aboutsummaryrefslogtreecommitdiff
path: root/src/secp256k1/examples/examples_util.h
blob: a52b1fa115ed69c2548870fb83389a3c310f34c5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
/*************************************************************************
 * Copyright (c) 2020-2021 Elichai Turkel                                *
 * Distributed under the CC0 software license, see the accompanying file *
 * EXAMPLES_COPYING or https://creativecommons.org/publicdomain/zero/1.0 *
 *************************************************************************/

/*
 * This file is an attempt at collecting best practice methods for obtaining randomness with different operating systems.
 * It may be out-of-date. Consult the documentation of the operating system before considering to use the methods below.
 *
 * Platform randomness sources:
 * Linux   -> `getrandom(2)`(`sys/random.h`), if not available `/dev/urandom` should be used. http://man7.org/linux/man-pages/man2/getrandom.2.html, https://linux.die.net/man/4/urandom
 * macOS   -> `getentropy(2)`(`sys/random.h`), if not available `/dev/urandom` should be used. https://www.unix.com/man-page/mojave/2/getentropy, https://opensource.apple.com/source/xnu/xnu-517.12.7/bsd/man/man4/random.4.auto.html
 * FreeBSD -> `getrandom(2)`(`sys/random.h`), if not available `kern.arandom` should be used. https://www.freebsd.org/cgi/man.cgi?query=getrandom, https://www.freebsd.org/cgi/man.cgi?query=random&sektion=4
 * OpenBSD -> `getentropy(2)`(`unistd.h`), if not available `/dev/urandom` should be used. https://man.openbsd.org/getentropy, https://man.openbsd.org/urandom
 * Windows -> `BCryptGenRandom`(`bcrypt.h`). https://docs.microsoft.com/en-us/windows/win32/api/bcrypt/nf-bcrypt-bcryptgenrandom
 */

#if defined(_WIN32)
#include <windows.h>
#include <ntstatus.h>
#include <bcrypt.h>
#elif defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__)
#include <sys/random.h>
#elif defined(__OpenBSD__)
#include <unistd.h>
#else
#error "Couldn't identify the OS"
#endif

#include <stddef.h>
#include <limits.h>
#include <stdio.h>


/* Returns 1 on success, and 0 on failure. */
static int fill_random(unsigned char* data, size_t size) {
#if defined(_WIN32)
    NTSTATUS res = BCryptGenRandom(NULL, data, size, BCRYPT_USE_SYSTEM_PREFERRED_RNG);
    if (res != STATUS_SUCCESS || size > ULONG_MAX) {
        return 0;
    } else {
        return 1;
    }
#elif defined(__linux__) || defined(__FreeBSD__)
    /* If `getrandom(2)` is not available you should fallback to /dev/urandom */
    ssize_t res = getrandom(data, size, 0);
    if (res < 0 || (size_t)res != size ) {
        return 0;
    } else {
        return 1;
    }
#elif defined(__APPLE__) || defined(__OpenBSD__)
    /* If `getentropy(2)` is not available you should fallback to either
     * `SecRandomCopyBytes` or /dev/urandom */
    int res = getentropy(data, size);
    if (res == 0) {
        return 1;
    } else {
        return 0;
    }
#endif
    return 0;
}

static void print_hex(unsigned char* data, size_t size) {
    size_t i;
    printf("0x");
    for (i = 0; i < size; i++) {
        printf("%02x", data[i]);
    }
    printf("\n");
}

#if defined(_MSC_VER)
// For SecureZeroMemory
#include <Windows.h>
#endif
/* Cleanses memory to prevent leaking sensitive info. Won't be optimized out. */
static SECP256K1_INLINE void secure_erase(void *ptr, size_t len) {
#if defined(_MSC_VER)
    /* SecureZeroMemory is guaranteed not to be optimized out by MSVC. */
    SecureZeroMemory(ptr, len);
#elif defined(__GNUC__)
    /* We use a memory barrier that scares the compiler away from optimizing out the memset.
     *
     * Quoting Adam Langley <agl@google.com> in commit ad1907fe73334d6c696c8539646c21b11178f20f
     * in BoringSSL (ISC License):
     *    As best as we can tell, this is sufficient to break any optimisations that
     *    might try to eliminate "superfluous" memsets.
     * This method used in memzero_explicit() the Linux kernel, too. Its advantage is that it is
     * pretty efficient, because the compiler can still implement the memset() efficently,
     * just not remove it entirely. See "Dead Store Elimination (Still) Considered Harmful" by
     * Yang et al. (USENIX Security 2017) for more background.
     */
    memset(ptr, 0, len);
    __asm__ __volatile__("" : : "r"(ptr) : "memory");
#else
    void *(*volatile const volatile_memset)(void *, int, size_t) = memset;
    volatile_memset(ptr, 0, len);
#endif
}