aboutsummaryrefslogtreecommitdiff
path: root/src/secp256k1/src/modinv32_impl.h
blob: 75eb354ff08e50da7e049323ca3458c6c4d295d5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
/***********************************************************************
 * Copyright (c) 2020 Peter Dettman                                    *
 * Distributed under the MIT software license, see the accompanying    *
 * file COPYING or https://www.opensource.org/licenses/mit-license.php.*
 **********************************************************************/

#ifndef SECP256K1_MODINV32_IMPL_H
#define SECP256K1_MODINV32_IMPL_H

#include "modinv32.h"

#include "util.h"

#include <stdlib.h>

/* This file implements modular inversion based on the paper "Fast constant-time gcd computation and
 * modular inversion" by Daniel J. Bernstein and Bo-Yin Yang.
 *
 * For an explanation of the algorithm, see doc/safegcd_implementation.md. This file contains an
 * implementation for N=30, using 30-bit signed limbs represented as int32_t.
 */

#ifdef VERIFY
static const secp256k1_modinv32_signed30 SECP256K1_SIGNED30_ONE = {{1}};

/* Compute a*factor and put it in r. All but the top limb in r will be in range [0,2^30). */
static void secp256k1_modinv32_mul_30(secp256k1_modinv32_signed30 *r, const secp256k1_modinv32_signed30 *a, int alen, int32_t factor) {
    const int32_t M30 = (int32_t)(UINT32_MAX >> 2);
    int64_t c = 0;
    int i;
    for (i = 0; i < 8; ++i) {
        if (i < alen) c += (int64_t)a->v[i] * factor;
        r->v[i] = (int32_t)c & M30; c >>= 30;
    }
    if (8 < alen) c += (int64_t)a->v[8] * factor;
    VERIFY_CHECK(c == (int32_t)c);
    r->v[8] = (int32_t)c;
}

/* Return -1 for a<b*factor, 0 for a==b*factor, 1 for a>b*factor. A consists of alen limbs; b has 9. */
static int secp256k1_modinv32_mul_cmp_30(const secp256k1_modinv32_signed30 *a, int alen, const secp256k1_modinv32_signed30 *b, int32_t factor) {
    int i;
    secp256k1_modinv32_signed30 am, bm;
    secp256k1_modinv32_mul_30(&am, a, alen, 1); /* Normalize all but the top limb of a. */
    secp256k1_modinv32_mul_30(&bm, b, 9, factor);
    for (i = 0; i < 8; ++i) {
        /* Verify that all but the top limb of a and b are normalized. */
        VERIFY_CHECK(am.v[i] >> 30 == 0);
        VERIFY_CHECK(bm.v[i] >> 30 == 0);
    }
    for (i = 8; i >= 0; --i) {
        if (am.v[i] < bm.v[i]) return -1;
        if (am.v[i] > bm.v[i]) return 1;
    }
    return 0;
}
#endif

/* Take as input a signed30 number in range (-2*modulus,modulus), and add a multiple of the modulus
 * to it to bring it to range [0,modulus). If sign < 0, the input will also be negated in the
 * process. The input must have limbs in range (-2^30,2^30). The output will have limbs in range
 * [0,2^30). */
static void secp256k1_modinv32_normalize_30(secp256k1_modinv32_signed30 *r, int32_t sign, const secp256k1_modinv32_modinfo *modinfo) {
    const int32_t M30 = (int32_t)(UINT32_MAX >> 2);
    int32_t r0 = r->v[0], r1 = r->v[1], r2 = r->v[2], r3 = r->v[3], r4 = r->v[4],
            r5 = r->v[5], r6 = r->v[6], r7 = r->v[7], r8 = r->v[8];
    volatile int32_t cond_add, cond_negate;

#ifdef VERIFY
    /* Verify that all limbs are in range (-2^30,2^30). */
    int i;
    for (i = 0; i < 9; ++i) {
        VERIFY_CHECK(r->v[i] >= -M30);
        VERIFY_CHECK(r->v[i] <= M30);
    }
    VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(r, 9, &modinfo->modulus, -2) > 0); /* r > -2*modulus */
    VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(r, 9, &modinfo->modulus, 1) < 0); /* r < modulus */
#endif

