInfo(depgraph, ReadTopologicalSet(depgraph, todo, reader));
// Retrieve a valid linearization for depgraph.
auto linearization = ReadLinearization(depgraph, reader);
// Construct a LinearizationChunking object, initially for the whole linearization.
LinearizationChunking chunking(depgraph, linearization);
// Incrementally remove transactions from the chunking object, and check various properties at
// every step.
while (todo.Any()) {
assert(chunking.NumChunksLeft() > 0);
// Construct linearization with just todo.
std::vector<ClusterIndex> linearization_left;
for (auto i : linearization) {
if (todo[i]) linearization_left.push_back(i);
}
// Compute the chunking for linearization_left.
auto chunking_left = ChunkLinearization(depgraph, linearization_left);
// Verify that it matches the feerates of the chunks of chunking.
assert(chunking.NumChunksLeft() == chunking_left.size());
for (ClusterIndex i = 0; i < chunking.NumChunksLeft(); ++i) {
assert(chunking.GetChunk(i).feerate == chunking_left[i]);
}
// Check consistency of chunking.
TestBitSet combined;
for (ClusterIndex i = 0; i < chunking.NumChunksLeft(); ++i) {
const auto& chunk_info = chunking.GetChunk(i);
// Chunks must be non-empty.
assert(chunk_info.transactions.Any());
// Chunk feerates must be monotonically non-increasing.
if (i > 0) assert(!(chunk_info.feerate >> chunking.GetChunk(i - 1).feerate));
// Chunks must be a subset of what is left of the linearization.
assert(chunk_info.transactions.IsSubsetOf(todo));
// Chunks' claimed feerates must match their transactions' aggregate feerate.
assert(depgraph.FeeRate(chunk_info.transactions) == chunk_info.feerate);
// Chunks must be the highest-feerate remaining prefix.
SetInfo<TestBitSet> accumulator, best;
for (auto j : linearization) {
if (todo[j] && !combined[j]) {
accumulator.Set(depgraph, j);
if (best.feerate.IsEmpty() || accumulator.feerate > best.feerate) {
best = accumulator;
}
}
}
assert(best.transactions == chunk_info.transactions);
assert(best.feerate == chunk_info.feerate);
// Chunks cannot overlap.
assert(!chunk_info.transactions.Overlaps(combined));
combined |= chunk_info.transactions;
// Chunks must be topological.
for (auto idx : chunk_info.transactions) {
assert((depgraph.Ancestors(idx) & todo).IsSubsetOf(combined));
}
}
assert(combined == todo);
// Verify the expected properties of LinearizationChunking::IntersectPrefixes:
auto intersect = chunking.IntersectPrefixes(subset);
// - Intersecting again doesn't change the result.
assert(chunking.IntersectPrefixes(intersect) == intersect);
// - The intersection is topological.
TestBitSet intersect_anc;
for (auto idx : intersect.transactions) {
intersect_anc |= (depgraph.Ancestors(idx) & todo);
}
assert(intersect.transactions == intersect_anc);
// - The claimed intersection feerate matches its transactions.
assert(intersect.feerate == depgraph.FeeRate(intersect.transactions));
// - The intersection may only be empty if its input is empty.
assert(intersect.transactions.Any() == subset.transactions.Any());
// - The intersection feerate must be as high as the input.
assert(intersect.feerate >= subset.feerate);
// - No non-empty intersection between the intersection and a prefix of the chunks of the
// remainder of the linearization may be better than the intersection.
TestBitSet prefix;
for (ClusterIndex i = 0; i < chunking.NumChunksLeft(); ++i) {
prefix |= chunking.GetChunk(i).transactions;
auto reintersect = SetInfo(depgraph, prefix & intersect.transactions);
if (!reintersect.feerate.IsEmpty()) {
assert(reintersect.feerate <= intersect.feerate);
}
}
// Find a subset to remove from linearization.
auto done = ReadTopologicalSet(depgraph, todo, reader);
if (done.None()) {
// We need to remove a non-empty subset, so fall back to the unlinearized ancestors of
// the first transaction in todo if done is empty.
done = depgraph.Ancestors(todo.First()) & todo;
}
todo -= done;
chunking.MarkDone(done);
subset = SetInfo(depgraph, subset.transactions - done);
}
assert(chunking.NumChunksLeft() == 0);
}
FUZZ_TARGET(clusterlin_linearize)
{
// Verify the behavior of Linearize().
