1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
|
/*************************************************************************
* Written in 2024 by Sebastian Falbesoner *
* To the extent possible under law, the author(s) have dedicated all *
* copyright and related and neighboring rights to the software in this *
* file to the public domain worldwide. This software is distributed *
* without any warranty. For the CC0 Public Domain Dedication, see *
* EXAMPLES_COPYING or https://creativecommons.org/publicdomain/zero/1.0 *
*************************************************************************/
/** This file demonstrates how to use the ElligatorSwift module to perform
* a key exchange according to BIP 324. Additionally, see the documentation
* in include/secp256k1_ellswift.h and doc/ellswift.md.
*/
#include <stdio.h>
#include <assert.h>
#include <string.h>
#include <secp256k1.h>
#include <secp256k1_ellswift.h>
#include "examples_util.h"
int main(void) {
secp256k1_context* ctx;
unsigned char randomize[32];
unsigned char auxrand1[32];
unsigned char auxrand2[32];
unsigned char seckey1[32];
unsigned char seckey2[32];
unsigned char ellswift_pubkey1[64];
unsigned char ellswift_pubkey2[64];
unsigned char shared_secret1[32];
unsigned char shared_secret2[32];
int return_val;
/* Create a secp256k1 context */
ctx = secp256k1_context_create(SECP256K1_CONTEXT_NONE);
if (!fill_random(randomize, sizeof(randomize))) {
printf("Failed to generate randomness\n");
return 1;
}
/* Randomizing the context is recommended to protect against side-channel
* leakage. See `secp256k1_context_randomize` in secp256k1.h for more
* information about it. This should never fail. */
return_val = secp256k1_context_randomize(ctx, randomize);
assert(return_val);
/*** Generate secret keys ***/
/* If the secret key is zero or out of range (bigger than secp256k1's
* order), we try to sample a new key. Note that the probability of this
* happening is negligible. */
while (1) {
if (!fill_random(seckey1, sizeof(seckey1)) || !fill_random(seckey2, sizeof(seckey2))) {
printf("Failed to generate randomness\n");
return 1;
}
if (secp256k1_ec_seckey_verify(ctx, seckey1) && secp256k1_ec_seckey_verify(ctx, seckey2)) {
break;
}
}
/* Generate ElligatorSwift public keys. This should never fail with valid context and
verified secret keys. Note that providing additional randomness (fourth parameter) is
optional, but recommended. */
if (!fill_random(auxrand1, sizeof(auxrand1)) || !fill_random(auxrand2, sizeof(auxrand2))) {
printf("Failed to generate randomness\n");
return 1;
}
return_val = secp256k1_ellswift_create(ctx, ellswift_pubkey1, seckey1, auxrand1);
assert(return_val);
return_val = secp256k1_ellswift_create(ctx, ellswift_pubkey2, seckey2, auxrand2);
assert(return_val);
/*** Create the shared secret on each side ***/
/* Perform x-only ECDH with seckey1 and ellswift_pubkey2. Should never fail
* with a verified seckey and valid pubkey. Note that both parties pass both
* EllSwift pubkeys in the same order; the pubkey of the calling party is
* determined by the "party" boolean (sixth parameter). */
return_val = secp256k1_ellswift_xdh(ctx, shared_secret1, ellswift_pubkey1, ellswift_pubkey2,
seckey1, 0, secp256k1_ellswift_xdh_hash_function_bip324, NULL);
assert(return_val);
/* Perform x-only ECDH with seckey2 and ellswift_pubkey1. Should never fail
* with a verified seckey and valid pubkey. */
return_val = secp256k1_ellswift_xdh(ctx, shared_secret2, ellswift_pubkey1, ellswift_pubkey2,
seckey2, 1, secp256k1_ellswift_xdh_hash_function_bip324, NULL);
assert(return_val);
/* Both parties should end up with the same shared secret */
return_val = memcmp(shared_secret1, shared_secret2, sizeof(shared_secret1));
assert(return_val == 0);
printf( " Secret Key1: ");
print_hex(seckey1, sizeof(seckey1));
printf( "EllSwift Pubkey1: ");
print_hex(ellswift_pubkey1, sizeof(ellswift_pubkey1));
printf("\n Secret Key2: ");
print_hex(seckey2, sizeof(seckey2));
printf( "EllSwift Pubkey2: ");
print_hex(ellswift_pubkey2, sizeof(ellswift_pubkey2));
printf("\n Shared Secret: ");
print_hex(shared_secret1, sizeof(shared_secret1));
/* This will clear everything from the context and free the memory */
secp256k1_context_destroy(ctx);
/* It's best practice to try to clear secrets from memory after using them.
* This is done because some bugs can allow an attacker to leak memory, for
* example through "out of bounds" array access (see Heartbleed), or the OS
* swapping them to disk. Hence, we overwrite the secret key buffer with zeros.
*
* Here we are preventing these writes from being optimized out, as any good compiler
* will remove any writes that aren't used. */
secure_erase(seckey1, sizeof(seckey1));
secure_erase(seckey2, sizeof(seckey2));
secure_erase(shared_secret1, sizeof(shared_secret1));
secure_erase(shared_secret2, sizeof(shared_secret2));
return 0;
}
|