    /* In a first step, add the modulus if the input is negative, and then negate if requested.
     * This brings r from range (-2*modulus,modulus) to range (-modulus,modulus). As all input
     * limbs are in range (-2^30,2^30), this cannot overflow an int32_t. Note that the right
     * shifts below are signed sign-extending shifts (see assumptions.h for tests that that is
     * indeed the behavior of the right shift operator). */
    cond_add = r8 >> 31;
    r0 += modinfo->modulus.v[0] & cond_add;
    r1 += modinfo->modulus.v[1] & cond_add;
    r2 += modinfo->modulus.v[2] & cond_add;
    r3 += modinfo->modulus.v[3] & cond_add;
    r4 += modinfo->modulus.v[4] & cond_add;
    r5 += modinfo->modulus.v[5] & cond_add;
    r6 += modinfo->modulus.v[6] & cond_add;
    r7 += modinfo->modulus.v[7] & cond_add;
    r8 += modinfo->modulus.v[8] & cond_add;
    cond_negate = sign >> 31;
    r0 = (r0 ^ cond_negate) - cond_negate;
    r1 = (r1 ^ cond_negate) - cond_negate;
    r2 = (r2 ^ cond_negate) - cond_negate;
    r3 = (r3 ^ cond_negate) - cond_negate;
    r4 = (r4 ^ cond_negate) - cond_negate;
    r5 = (r5 ^ cond_negate) - cond_negate;
    r6 = (r6 ^ cond_negate) - cond_negate;
    r7 = (r7 ^ cond_negate) - cond_negate;
    r8 = (r8 ^ cond_negate) - cond_negate;
    /* Propagate the top bits, to bring limbs back to range (-2^30,2^30). */
    r1 += r0 >> 30; r0 &= M30;
    r2 += r1 >> 30; r1 &= M30;
    r3 += r2 >> 30; r2 &= M30;
    r4 += r3 >> 30; r3 &= M30;
    r5 += r4 >> 30; r4 &= M30;
    r6 += r5 >> 30; r5 &= M30;
    r7 += r6 >> 30; r6 &= M30;
    r8 += r7 >> 30; r7 &= M30;

    /* In a second step add the modulus again if the result is still negative, bringing r to range
     * [0,modulus). */
    cond_add = r8 >> 31;
    r0 += modinfo->modulus.v[0] & cond_add;
    r1 += modinfo->modulus.v[1] & cond_add;
    r2 += modinfo->modulus.v[2] & cond_add;
    r3 += modinfo->modulus.v[3] & cond_add;
    r4 += modinfo->modulus.v[4] & cond_add;
    r5 += modinfo->modulus.v[5] & cond_add;
    r6 += modinfo->modulus.v[6] & cond_add;
    r7 += modinfo->modulus.v[7] & cond_add;
    r8 += modinfo->modulus.v[8] & cond_add;
    /* And propagate again. */
    r1 += r0 >> 30; r0 &= M30;
    r2 += r1 >> 30; r1 &= M30;
    r3 += r2 >> 30; r2 &= M30;
    r4 += r3 >> 30; r3 &= M30;
    r5 += r4 >> 30; r4 &= M30;
    r6 += r5 >> 30; r5 &= M30;
    r7 += r6 >> 30; r6 &= M30;
    r8 += r7 >> 30; r7 &= M30;

    r->v[0] = r0;
    r->v[1] = r1;
    r->v[2] = r2;
    r->v[3] = r3;
    r->v[4] = r4;
    r->v[5] = r5;
    r->v[6] = r6;
    r->v[7] = r7;
    r->v[8] = r8;

    VERIFY_CHECK(r0 >> 30 == 0);
    VERIFY_CHECK(r1 >> 30 == 0);
    VERIFY_CHECK(r2 >> 30 == 0);
    VERIFY_CHECK(r3 >> 30 == 0);
    VERIFY_CHECK(r4 >> 30 == 0);
    VERIFY_CHECK(r5 >> 30 == 0);
    VERIFY_CHECK(r6 >> 30 == 0);
    VERIFY_CHECK(r7 >> 30 == 0);
    VERIFY_CHECK(r8 >> 30 == 0);
    VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(r, 9, &modinfo->modulus, 0) >= 0); /* r >= 0 */
    VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(r, 9, &modinfo->modulus, 1) < 0); /* r < modulus */
}

/* Data type for transition matrices (see section 3 of explanation).
 *
 * t = [ u  v ]
 *     [ q  r ]
 */
typedef struct {
    int32_t u, v, q, r;
} secp256k1_modinv32_trans2x2;

/* Compute the transition matrix and zeta for 30 divsteps.
 *
 * Input:  zeta: initial zeta
 *         f0:   bottom limb of initial f
 *         g0:   bottom limb of initial g
 * Output: t: transition matrix
 * Return: final zeta
 *
 * Implements the divsteps_n_matrix function from the explanation.
 */
static int32_t secp256k1_modinv32_divsteps_30(int32_t zeta, uint32_t f0, uint32_t g0, secp256k1_modinv32_trans2x2 *t) {
    /* u,v,q,r are the elements of the transformation matrix being built up,
     * starting with the identity matrix. Semantically they are signed integers
     * in range [-2^30,2^30], but here represented as unsigned mod 2^32. This
     * permits left shifting (which is UB for negative numbers). The range
     * being inside [-2^31,2^31) means that casting to signed works correctly.
     */
    uint32_t u = 1, v = 0, q = 0, r = 1;
    volatile uint32_t c1, c2;
    uint32_t mask1, mask2, f = f0, g = g0, x, y, z;
    int i;