// Retrieve an RNG seed, an iteration count, a depgraph, and whether to make it connected from
// the fuzz input.
SpanReader reader(buffer);
DepGraph<TestBitSet> depgraph;
uint64_t rng_seed{0};
uint64_t iter_count{0};
uint8_t make_connected{1};
try {
reader >> VARINT(iter_count) >> Using<DepGraphFormatter>(depgraph) >> rng_seed >> make_connected;
} catch (const std::ios_base::failure&) {}
// The most complicated graphs are connected ones (other ones just split up). Optionally force
// the graph to be connected.
if (make_connected) MakeConnected(depgraph);
// Optionally construct an old linearization for it.
std::vector<ClusterIndex> old_linearization;
{
uint8_t have_old_linearization{0};
try {
reader >> have_old_linearization;
} catch(const std::ios_base::failure&) {}
if (have_old_linearization & 1) {
old_linearization = ReadLinearization(depgraph, reader);
SanityCheck(depgraph, old_linearization);
}
}
// Invoke Linearize().
iter_count &= 0x7ffff;
auto [linearization, optimal] = Linearize(depgraph, iter_count, rng_seed, old_linearization);
SanityCheck(depgraph, linearization);
auto chunking = ChunkLinearization(depgraph, linearization);
// Linearization must always be as good as the old one, if provided.
if (!old_linearization.empty()) {
auto old_chunking = ChunkLinearization(depgraph, old_linearization);
auto cmp = CompareChunks(chunking, old_chunking);
assert(cmp >= 0);
}
// If the iteration count is sufficiently high, an optimal linearization must be found.
// Each linearization step can use up to 2^(k-1) iterations, with steps k=1..n. That sum is
// 2^n - 1.
const uint64_t n = depgraph.TxCount();
if (n <= 19 && iter_count > (uint64_t{1} << n)) {
assert(optimal);
}
// Additionally, if the assumption of sqrt(2^k)+1 iterations per step holds, plus ceil(k/4)
// start-up cost per step, plus ceil(n^2/64) start-up cost overall, we can compute the upper
// bound for a whole linearization (summing for k=1..n) using the Python expression
// [sum((k+3)//4 + int(math.sqrt(2**k)) + 1 for k in range(1, n + 1)) + (n**2 + 63) // 64 for n in range(0, 35)]:
static constexpr uint64_t MAX_OPTIMAL_ITERS[] = {
0, 4, 8, 12, 18, 26, 37, 51, 70, 97, 133, 182, 251, 346, 480, 666, 927, 1296, 1815, 2545,
3576, 5031, 7087, 9991, 14094, 19895, 28096, 39690, 56083, 79263, 112041, 158391, 223936,
316629, 447712
};
if (n < std::size(MAX_OPTIMAL_ITERS) && iter_count >= MAX_OPTIMAL_ITERS[n]) {
Assume(optimal);
}
// If Linearize claims optimal result, run quality tests.
if (optimal) {
// It must be as good as SimpleLinearize.
auto [simple_linearization, simple_optimal] = SimpleLinearize(depgraph, MAX_SIMPLE_ITERATIONS);
SanityCheck(depgraph, simple_linearization);
auto simple_chunking = ChunkLinearization(depgraph, simple_linearization);
auto cmp = CompareChunks(chunking, simple_chunking);
assert(cmp >= 0);
// If SimpleLinearize finds the optimal result too, they must be equal (if not,
// SimpleLinearize is broken).
if (simple_optimal) assert(cmp == 0);
// Only for very small clusters, test every topologically-valid permutation.
if (depgraph.TxCount() <= 7) {
std::vector<ClusterIndex> perm_linearization;
for (ClusterIndex i : depgraph.Positions()) perm_linearization.push_back(i);
// Iterate over all valid permutations.
do {
// Determine whether perm_linearization is topological.
