aboutsummaryrefslogtreecommitdiff
path: root/src/support/lockedpool.cpp
blob: 070b3ed80e782ce270297eb6b23bc472ea9a58a5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
// Copyright (c) 2016-2018 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.

#include <support/lockedpool.h>
#include <support/cleanse.h>

#if defined(HAVE_CONFIG_H)
#include <config/bitcoin-config.h>
#endif

#ifdef WIN32
#ifdef _WIN32_WINNT
#undef _WIN32_WINNT
#endif
#define _WIN32_WINNT 0x0501
#define WIN32_LEAN_AND_MEAN 1
#ifndef NOMINMAX
#define NOMINMAX
#endif
#include <windows.h>
#else
#include <sys/mman.h> // for mmap
#include <sys/resource.h> // for getrlimit
#include <limits.h> // for PAGESIZE
#include <unistd.h> // for sysconf
#endif

#include <algorithm>

LockedPoolManager* LockedPoolManager::_instance = nullptr;
std::once_flag LockedPoolManager::init_flag;

/*******************************************************************************/
// Utilities
//
/** Align up to power of 2 */
static inline size_t align_up(size_t x, size_t align)
{
    return (x + align - 1) & ~(align - 1);
}

/*******************************************************************************/
// Implementation: Arena

Arena::Arena(void *base_in, size_t size_in, size_t alignment_in):
    base(static_cast<char*>(base_in)), end(static_cast<char*>(base_in) + size_in), alignment(alignment_in)
{
    // Start with one free chunk that covers the entire arena
    auto it = size_to_free_chunk.emplace(size_in, base);
    chunks_free.emplace(base, it);
    chunks_free_end.emplace(base + size_in, it);
}

Arena::~Arena()
{
}

void* Arena::alloc(size_t size)
{
    // Round to next multiple of alignment
    size = align_up(size, alignment);

    // Don't handle zero-sized chunks
    if (size == 0)
        return nullptr;

    // Pick a large enough free-chunk. Returns an iterator pointing to the first element that is not less than key.
    // This allocation strategy is best-fit. According to "Dynamic Storage Allocation: A Survey and Critical Review",
    // Wilson et. al. 1995, http://www.scs.stanford.edu/14wi-cs140/sched/readings/wilson.pdf, best-fit and first-fit
    // policies seem to work well in practice.
    auto size_ptr_it = size_to_free_chunk.lower_bound(size);
    if (size_ptr_it == size_to_free_chunk.end())
        return nullptr;

    // Create the used-chunk, taking its space from the end of the free-chunk
    const size_t size_remaining = size_ptr_it->first - size;
    auto alloced = chunks_used.emplace(size_ptr_it->second + size_remaining, size).first;
    chunks_free_end.erase(size_ptr_it->second + size_ptr_it->first);
    if (size_ptr_it->first == size) {
        // whole chunk is used up
        chunks_free.erase(size_ptr_it->second);
    } else {
        // still some memory left in the chunk
        auto it_remaining = size_to_free_chunk.emplace(size_remaining, size_ptr_it->second);
        chunks_free[size_ptr_it->second] = it_remaining;
        chunks_free_end.emplace(size_ptr_it->second + size_remaining, it_remaining);
    }
    size_to_free_chunk.erase(size_ptr_it);

    return reinterpret_cast<void*>(alloced->first);
}

void Arena::free(void *ptr)
{
    // Freeing the nullptr pointer is OK.
    if (ptr == nullptr) {
        return;
    }

    // Remove chunk from used map
    auto i = chunks_used.find(static_cast<char*>(ptr));
    if (i == chunks_used.end()) {
        throw std::runtime_error("Arena: invalid or double free");
    }
    std::pair<char*, size_t> freed = *i;
    chunks_used.erase(i);

    // coalesce freed with previous chunk
    auto prev = chunks_free_end.find(freed.first);
    if (prev != chunks_free_end.end()) {
        freed.first -= prev->second->first;
        freed.second += prev->second->first;
        size_to_free_chunk.erase(prev->second);
        chunks_free_end.erase(prev);
    }

    // coalesce freed with chunk after freed
    auto next = chunks_free.find(freed.first + freed.second);
    if (next != chunks_free.end()) {
        freed.second += next->second->first;
        size_to_free_chunk.erase(next->second);
        chunks_free.erase(next);
    }

    // Add/set space with coalesced free chunk
    auto it = size_to_free_chunk.emplace(freed.second, freed.first);
    chunks_free[freed.first] = it;
    chunks_free_end[freed.first + freed.second] = it;
}

