1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
|
// Copyright (c) 2019-2022 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_SCRIPT_MINISCRIPT_H
#define BITCOIN_SCRIPT_MINISCRIPT_H
#include <algorithm>
#include <functional>
#include <numeric>
#include <memory>
#include <optional>
#include <string>
#include <vector>
#include <assert.h>
#include <cstdlib>
#include <policy/policy.h>
#include <primitives/transaction.h>
#include <script/script.h>
#include <span.h>
#include <util/check.h>
#include <util/spanparsing.h>
#include <util/strencodings.h>
#include <util/string.h>
#include <util/vector.h>
namespace miniscript {
/** This type encapsulates the miniscript type system properties.
*
* Every miniscript expression is one of 4 basic types, and additionally has
* a number of boolean type properties.
*
* The basic types are:
* - "B" Base:
* - Takes its inputs from the top of the stack.
* - When satisfied, pushes a nonzero value of up to 4 bytes onto the stack.
* - When dissatisfied, pushes a 0 onto the stack.
* - This is used for most expressions, and required for the top level one.
* - For example: older(n) = <n> OP_CHECKSEQUENCEVERIFY.
* - "V" Verify:
* - Takes its inputs from the top of the stack.
* - When satisfied, pushes nothing.
* - Cannot be dissatisfied.
* - This can be obtained by adding an OP_VERIFY to a B, modifying the last opcode
* of a B to its -VERIFY version (only for OP_CHECKSIG, OP_CHECKSIGVERIFY,
* OP_NUMEQUAL and OP_EQUAL), or by combining a V fragment under some conditions.
* - For example vc:pk_k(key) = <key> OP_CHECKSIGVERIFY
* - "K" Key:
* - Takes its inputs from the top of the stack.
* - Becomes a B when followed by OP_CHECKSIG.
* - Always pushes a public key onto the stack, for which a signature is to be
* provided to satisfy the expression.
* - For example pk_h(key) = OP_DUP OP_HASH160 <Hash160(key)> OP_EQUALVERIFY
* - "W" Wrapped:
* - Takes its input from one below the top of the stack.
* - When satisfied, pushes a nonzero value (like B) on top of the stack, or one below.
* - When dissatisfied, pushes 0 op top of the stack or one below.
* - Is always "OP_SWAP [B]" or "OP_TOALTSTACK [B] OP_FROMALTSTACK".
* - For example sc:pk_k(key) = OP_SWAP <key> OP_CHECKSIG
*
* There a type properties that help reasoning about correctness:
* - "z" Zero-arg:
* - Is known to always consume exactly 0 stack elements.
* - For example after(n) = <n> OP_CHECKLOCKTIMEVERIFY
* - "o" One-arg:
* - Is known to always consume exactly 1 stack element.
* - Conflicts with property 'z'
* - For example sha256(hash) = OP_SIZE 32 OP_EQUALVERIFY OP_SHA256 <hash> OP_EQUAL
* - "n" Nonzero:
* - For every way this expression can be satisfied, a satisfaction exists that never needs
* a zero top stack element.
* - Conflicts with property 'z' and with type 'W'.
* - "d" Dissatisfiable:
* - There is an easy way to construct a dissatisfaction for this expression.
* - Conflicts with type 'V'.
* - "u" Unit:
* - In case of satisfaction, an exact 1 is put on the stack (rather than just nonzero).
* - Conflicts with type 'V'.
*
* Additional type properties help reasoning about nonmalleability:
* - "e" Expression:
* - This implies property 'd', but the dissatisfaction is nonmalleable.
* - This generally requires 'e' for all subexpressions which are invoked for that
* dissatifsaction, and property 'f' for the unexecuted subexpressions in that case.
* - Conflicts with type 'V'.
* - "f" Forced:
* - Dissatisfactions (if any) for this expression always involve at least one signature.
* - Is always true for type 'V'.
* - "s" Safe:
* - Satisfactions for this expression always involve at least one signature.