TestBitSet perm_done;
bool perm_is_topo{true};
for (auto i : perm_linearization) {
perm_done.Set(i);
if (!depgraph.Ancestors(i).IsSubsetOf(perm_done)) {
perm_is_topo = false;
break;
}
}
// If so, verify that the obtained linearization is as good as the permutation.
if (perm_is_topo) {
auto perm_chunking = ChunkLinearization(depgraph, perm_linearization);
auto cmp = CompareChunks(chunking, perm_chunking);
assert(cmp >= 0);
}
} while(std::next_permutation(perm_linearization.begin(), perm_linearization.end()));
}
}
}
FUZZ_TARGET(clusterlin_postlinearize)
{
// Verify expected properties of PostLinearize() on arbitrary linearizations.
// Retrieve a depgraph from the fuzz input.
SpanReader reader(buffer);
DepGraph<TestBitSet> depgraph;
try {
reader >> Using<DepGraphFormatter>(depgraph);
} catch (const std::ios_base::failure&) {}
// Retrieve a linearization from the fuzz input.
std::vector<ClusterIndex> linearization;
linearization = ReadLinearization(depgraph, reader);
SanityCheck(depgraph, linearization);
// Produce a post-processed version.
auto post_linearization = linearization;
PostLinearize(depgraph, post_linearization);
SanityCheck(depgraph, post_linearization);
// Compare diagrams: post-linearization cannot worsen anywhere.
auto chunking = ChunkLinearization(depgraph, linearization);
auto post_chunking = ChunkLinearization(depgraph, post_linearization);
auto cmp = CompareChunks(post_chunking, chunking);
assert(cmp >= 0);
// Run again, things can keep improving (and never get worse)
auto post_post_linearization = post_linearization;
PostLinearize(depgraph, post_post_linearization);
SanityCheck(depgraph, post_post_linearization);
auto post_post_chunking = ChunkLinearization(depgraph, post_post_linearization);
cmp = CompareChunks(post_post_chunking, post_chunking);
assert(cmp >= 0);
// The chunks that come out of postlinearizing are always connected.
LinearizationChunking linchunking(depgraph, post_linearization);
while (linchunking.NumChunksLeft()) {
assert(depgraph.IsConnected(linchunking.GetChunk(0).transactions));
linchunking.MarkDone(linchunking.GetChunk(0).transactions);
}
}
FUZZ_TARGET(clusterlin_postlinearize_tree)
{
// Verify expected properties of PostLinearize() on linearizations of graphs that form either
// an upright or reverse tree structure.
// Construct a direction, RNG seed, and an arbitrary graph from the fuzz input.
SpanReader reader(buffer);
uint64_t rng_seed{0};
DepGraph<TestBitSet> depgraph_gen;
uint8_t direction{0};
try {
reader >> direction >> rng_seed >> Using<DepGraphFormatter>(depgraph_gen);
} catch (const std::ios_base::failure&) {}
// Now construct a new graph, copying the nodes, but leaving only the first parent (even
// direction) or the first child (odd direction).
DepGraph<TestBitSet> depgraph_tree;
for (ClusterIndex i = 0; i < depgraph_gen.PositionRange(); ++i) {
if (depgraph_gen.Positions()[i]) {
depgraph_tree.AddTransaction(depgraph_gen.FeeRate(i));
} else {
// For holes, add a dummy transaction which is deleted below, so that non-hole
// transactions retain their position.
depgraph_tree.AddTransaction(FeeFrac{});
}
}
depgraph_tree.RemoveTransactions(TestBitSet::Fill(depgraph_gen.PositionRange()) - depgraph_gen.Positions());
if (direction & 1) {
for (ClusterIndex i = 0; i < depgraph_gen.TxCount(); ++i) {
auto children = depgraph_gen.GetReducedChildren(i);
if (children.Any()) {
depgraph_tree.AddDependencies(TestBitSet::Singleton(i), children.First());
}
}
} else {
for (ClusterIndex i = 0; i < depgraph_gen.TxCount(); ++i) {
auto parents = depgraph_gen.GetReducedParents(i);
if (parents.Any()) {
depgraph_tree.AddDependencies(TestBitSet::Singleton(parents.First()), i);
}
}
}
// Retrieve a linearization from the fuzz input.
std::vector<ClusterIndex> linearization;
linearization = ReadLinearization(depgraph_tree, reader);
SanityCheck(depgraph_tree, linearization);
// Produce a postlinearized version.