    for (i = 0; i < 30; ++i) {
        VERIFY_CHECK((f & 1) == 1); /* f must always be odd */
        VERIFY_CHECK((u * f0 + v * g0) == f << i);
        VERIFY_CHECK((q * f0 + r * g0) == g << i);
        /* Compute conditional masks for (zeta < 0) and for (g & 1). */
        c1 = zeta >> 31;
        mask1 = c1;
        c2 = g & 1;
        mask2 = -c2;
        /* Compute x,y,z, conditionally negated versions of f,u,v. */
        x = (f ^ mask1) - mask1;
        y = (u ^ mask1) - mask1;
        z = (v ^ mask1) - mask1;
        /* Conditionally add x,y,z to g,q,r. */
        g += x & mask2;
        q += y & mask2;
        r += z & mask2;
        /* In what follows, mask1 is a condition mask for (zeta < 0) and (g & 1). */
        mask1 &= mask2;
        /* Conditionally change zeta into -zeta-2 or zeta-1. */
        zeta = (zeta ^ mask1) - 1;
        /* Conditionally add g,q,r to f,u,v. */
        f += g & mask1;
        u += q & mask1;
        v += r & mask1;
        /* Shifts */
        g >>= 1;
        u <<= 1;
        v <<= 1;
        /* Bounds on zeta that follow from the bounds on iteration count (max 20*30 divsteps). */
        VERIFY_CHECK(zeta >= -601 && zeta <= 601);
    }
    /* Return data in t and return value. */
    t->u = (int32_t)u;
    t->v = (int32_t)v;
    t->q = (int32_t)q;
    t->r = (int32_t)r;
    /* The determinant of t must be a power of two. This guarantees that multiplication with t
     * does not change the gcd of f and g, apart from adding a power-of-2 factor to it (which
     * will be divided out again). As each divstep's individual matrix has determinant 2, the
     * aggregate of 30 of them will have determinant 2^30. */
    VERIFY_CHECK((int64_t)t->u * t->r - (int64_t)t->v * t->q == ((int64_t)1) << 30);
    return zeta;
}

/* secp256k1_modinv32_inv256[i] = -(2*i+1)^-1 (mod 256) */
static const uint8_t secp256k1_modinv32_inv256[128] = {
    0xFF, 0x55, 0x33, 0x49, 0xC7, 0x5D, 0x3B, 0x11, 0x0F, 0xE5, 0xC3, 0x59,
    0xD7, 0xED, 0xCB, 0x21, 0x1F, 0x75, 0x53, 0x69, 0xE7, 0x7D, 0x5B, 0x31,
    0x2F, 0x05, 0xE3, 0x79, 0xF7, 0x0D, 0xEB, 0x41, 0x3F, 0x95, 0x73, 0x89,
    0x07, 0x9D, 0x7B, 0x51, 0x4F, 0x25, 0x03, 0x99, 0x17, 0x2D, 0x0B, 0x61,
    0x5F, 0xB5, 0x93, 0xA9, 0x27, 0xBD, 0x9B, 0x71, 0x6F, 0x45, 0x23, 0xB9,
    0x37, 0x4D, 0x2B, 0x81, 0x7F, 0xD5, 0xB3, 0xC9, 0x47, 0xDD, 0xBB, 0x91,
    0x8F, 0x65, 0x43, 0xD9, 0x57, 0x6D, 0x4B, 0xA1, 0x9F, 0xF5, 0xD3, 0xE9,
    0x67, 0xFD, 0xDB, 0xB1, 0xAF, 0x85, 0x63, 0xF9, 0x77, 0x8D, 0x6B, 0xC1,
    0xBF, 0x15, 0xF3, 0x09, 0x87, 0x1D, 0xFB, 0xD1, 0xCF, 0xA5, 0x83, 0x19,
    0x97, 0xAD, 0x8B, 0xE1, 0xDF, 0x35, 0x13, 0x29, 0xA7, 0x3D, 0x1B, 0xF1,
    0xEF, 0xC5, 0xA3, 0x39, 0xB7, 0xCD, 0xAB, 0x01
};

/* Compute the transition matrix and eta for 30 divsteps (variable time).
 *
 * Input:  eta: initial eta
 *         f0:  bottom limb of initial f
 *         g0:  bottom limb of initial g
 * Output: t: transition matrix
 * Return: final eta
 *
 * Implements the divsteps_n_matrix_var function from the explanation.
 */
static int32_t secp256k1_modinv32_divsteps_30_var(int32_t eta, uint32_t f0, uint32_t g0, secp256k1_modinv32_trans2x2 *t) {
    /* Transformation matrix; see comments in secp256k1_modinv32_divsteps_30. */
    uint32_t u = 1, v = 0, q = 0, r = 1;
    uint32_t f = f0, g = g0, m;
    uint16_t w;
    int i = 30, limit, zeros;