Arena::Stats Arena::stats() const
{
    Arena::Stats r{ 0, 0, 0, chunks_used.size(), chunks_free.size() };
    for (const auto& chunk: chunks_used)
        r.used += chunk.second;
    for (const auto& chunk: chunks_free)
        r.free += chunk.second->first;
    r.total = r.used + r.free;
    return r;
}

#ifdef ARENA_DEBUG
static void printchunk(char* base, size_t sz, bool used) {
    std::cout <<
        "0x" << std::hex << std::setw(16) << std::setfill('0') << base <<
        " 0x" << std::hex << std::setw(16) << std::setfill('0') << sz <<
        " 0x" << used << std::endl;
}
void Arena::walk() const
{
    for (const auto& chunk: chunks_used)
        printchunk(chunk.first, chunk.second, true);
    std::cout << std::endl;
    for (const auto& chunk: chunks_free)
        printchunk(chunk.first, chunk.second, false);
    std::cout << std::endl;
}
#endif

/*******************************************************************************/
// Implementation: Win32LockedPageAllocator

#ifdef WIN32
/** LockedPageAllocator specialized for Windows.
 */
class Win32LockedPageAllocator: public LockedPageAllocator
{
public:
    Win32LockedPageAllocator();
    void* AllocateLocked(size_t len, bool *lockingSuccess) override;
    void FreeLocked(void* addr, size_t len) override;
    size_t GetLimit() override;
private:
    size_t page_size;
};

Win32LockedPageAllocator::Win32LockedPageAllocator()
{
    // Determine system page size in bytes
    SYSTEM_INFO sSysInfo;
    GetSystemInfo(&sSysInfo);
    page_size = sSysInfo.dwPageSize;
}
void *Win32LockedPageAllocator::AllocateLocked(size_t len, bool *lockingSuccess)
{
    len = align_up(len, page_size);
    void *addr = VirtualAlloc(nullptr, len, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);
    if (addr) {
        // VirtualLock is used to attempt to keep keying material out of swap. Note
        // that it does not provide this as a guarantee, but, in practice, memory
        // that has been VirtualLock'd almost never gets written to the pagefile
        // except in rare circumstances where memory is extremely low.
        *lockingSuccess = VirtualLock(const_cast<void*>(addr), len) != 0;
    }
    return addr;
}
void Win32LockedPageAllocator::FreeLocked(void* addr, size_t len)
{
    len = align_up(len, page_size);
    memory_cleanse(addr, len);
    VirtualUnlock(const_cast<void*>(addr), len);
}

size_t Win32LockedPageAllocator::GetLimit()
{
    // TODO is there a limit on Windows, how to get it?
    return std::numeric_limits<size_t>::max();
}
#endif

/*******************************************************************************/
// Implementation: PosixLockedPageAllocator

#ifndef WIN32
/** LockedPageAllocator specialized for OSes that don't try to be
 * special snowflakes.
 */
class PosixLockedPageAllocator: public LockedPageAllocator
{
public:
    PosixLockedPageAllocator();
    void* AllocateLocked(size_t len, bool *lockingSuccess) override;
    void FreeLocked(void* addr, size_t len) override;
    size_t GetLimit() override;
private:
    size_t page_size;
};

PosixLockedPageAllocator::PosixLockedPageAllocator()
{
    // Determine system page size in bytes
#if defined(PAGESIZE) // defined in limits.h
    page_size = PAGESIZE;
#else                   // assume some POSIX OS
    page_size = sysconf(_SC_PAGESIZE);
#endif
}

// Some systems (at least OS X) do not define MAP_ANONYMOUS yet and define
// MAP_ANON which is deprecated
#ifndef MAP_ANONYMOUS
#define MAP_ANONYMOUS MAP_ANON
#endif

void *PosixLockedPageAllocator::AllocateLocked(size_t len, bool *lockingSuccess)
{
    void *addr;
    len = align_up(len, page_size);
    addr = mmap(nullptr, len, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
    if (addr) {
        *lockingSuccess = mlock(addr, len) == 0;
    }
    return addr;
}
void PosixLockedPageAllocator::FreeLocked(void* addr, size_t len)
{
    len = align_up(len, page_size);
    memory_cleanse(addr, len);
    munlock(addr, len);
    munmap(addr, len);
}
size_t PosixLockedPageAllocator::GetLimit()
{
#ifdef RLIMIT_MEMLOCK
    struct rlimit rlim;
    if (getrlimit(RLIMIT_MEMLOCK, &rlim) == 0) {
        if (rlim.rlim_cur != RLIM_INFINITY) {
            return rlim.rlim_cur;
        }
    }
#endif
    return std::numeric_limits<size_t>::max();
}
#endif