* - "m" Nonmalleable:
* - For every way this expression can be satisfied (which may be none),
* a nonmalleable satisfaction exists.
* - This generally requires 'm' for all subexpressions, and 'e' for all subexpressions
* which are dissatisfied when satisfying the parent.
*
* One type property is an implementation detail:
* - "x" Expensive verify:
* - Expressions with this property have a script whose last opcode is not EQUAL, CHECKSIG, or CHECKMULTISIG.
* - Not having this property means that it can be converted to a V at no cost (by switching to the
* -VERIFY version of the last opcode).
*
* Five more type properties for representing timelock information. Spend paths
* in miniscripts containing conflicting timelocks and heightlocks cannot be spent together.
* This helps users detect if miniscript does not match the semantic behaviour the
* user expects.
* - "g" Whether the branch contains a relative time timelock
* - "h" Whether the branch contains a relative height timelock
* - "i" Whether the branch contains an absolute time timelock
* - "j" Whether the branch contains an absolute height timelock
* - "k"
* - Whether all satisfactions of this expression don't contain a mix of heightlock and timelock
* of the same type.
* - If the miniscript does not have the "k" property, the miniscript template will not match
* the user expectation of the corresponding spending policy.
* For each of these properties the subset rule holds: an expression with properties X, Y, and Z, is also
* valid in places where an X, a Y, a Z, an XY, ... is expected.
*/
class Type {
//! Internal bitmap of properties (see ""_mst operator for details).
uint32_t m_flags;
//! Internal constructor used by the ""_mst operator.
explicit constexpr Type(uint32_t flags) : m_flags(flags) {}
public:
//! The only way to publicly construct a Type is using this literal operator.
friend constexpr Type operator"" _mst(const char* c, size_t l);
//! Compute the type with the union of properties.
constexpr Type operator|(Type x) const { return Type(m_flags | x.m_flags); }
//! Compute the type with the intersection of properties.
constexpr Type operator&(Type x) const { return Type(m_flags & x.m_flags); }
//! Check whether the left hand's properties are superset of the right's (= left is a subtype of right).
constexpr bool operator<<(Type x) const { return (x.m_flags & ~m_flags) == 0; }
//! Comparison operator to enable use in sets/maps (total ordering incompatible with <<).
constexpr bool operator<(Type x) const { return m_flags < x.m_flags; }
//! Equality operator.
constexpr bool operator==(Type x) const { return m_flags == x.m_flags; }
//! The empty type if x is false, itself otherwise.
constexpr Type If(bool x) const { return Type(x ? m_flags : 0); }
};
//! Literal operator to construct Type objects.
inline constexpr Type operator"" _mst(const char* c, size_t l) {
Type typ{0};
for (const char *p = c; p < c + l; p++) {
typ = typ | Type(
*p == 'B' ? 1 << 0 : // Base type
*p == 'V' ? 1 << 1 : // Verify type
*p == 'K' ? 1 << 2 : // Key type
*p == 'W' ? 1 << 3 : // Wrapped type
*p == 'z' ? 1 << 4 : // Zero-arg property
*p == 'o' ? 1 << 5 : // One-arg property
*p == 'n' ? 1 << 6 : // Nonzero arg property
*p == 'd' ? 1 << 7 : // Dissatisfiable property
*p == 'u' ? 1 << 8 : // Unit property
*p == 'e' ? 1 << 9 : // Expression property
*p == 'f' ? 1 << 10 : // Forced property
*p == 's' ? 1 << 11 : // Safe property
*p == 'm' ? 1 << 12 : // Nonmalleable property
*p == 'x' ? 1 << 13 : // Expensive verify
*p == 'g' ? 1 << 14 : // older: contains relative time timelock (csv_time)
*p == 'h' ? 1 << 15 : // older: contains relative height timelock (csv_height)
*p == 'i' ? 1 << 16 : // after: contains time timelock (cltv_time)
*p == 'j' ? 1 << 17 : // after: contains height timelock (cltv_height)
*p == 'k' ? 1 << 18 : // does not contain a combination of height and time locks
(throw std::logic_error("Unknown character in _mst literal"), 0)
);
}
return typ;
}
using Opcode = std::pair<opcodetype, std::vector<unsigned char>>;
template<typename Key> struct Node;
template<typename Key> using NodeRef = std::shared_ptr<const Node<Key>>;
//! Construct a miniscript node as a shared_ptr.