    for (;;) {
        /* Use a sentinel bit to count zeros only up to i. */
        zeros = secp256k1_ctz32_var(g | (UINT32_MAX << i));
        /* Perform zeros divsteps at once; they all just divide g by two. */
        g >>= zeros;
        u <<= zeros;
        v <<= zeros;
        eta -= zeros;
        i -= zeros;
         /* We're done once we've done 30 divsteps. */
        if (i == 0) break;
        VERIFY_CHECK((f & 1) == 1);
        VERIFY_CHECK((g & 1) == 1);
        VERIFY_CHECK((u * f0 + v * g0) == f << (30 - i));
        VERIFY_CHECK((q * f0 + r * g0) == g << (30 - i));
        /* Bounds on eta that follow from the bounds on iteration count (max 25*30 divsteps). */
        VERIFY_CHECK(eta >= -751 && eta <= 751);
        /* If eta is negative, negate it and replace f,g with g,-f. */
        if (eta < 0) {
            uint32_t tmp;
            eta = -eta;
            tmp = f; f = g; g = -tmp;
            tmp = u; u = q; q = -tmp;
            tmp = v; v = r; r = -tmp;
        }
        /* eta is now >= 0. In what follows we're going to cancel out the bottom bits of g. No more
         * than i can be cancelled out (as we'd be done before that point), and no more than eta+1
         * can be done as its sign will flip once that happens. */
        limit = ((int)eta + 1) > i ? i : ((int)eta + 1);
        /* m is a mask for the bottom min(limit, 8) bits (our table only supports 8 bits). */
        VERIFY_CHECK(limit > 0 && limit <= 30);
        m = (UINT32_MAX >> (32 - limit)) & 255U;
        /* Find what multiple of f must be added to g to cancel its bottom min(limit, 8) bits. */
        w = (g * secp256k1_modinv32_inv256[(f >> 1) & 127]) & m;
        /* Do so. */
        g += f * w;
        q += u * w;
        r += v * w;
        VERIFY_CHECK((g & m) == 0);
    }
    /* Return data in t and return value. */
    t->u = (int32_t)u;
    t->v = (int32_t)v;
    t->q = (int32_t)q;
    t->r = (int32_t)r;
    /* The determinant of t must be a power of two. This guarantees that multiplication with t
     * does not change the gcd of f and g, apart from adding a power-of-2 factor to it (which
     * will be divided out again). As each divstep's individual matrix has determinant 2, the
     * aggregate of 30 of them will have determinant 2^30. */
    VERIFY_CHECK((int64_t)t->u * t->r - (int64_t)t->v * t->q == ((int64_t)1) << 30);
    return eta;
}

/* Compute the transition matrix and eta for 30 posdivsteps (variable time, eta=-delta), and keeps track
 * of the Jacobi symbol along the way. f0 and g0 must be f and g mod 2^32 rather than 2^30, because
 * Jacobi tracking requires knowing (f mod 8) rather than just (f mod 2).
 *
 * Input:        eta: initial eta
 *               f0:  bottom limb of initial f
 *               g0:  bottom limb of initial g
 * Output:       t: transition matrix
 * Input/Output: (*jacp & 1) is bitflipped if and only if the Jacobi symbol of (f | g) changes sign
 *               by applying the returned transformation matrix to it. The other bits of *jacp may
 *               change, but are meaningless.
 * Return: final eta
 */
static int32_t secp256k1_modinv32_posdivsteps_30_var(int32_t eta, uint32_t f0, uint32_t g0, secp256k1_modinv32_trans2x2 *t, int *jacp) {
    /* Transformation matrix. */
    uint32_t u = 1, v = 0, q = 0, r = 1;
    uint32_t f = f0, g = g0, m;
    uint16_t w;
    int i = 30, limit, zeros;
    int jac = *jacp;

    for (;;) {
        /* Use a sentinel bit to count zeros only up to i. */
        zeros = secp256k1_ctz32_var(g | (UINT32_MAX << i));
        /* Perform zeros divsteps at once; they all just divide g by two. */
        g >>= zeros;
        u <<= zeros;
        v <<= zeros;
        eta -= zeros;
        i -= zeros;
        /* Update the bottom bit of jac: when dividing g by an odd power of 2,
         * if (f mod 8) is 3 or 5, the Jacobi symbol changes sign. */
        jac ^= (zeros & ((f >> 1) ^ (f >> 2)));
        /* We're done once we've done 30 posdivsteps. */
        if (i == 0) break;
        VERIFY_CHECK((f & 1) == 1);
        VERIFY_CHECK((g & 1) == 1);
        VERIFY_CHECK((u * f0 + v * g0) == f << (30 - i));
        VERIFY_CHECK((q * f0 + r * g0) == g << (30 - i));
        /* If eta is negative, negate it and replace f,g with g,f. */
        if (eta < 0) {
            uint32_t tmp;
            eta = -eta;
            /* Update bottom bit of jac: when swapping f and g, the Jacobi symbol changes sign
             * if both f and g are 3 mod 4. */
            jac ^= ((f & g) >> 1);
            tmp = f; f = g; g = tmp;
            tmp = u; u = q; q = tmp;
            tmp = v; v = r; r = tmp;
        }
        /* eta is now >= 0. In what follows we're going to cancel out the bottom bits of g. No more
         * than i can be cancelled out (as we'd be done before that point), and no more than eta+1
         * can be done as its sign will flip once that happens. */
        limit = ((int)eta + 1) > i ? i : ((int)eta + 1);
        /* m is a mask for the bottom min(limit, 8) bits (our table only supports 8 bits). */
        VERIFY_CHECK(limit > 0 && limit <= 30);
        m = (UINT32_MAX >> (32 - limit)) & 255U;
        /* Find what multiple of f must be added to g to cancel its bottom min(limit, 8) bits. */
        w = (g * secp256k1_modinv32_inv256[(f >> 1) & 127]) & m;
        /* Do so. */
        g += f * w;
        q += u * w;
        r += v * w;
        VERIFY_CHECK((g & m) == 0);
    }
    /* Return data in t and return value. */
    t->u = (int32_t)u;
    t->v = (int32_t)v;
    t->q = (int32_t)q;
    t->r = (int32_t)r;
    /* The determinant of t must be a power of two. This guarantees that multiplication with t
     * does not change the gcd of f and g, apart from adding a power-of-2 factor to it (which
     * will be divided out again). As each divstep's individual matrix has determinant 2 or -2,
     * the aggregate of 30 of them will have determinant 2^30 or -2^30. */
    VERIFY_CHECK((int64_t)t->u * t->r - (int64_t)t->v * t->q == ((int64_t)1) << 30 ||
                 (int64_t)t->u * t->r - (int64_t)t->v * t->q == -(((int64_t)1) << 30));
    *jacp = jac;
    return eta;
}