/*******************************************************************************/
// Implementation: LockedPool

LockedPool::LockedPool(std::unique_ptr<LockedPageAllocator> allocator_in, LockingFailed_Callback lf_cb_in):
    allocator(std::move(allocator_in)), lf_cb(lf_cb_in), cumulative_bytes_locked(0)
{
}

LockedPool::~LockedPool()
{
}
void* LockedPool::alloc(size_t size)
{
    std::lock_guard<std::mutex> lock(mutex);

    // Don't handle impossible sizes
    if (size == 0 || size > ARENA_SIZE)
        return nullptr;

    // Try allocating from each current arena
    for (auto &arena: arenas) {
        void *addr = arena.alloc(size);
        if (addr) {
            return addr;
        }
    }
    // If that fails, create a new one
    if (new_arena(ARENA_SIZE, ARENA_ALIGN)) {
        return arenas.back().alloc(size);
    }
    return nullptr;
}

void LockedPool::free(void *ptr)
{
    std::lock_guard<std::mutex> lock(mutex);
    // TODO we can do better than this linear search by keeping a map of arena
    // extents to arena, and looking up the address.
    for (auto &arena: arenas) {
        if (arena.addressInArena(ptr)) {
            arena.free(ptr);
            return;
        }
    }
    throw std::runtime_error("LockedPool: invalid address not pointing to any arena");
}

LockedPool::Stats LockedPool::stats() const
{
    std::lock_guard<std::mutex> lock(mutex);
    LockedPool::Stats r{0, 0, 0, cumulative_bytes_locked, 0, 0};
    for (const auto &arena: arenas) {
        Arena::Stats i = arena.stats();
        r.used += i.used;
        r.free += i.free;
        r.total += i.total;
        r.chunks_used += i.chunks_used;
        r.chunks_free += i.chunks_free;
    }
    return r;
}

bool LockedPool::new_arena(size_t size, size_t align)
{
    bool locked;
    // If this is the first arena, handle this specially: Cap the upper size
    // by the process limit. This makes sure that the first arena will at least
    // be locked. An exception to this is if the process limit is 0:
    // in this case no memory can be locked at all so we'll skip past this logic.
    if (arenas.empty()) {
        size_t limit = allocator->GetLimit();
        if (limit > 0) {
            size = std::min(size, limit);
        }
    }
    void *addr = allocator->AllocateLocked(size, &locked);
    if (!addr) {
        return false;
    }
    if (locked) {
        cumulative_bytes_locked += size;
    } else if (lf_cb) { // Call the locking-failed callback if locking failed
        if (!lf_cb()) { // If the callback returns false, free the memory and fail, otherwise consider the user warned and proceed.
            allocator->FreeLocked(addr, size);
            return false;
        }
    }
    arenas.emplace_back(allocator.get(), addr, size, align);
    return true;
}

LockedPool::LockedPageArena::LockedPageArena(LockedPageAllocator *allocator_in, void *base_in, size_t size_in, size_t align_in):
    Arena(base_in, size_in, align_in), base(base_in), size(size_in), allocator(allocator_in)
{
}
LockedPool::LockedPageArena::~LockedPageArena()
{
    allocator->FreeLocked(base, size);
}

/*******************************************************************************/
// Implementation: LockedPoolManager
//
LockedPoolManager::LockedPoolManager(std::unique_ptr<LockedPageAllocator> allocator_in):
    LockedPool(std::move(allocator_in), &LockedPoolManager::LockingFailed)
{
}

bool LockedPoolManager::LockingFailed()
{
    // TODO: log something but how? without including util.h
    return true;
}

void LockedPoolManager::CreateInstance()
{
    // Using a local static instance guarantees that the object is initialized
    // when it's first needed and also deinitialized after all objects that use
    // it are done with it.  I can think of one unlikely scenario where we may
    // have a static deinitialization order/problem, but the check in
    // LockedPoolManagerBase's destructor helps us detect if that ever happens.
#ifdef WIN32
    std::unique_ptr<LockedPageAllocator> allocator(new Win32LockedPageAllocator());
#else
    std::unique_ptr<LockedPageAllocator> allocator(new PosixLockedPageAllocator());
#endif
    static LockedPoolManager instance(std::move(allocator));
    LockedPoolManager::_instance = &instance;
}