template<typename Key, typename... Args>
NodeRef<Key> MakeNodeRef(Args&&... args) { return std::make_shared<const Node<Key>>(std::forward<Args>(args)...); }
//! The different node types in miniscript.
enum class Fragment {
JUST_0, //!< OP_0
JUST_1, //!< OP_1
PK_K, //!< [key]
PK_H, //!< OP_DUP OP_HASH160 [keyhash] OP_EQUALVERIFY
OLDER, //!< [n] OP_CHECKSEQUENCEVERIFY
AFTER, //!< [n] OP_CHECKLOCKTIMEVERIFY
SHA256, //!< OP_SIZE 32 OP_EQUALVERIFY OP_SHA256 [hash] OP_EQUAL
HASH256, //!< OP_SIZE 32 OP_EQUALVERIFY OP_HASH256 [hash] OP_EQUAL
RIPEMD160, //!< OP_SIZE 32 OP_EQUALVERIFY OP_RIPEMD160 [hash] OP_EQUAL
HASH160, //!< OP_SIZE 32 OP_EQUALVERIFY OP_HASH160 [hash] OP_EQUAL
WRAP_A, //!< OP_TOALTSTACK [X] OP_FROMALTSTACK
WRAP_S, //!< OP_SWAP [X]
WRAP_C, //!< [X] OP_CHECKSIG
WRAP_D, //!< OP_DUP OP_IF [X] OP_ENDIF
WRAP_V, //!< [X] OP_VERIFY (or -VERIFY version of last opcode in X)
WRAP_J, //!< OP_SIZE OP_0NOTEQUAL OP_IF [X] OP_ENDIF
WRAP_N, //!< [X] OP_0NOTEQUAL
AND_V, //!< [X] [Y]
AND_B, //!< [X] [Y] OP_BOOLAND
OR_B, //!< [X] [Y] OP_BOOLOR
OR_C, //!< [X] OP_NOTIF [Y] OP_ENDIF
OR_D, //!< [X] OP_IFDUP OP_NOTIF [Y] OP_ENDIF
OR_I, //!< OP_IF [X] OP_ELSE [Y] OP_ENDIF
ANDOR, //!< [X] OP_NOTIF [Z] OP_ELSE [Y] OP_ENDIF
THRESH, //!< [X1] ([Xn] OP_ADD)* [k] OP_EQUAL
MULTI, //!< [k] [key_n]* [n] OP_CHECKMULTISIG (only available within P2WSH context)
MULTI_A, //!< [key_0] OP_CHECKSIG ([key_n] OP_CHECKSIGADD)* [k] OP_NUMEQUAL (only within Tapscript ctx)
// AND_N(X,Y) is represented as ANDOR(X,Y,0)
// WRAP_T(X) is represented as AND_V(X,1)
// WRAP_L(X) is represented as OR_I(0,X)
// WRAP_U(X) is represented as OR_I(X,0)
};
enum class Availability {
NO,
YES,
MAYBE,
};
enum class MiniscriptContext {
P2WSH,
TAPSCRIPT,
};
/** Whether the context Tapscript, ensuring the only other possibility is P2WSH. */
constexpr bool IsTapscript(MiniscriptContext ms_ctx)
{
switch (ms_ctx) {
case MiniscriptContext::P2WSH: return false;
case MiniscriptContext::TAPSCRIPT: return true;
}
assert(false);
}
namespace internal {
//! The maximum size of a witness item for a Miniscript under Tapscript context. (A BIP340 signature with a sighash type byte.)