/* Compute (t/2^30) * [d, e] mod modulus, where t is a transition matrix for 30 divsteps.
 *
 * On input and output, d and e are in range (-2*modulus,modulus). All output limbs will be in range
 * (-2^30,2^30).
 *
 * This implements the update_de function from the explanation.
 */
static void secp256k1_modinv32_update_de_30(secp256k1_modinv32_signed30 *d, secp256k1_modinv32_signed30 *e, const secp256k1_modinv32_trans2x2 *t, const secp256k1_modinv32_modinfo* modinfo) {
    const int32_t M30 = (int32_t)(UINT32_MAX >> 2);
    const int32_t u = t->u, v = t->v, q = t->q, r = t->r;
    int32_t di, ei, md, me, sd, se;
    int64_t cd, ce;
    int i;
    VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(d, 9, &modinfo->modulus, -2) > 0); /* d > -2*modulus */
    VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(d, 9, &modinfo->modulus, 1) < 0);  /* d <    modulus */
    VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(e, 9, &modinfo->modulus, -2) > 0); /* e > -2*modulus */
    VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(e, 9, &modinfo->modulus, 1) < 0);  /* e <    modulus */
    VERIFY_CHECK(labs(u) <= (M30 + 1 - labs(v))); /* |u|+|v| <= 2^30 */
    VERIFY_CHECK(labs(q) <= (M30 + 1 - labs(r))); /* |q|+|r| <= 2^30 */

    /* [md,me] start as zero; plus [u,q] if d is negative; plus [v,r] if e is negative. */
    sd = d->v[8] >> 31;
    se = e->v[8] >> 31;
    md = (u & sd) + (v & se);
    me = (q & sd) + (r & se);
    /* Begin computing t*[d,e]. */
    di = d->v[0];
    ei = e->v[0];
    cd = (int64_t)u * di + (int64_t)v * ei;
    ce = (int64_t)q * di + (int64_t)r * ei;
    /* Correct md,me so that t*[d,e]+modulus*[md,me] has 30 zero bottom bits. */
    md -= (modinfo->modulus_inv30 * (uint32_t)cd + md) & M30;
    me -= (modinfo->modulus_inv30 * (uint32_t)ce + me) & M30;
    /* Update the beginning of computation for t*[d,e]+modulus*[md,me] now md,me are known. */
    cd += (int64_t)modinfo->modulus.v[0] * md;
    ce += (int64_t)modinfo->modulus.v[0] * me;
    /* Verify that the low 30 bits of the computation are indeed zero, and then throw them away. */
    VERIFY_CHECK(((int32_t)cd & M30) == 0); cd >>= 30;
    VERIFY_CHECK(((int32_t)ce & M30) == 0); ce >>= 30;
    /* Now iteratively compute limb i=1..8 of t*[d,e]+modulus*[md,me], and store them in output
     * limb i-1 (shifting down by 30 bits). */
    for (i = 1; i < 9; ++i) {
        di = d->v[i];
        ei = e->v[i];
        cd += (int64_t)u * di + (int64_t)v * ei;
        ce += (int64_t)q * di + (int64_t)r * ei;
        cd += (int64_t)modinfo->modulus.v[i] * md;
        ce += (int64_t)modinfo->modulus.v[i] * me;
        d->v[i - 1] = (int32_t)cd & M30; cd >>= 30;
        e->v[i - 1] = (int32_t)ce & M30; ce >>= 30;
    }
    /* What remains is limb 9 of t*[d,e]+modulus*[md,me]; store it as output limb 8. */
    d->v[8] = (int32_t)cd;
    e->v[8] = (int32_t)ce;

    VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(d, 9, &modinfo->modulus, -2) > 0); /* d > -2*modulus */
    VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(d, 9, &modinfo->modulus, 1) < 0);  /* d <    modulus */
    VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(e, 9, &modinfo->modulus, -2) > 0); /* e > -2*modulus */
    VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(e, 9, &modinfo->modulus, 1) < 0);  /* e <    modulus */
}