auto post_linearization = linearization;
PostLinearize(depgraph_tree, post_linearization);
SanityCheck(depgraph_tree, post_linearization);
// Compare diagrams.
auto chunking = ChunkLinearization(depgraph_tree, linearization);
auto post_chunking = ChunkLinearization(depgraph_tree, post_linearization);
auto cmp = CompareChunks(post_chunking, chunking);
assert(cmp >= 0);
// Verify that post-linearizing again does not change the diagram. The result must be identical
// as post_linearization ought to be optimal already with a tree-structured graph.
auto post_post_linearization = post_linearization;
PostLinearize(depgraph_tree, post_linearization);
SanityCheck(depgraph_tree, post_linearization);
auto post_post_chunking = ChunkLinearization(depgraph_tree, post_post_linearization);
auto cmp_post = CompareChunks(post_post_chunking, post_chunking);
assert(cmp_post == 0);
// Try to find an even better linearization directly. This must not change the diagram for the
// same reason.
auto [opt_linearization, _optimal] = Linearize(depgraph_tree, 100000, rng_seed, post_linearization);
auto opt_chunking = ChunkLinearization(depgraph_tree, opt_linearization);
auto cmp_opt = CompareChunks(opt_chunking, post_chunking);
assert(cmp_opt == 0);
}
FUZZ_TARGET(clusterlin_postlinearize_moved_leaf)
{
// Verify that taking an existing linearization, and moving a leaf to the back, potentially
// increasing its fee, and then post-linearizing, results in something as good as the
// original. This guarantees that in an RBF that replaces a transaction with one of the same
// size but higher fee, applying the "remove conflicts, append new transaction, postlinearize"
// process will never worsen linearization quality.
// Construct an arbitrary graph and a fee from the fuzz input.
SpanReader reader(buffer);
DepGraph<TestBitSet> depgraph;
int32_t fee_inc{0};
try {
uint64_t fee_inc_code;
reader >> Using<DepGraphFormatter>(depgraph) >> VARINT(fee_inc_code);
fee_inc = fee_inc_code & 0x3ffff;
} catch (const std::ios_base::failure&) {}
if (depgraph.TxCount() == 0) return;
// Retrieve two linearizations from the fuzz input.
auto lin = ReadLinearization(depgraph, reader);
auto lin_leaf = ReadLinearization(depgraph, reader);
// Construct a linearization identical to lin, but with the tail end of lin_leaf moved to the
// back.
std::vector<ClusterIndex> lin_moved;
for (auto i : lin) {
if (i != lin_leaf.back()) lin_moved.push_back(i);
}
lin_moved.push_back(lin_leaf.back());
// Postlinearize lin_moved.
PostLinearize(depgraph, lin_moved);
SanityCheck(depgraph, lin_moved);
// Compare diagrams (applying the fee delta after computing the old one).
auto old_chunking = ChunkLinearization(depgraph, lin);
depgraph.FeeRate(lin_leaf.back()).fee += fee_inc;
auto new_chunking = ChunkLinearization(depgraph, lin_moved);
auto cmp = CompareChunks(new_chunking, old_chunking);
assert(cmp >= 0);
}
FUZZ_TARGET(clusterlin_merge)
{
// Construct an arbitrary graph from the fuzz input.
SpanReader reader(buffer);
DepGraph<TestBitSet> depgraph;
try {
reader >> Using<DepGraphFormatter>(depgraph);
} catch (const std::ios_base::failure&) {}
// Retrieve two linearizations from the fuzz input.
auto lin1 = ReadLinearization(depgraph, reader);
auto lin2 = ReadLinearization(depgraph, reader);
// Merge the two.
auto lin_merged = MergeLinearizations(depgraph, lin1, lin2);
// Compute chunkings and compare.
auto chunking1 = ChunkLinearization(depgraph, lin1);
auto chunking2 = ChunkLinearization(depgraph, lin2);
auto chunking_merged = ChunkLinearization(depgraph, lin_merged);
auto cmp1 = CompareChunks(chunking_merged, chunking1);
assert(cmp1 >= 0);
auto cmp2 = CompareChunks(chunking_merged, chunking2);
assert(cmp2 >= 0);
}
|