/* Compute (t/2^30) * [f, g], where t is a transition matrix for 30 divsteps.
 *
 * This implements the update_fg function from the explanation.
 */
static void secp256k1_modinv32_update_fg_30(secp256k1_modinv32_signed30 *f, secp256k1_modinv32_signed30 *g, const secp256k1_modinv32_trans2x2 *t) {
    const int32_t M30 = (int32_t)(UINT32_MAX >> 2);
    const int32_t u = t->u, v = t->v, q = t->q, r = t->r;
    int32_t fi, gi;
    int64_t cf, cg;
    int i;
    /* Start computing t*[f,g]. */
    fi = f->v[0];
    gi = g->v[0];
    cf = (int64_t)u * fi + (int64_t)v * gi;
    cg = (int64_t)q * fi + (int64_t)r * gi;
    /* Verify that the bottom 30 bits of the result are zero, and then throw them away. */
    VERIFY_CHECK(((int32_t)cf & M30) == 0); cf >>= 30;
    VERIFY_CHECK(((int32_t)cg & M30) == 0); cg >>= 30;
    /* Now iteratively compute limb i=1..8 of t*[f,g], and store them in output limb i-1 (shifting
     * down by 30 bits). */
    for (i = 1; i < 9; ++i) {
        fi = f->v[i];
        gi = g->v[i];
        cf += (int64_t)u * fi + (int64_t)v * gi;
        cg += (int64_t)q * fi + (int64_t)r * gi;
        f->v[i - 1] = (int32_t)cf & M30; cf >>= 30;
        g->v[i - 1] = (int32_t)cg & M30; cg >>= 30;
    }
    /* What remains is limb 9 of t*[f,g]; store it as output limb 8. */
    f->v[8] = (int32_t)cf;
    g->v[8] = (int32_t)cg;
}

/* Compute (t/2^30) * [f, g], where t is a transition matrix for 30 divsteps.
 *
 * Version that operates on a variable number of limbs in f and g.
 *
 * This implements the update_fg function from the explanation in modinv64_impl.h.
 */
static void secp256k1_modinv32_update_fg_30_var(int len, secp256k1_modinv32_signed30 *f, secp256k1_modinv32_signed30 *g, const secp256k1_modinv32_trans2x2 *t) {
    const int32_t M30 = (int32_t)(UINT32_MAX >> 2);
    const int32_t u = t->u, v = t->v, q = t->q, r = t->r;
    int32_t fi, gi;
    int64_t cf, cg;
    int i;
    VERIFY_CHECK(len > 0);
    /* Start computing t*[f,g]. */
    fi = f->v[0];
    gi = g->v[0];
    cf = (int64_t)u * fi + (int64_t)v * gi;
    cg = (int64_t)q * fi + (int64_t)r * gi;
    /* Verify that the bottom 62 bits of the result are zero, and then throw them away. */
    VERIFY_CHECK(((int32_t)cf & M30) == 0); cf >>= 30;
    VERIFY_CHECK(((int32_t)cg & M30) == 0); cg >>= 30;
    /* Now iteratively compute limb i=1..len of t*[f,g], and store them in output limb i-1 (shifting
     * down by 30 bits). */
    for (i = 1; i < len; ++i) {
        fi = f->v[i];
        gi = g->v[i];
        cf += (int64_t)u * fi + (int64_t)v * gi;
        cg += (int64_t)q * fi + (int64_t)r * gi;
        f->v[i - 1] = (int32_t)cf & M30; cf >>= 30;
        g->v[i - 1] = (int32_t)cg & M30; cg >>= 30;
    }
    /* What remains is limb (len) of t*[f,g]; store it as output limb (len-1). */
    f->v[len - 1] = (int32_t)cf;
    g->v[len - 1] = (int32_t)cg;
}

/* Compute the inverse of x modulo modinfo->modulus, and replace x with it (constant time in x). */
static void secp256k1_modinv32(secp256k1_modinv32_signed30 *x, const secp256k1_modinv32_modinfo *modinfo) {
    /* Start with d=0, e=1, f=modulus, g=x, zeta=-1. */
    secp256k1_modinv32_signed30 d = {{0}};
    secp256k1_modinv32_signed30 e = {{1}};
    secp256k1_modinv32_signed30 f = modinfo->modulus;
    secp256k1_modinv32_signed30 g = *x;
    int i;
    int32_t zeta = -1; /* zeta = -(delta+1/2); delta is initially 1/2. */

    /* Do 20 iterations of 30 divsteps each = 600 divsteps. 590 suffices for 256-bit inputs. */
    for (i = 0; i < 20; ++i) {
        /* Compute transition matrix and new zeta after 30 divsteps. */
        secp256k1_modinv32_trans2x2 t;
        zeta = secp256k1_modinv32_divsteps_30(zeta, f.v[0], g.v[0], &t);
        /* Update d,e using that transition matrix. */
        secp256k1_modinv32_update_de_30(&d, &e, &t, modinfo);
        /* Update f,g using that transition matrix. */
        VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, 9, &modinfo->modulus, -1) > 0); /* f > -modulus */
        VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, 9, &modinfo->modulus, 1) <= 0); /* f <= modulus */
        VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, 9, &modinfo->modulus, -1) > 0); /* g > -modulus */
        VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, 9, &modinfo->modulus, 1) < 0);  /* g <  modulus */

        secp256k1_modinv32_update_fg_30(&f, &g, &t);

        VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, 9, &modinfo->modulus, -1) > 0); /* f > -modulus */
        VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, 9, &modinfo->modulus, 1) <= 0); /* f <= modulus */
        VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, 9, &modinfo->modulus, -1) > 0); /* g > -modulus */
        VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, 9, &modinfo->modulus, 1) < 0);  /* g <  modulus */
    }

    /* At this point sufficient iterations have been performed that g must have reached 0
     * and (if g was not originally 0) f must now equal +/- GCD of the initial f, g
     * values i.e. +/- 1, and d now contains +/- the modular inverse. */

    /* g == 0 */
    VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, 9, &SECP256K1_SIGNED30_ONE, 0) == 0);
    /* |f| == 1, or (x == 0 and d == 0 and |f|=modulus) */
    VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, 9, &SECP256K1_SIGNED30_ONE, -1) == 0 ||
                 secp256k1_modinv32_mul_cmp_30(&f, 9, &SECP256K1_SIGNED30_ONE, 1) == 0 ||
                 (secp256k1_modinv32_mul_cmp_30(x, 9, &SECP256K1_SIGNED30_ONE, 0) == 0 &&
                  secp256k1_modinv32_mul_cmp_30(&d, 9, &SECP256K1_SIGNED30_ONE, 0) == 0 &&
                  (secp256k1_modinv32_mul_cmp_30(&f, 9, &modinfo->modulus, 1) == 0 ||
                   secp256k1_modinv32_mul_cmp_30(&f, 9, &modinfo->modulus, -1) == 0)));

    /* Optionally negate d, normalize to [0,modulus), and return it. */
    secp256k1_modinv32_normalize_30(&d, f.v[8], modinfo);
    *x = d;
}

/* Compute the inverse of x modulo modinfo->modulus, and replace x with it (variable time). */
static void secp256k1_modinv32_var(secp256k1_modinv32_signed30 *x, const secp256k1_modinv32_modinfo *modinfo) {
    /* Start with d=0, e=1, f=modulus, g=x, eta=-1. */
    secp256k1_modinv32_signed30 d = {{0, 0, 0, 0, 0, 0, 0, 0, 0}};
    secp256k1_modinv32_signed30 e = {{1, 0, 0, 0, 0, 0, 0, 0, 0}};
    secp256k1_modinv32_signed30 f = modinfo->modulus;
    secp256k1_modinv32_signed30 g = *x;
#ifdef VERIFY
    int i = 0;
#endif
    int j, len = 9;
    int32_t eta = -1; /* eta = -delta; delta is initially 1 (faster for the variable-time code) */
    int32_t cond, fn, gn;

    /* Do iterations of 30 divsteps each until g=0. */
    while (1) {
        /* Compute transition matrix and new eta after 30 divsteps. */
        secp256k1_modinv32_trans2x2 t;
        eta = secp256k1_modinv32_divsteps_30_var(eta, f.v[0], g.v[0], &t);
        /* Update d,e using that transition matrix. */
        secp256k1_modinv32_update_de_30(&d, &e, &t, modinfo);
        /* Update f,g using that transition matrix. */

        VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, len, &modinfo->modulus, -1) > 0); /* f > -modulus */
        VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, len, &modinfo->modulus, 1) <= 0); /* f <= modulus */
        VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, len, &modinfo->modulus, -1) > 0); /* g > -modulus */
        VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, len, &modinfo->modulus, 1) < 0);  /* g <  modulus */

        secp256k1_modinv32_update_fg_30_var(len, &f, &g, &t);
        /* If the bottom limb of g is 0, there is a chance g=0. */
        if (g.v[0] == 0) {
            cond = 0;
            /* Check if all other limbs are also 0. */
            for (j = 1; j < len; ++j) {
                cond |= g.v[j];
            }
            /* If so, we're done. */
            if (cond == 0) break;
        }

        /* Determine if len>1 and limb (len-1) of both f and g is 0 or -1. */
        fn = f.v[len - 1];
        gn = g.v[len - 1];
        cond = ((int32_t)len - 2) >> 31;
        cond |= fn ^ (fn >> 31);
        cond |= gn ^ (gn >> 31);
        /* If so, reduce length, propagating the sign of f and g's top limb into the one below. */
        if (cond == 0) {
            f.v[len - 2] |= (uint32_t)fn << 30;
            g.v[len - 2] |= (uint32_t)gn << 30;
            --len;
        }

        VERIFY_CHECK(++i < 25); /* We should never need more than 25*30 = 750 divsteps */
        VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, len, &modinfo->modulus, -1) > 0); /* f > -modulus */
        VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, len, &modinfo->modulus, 1) <= 0); /* f <= modulus */
        VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, len, &modinfo->modulus, -1) > 0); /* g > -modulus */
        VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, len, &modinfo->modulus, 1) < 0);  /* g <  modulus */
    }

    /* At this point g is 0 and (if g was not originally 0) f must now equal +/- GCD of
     * the initial f, g values i.e. +/- 1, and d now contains +/- the modular inverse. */

    /* g == 0 */
    VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, len, &SECP256K1_SIGNED30_ONE, 0) == 0);
    /* |f| == 1, or (x == 0 and d == 0 and |f|=modulus) */
    VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, len, &SECP256K1_SIGNED30_ONE, -1) == 0 ||
                 secp256k1_modinv32_mul_cmp_30(&f, len, &SECP256K1_SIGNED30_ONE, 1) == 0 ||
                 (secp256k1_modinv32_mul_cmp_30(x, 9, &SECP256K1_SIGNED30_ONE, 0) == 0 &&
                  secp256k1_modinv32_mul_cmp_30(&d, 9, &SECP256K1_SIGNED30_ONE, 0) == 0 &&
                  (secp256k1_modinv32_mul_cmp_30(&f, len, &modinfo->modulus, 1) == 0 ||
                   secp256k1_modinv32_mul_cmp_30(&f, len, &modinfo->modulus, -1) == 0)));

    /* Optionally negate d, normalize to [0,modulus), and return it. */
    secp256k1_modinv32_normalize_30(&d, f.v[len - 1], modinfo);
    *x = d;
}

/* Do up to 50 iterations of 30 posdivsteps (up to 1500 steps; more is extremely rare) each until f=1.
 * In VERIFY mode use a lower number of iterations (750, close to the median 756), so failure actually occurs. */
#ifdef VERIFY
#define JACOBI32_ITERATIONS 25
#else
#define JACOBI32_ITERATIONS 50
#endif

/* Compute the Jacobi symbol of x modulo modinfo->modulus (variable time). gcd(x,modulus) must be 1. */
static int secp256k1_jacobi32_maybe_var(const secp256k1_modinv32_signed30 *x, const secp256k1_modinv32_modinfo *modinfo) {
    /* Start with f=modulus, g=x, eta=-1. */
    secp256k1_modinv32_signed30 f = modinfo->modulus;
    secp256k1_modinv32_signed30 g = *x;
    int j, len = 9;
    int32_t eta = -1; /* eta = -delta; delta is initially 1 */
    int32_t cond, fn, gn;
    int jac = 0;
    int count;

    /* The input limbs must all be non-negative. */
    VERIFY_CHECK(g.v[0] >= 0 && g.v[1] >= 0 && g.v[2] >= 0 && g.v[3] >= 0 && g.v[4] >= 0 && g.v[5] >= 0 && g.v[6] >= 0 && g.v[7] >= 0 && g.v[8] >= 0);

    /* If x > 0, then if the loop below converges, it converges to f=g=gcd(x,modulus). Since we
     * require that gcd(x,modulus)=1 and modulus>=3, x cannot be 0. Thus, we must reach f=1 (or
     * time out). */
    VERIFY_CHECK((g.v[0] | g.v[1] | g.v[2] | g.v[3] | g.v[4] | g.v[5] | g.v[6] | g.v[7] | g.v[8]) != 0);

    for (count = 0; count < JACOBI32_ITERATIONS; ++count) {
        /* Compute transition matrix and new eta after 30 posdivsteps. */
        secp256k1_modinv32_trans2x2 t;
        eta = secp256k1_modinv32_posdivsteps_30_var(eta, f.v[0] | ((uint32_t)f.v[1] << 30), g.v[0] | ((uint32_t)g.v[1] << 30), &t, &jac);
        /* Update f,g using that transition matrix. */
        VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, len, &modinfo->modulus, 0) > 0); /* f > 0 */
        VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, len, &modinfo->modulus, 1) <= 0); /* f <= modulus */
        VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, len, &modinfo->modulus, 0) > 0); /* g > 0 */
        VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, len, &modinfo->modulus, 1) < 0);  /* g < modulus */

        secp256k1_modinv32_update_fg_30_var(len, &f, &g, &t);
        /* If the bottom limb of f is 1, there is a chance that f=1. */
        if (f.v[0] == 1) {
            cond = 0;
            /* Check if the other limbs are also 0. */
            for (j = 1; j < len; ++j) {
                cond |= f.v[j];
            }
            /* If so, we're done. If f=1, the Jacobi symbol (g | f)=1. */
            if (cond == 0) return 1 - 2*(jac & 1);
        }

        /* Determine if len>1 and limb (len-1) of both f and g is 0. */
        fn = f.v[len - 1];
        gn = g.v[len - 1];
        cond = ((int32_t)len - 2) >> 31;
        cond |= fn;
        cond |= gn;
        /* If so, reduce length. */
        if (cond == 0) --len;

        VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, len, &modinfo->modulus, 0) > 0); /* f > 0 */
        VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, len, &modinfo->modulus, 1) <= 0); /* f <= modulus */
        VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, len, &modinfo->modulus, 0) > 0); /* g > 0 */
        VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, len, &modinfo->modulus, 1) < 0);  /* g < modulus */
    }

    /* The loop failed to converge to f=g after 1500 iterations. Return 0, indicating unknown result. */
    return 0;
}

#endif /* SECP256K1_MODINV32_IMPL_H */