static constexpr uint32_t MAX_TAPMINISCRIPT_STACK_ELEM_SIZE{65};
//! nVersion + nLockTime
constexpr uint32_t TX_OVERHEAD{4 + 4};
//! prevout + nSequence + scriptSig
constexpr uint32_t TXIN_BYTES_NO_WITNESS{36 + 4 + 1};
//! nValue + script len + OP_0 + pushdata 32.
constexpr uint32_t P2WSH_TXOUT_BYTES{8 + 1 + 1 + 33};
//! Data other than the witness in a transaction. Overhead + vin count + one vin + vout count + one vout + segwit marker
constexpr uint32_t TX_BODY_LEEWAY_WEIGHT{(TX_OVERHEAD + GetSizeOfCompactSize(1) + TXIN_BYTES_NO_WITNESS + GetSizeOfCompactSize(1) + P2WSH_TXOUT_BYTES) * WITNESS_SCALE_FACTOR + 2};
//! Maximum possible stack size to spend a Taproot output (excluding the script itself).
constexpr uint32_t MAX_TAPSCRIPT_SAT_SIZE{GetSizeOfCompactSize(MAX_STACK_SIZE) + (GetSizeOfCompactSize(MAX_TAPMINISCRIPT_STACK_ELEM_SIZE) + MAX_TAPMINISCRIPT_STACK_ELEM_SIZE) * MAX_STACK_SIZE + GetSizeOfCompactSize(TAPROOT_CONTROL_MAX_SIZE) + TAPROOT_CONTROL_MAX_SIZE};
/** The maximum size of a script depending on the context. */
constexpr uint32_t MaxScriptSize(MiniscriptContext ms_ctx)
{
if (IsTapscript(ms_ctx)) {
// Leaf scripts under Tapscript are not explicitly limited in size. They are only implicitly
// bounded by the maximum standard size of a spending transaction. Let the maximum script
// size conservatively be small enough such that even a maximum sized witness and a reasonably
// sized spending transaction can spend an output paying to this script without running into
// the maximum standard tx size limit.
constexpr auto max_size{MAX_STANDARD_TX_WEIGHT - TX_BODY_LEEWAY_WEIGHT - MAX_TAPSCRIPT_SAT_SIZE};
return max_size - GetSizeOfCompactSize(max_size);
}
return MAX_STANDARD_P2WSH_SCRIPT_SIZE;
}
//! Helper function for Node::CalcType.
Type ComputeType(Fragment fragment, Type x, Type y, Type z, const std::vector<Type>& sub_types, uint32_t k, size_t data_size, size_t n_subs, size_t n_keys, MiniscriptContext ms_ctx);
//! Helper function for Node::CalcScriptLen.
size_t ComputeScriptLen(Fragment fragment, Type sub0typ, size_t subsize, uint32_t k, size_t n_subs, size_t n_keys, MiniscriptContext ms_ctx);
//! A helper sanitizer/checker for the output of CalcType.
Type SanitizeType(Type x);
//! An object representing a sequence of witness stack elements.
struct InputStack {
/** Whether this stack is valid for its intended purpose (satisfaction or dissatisfaction of a Node).
* The MAYBE value is used for size estimation, when keys/preimages may actually be unavailable,
* but may be available at signing time. This makes the InputStack structure and signing logic,
* filled with dummy signatures/preimages usable for witness size estimation.
*/
Availability available = Availability::YES;
//! Whether this stack contains a digital signature.
bool has_sig = false;
//! Whether this stack is malleable (can be turned into an equally valid other stack by a third party).
bool malleable = false;
//! Whether this stack is non-canonical (using a construction known to be unnecessary for satisfaction).
//! Note that this flag does not affect the satisfaction algorithm; it is only used for sanity checking.
bool non_canon = false;
//! Serialized witness size.
size_t size = 0;
//! Data elements.
std::vector<std::vector<unsigned char>> stack;
//! Construct an empty stack (valid).
InputStack() {}
//! Construct a valid single-element stack (with an element up to 75 bytes).
InputStack(std::vector<unsigned char> in) : size(in.size() + 1), stack(Vector(std::move(in))) {}
//! Change availability
InputStack& SetAvailable(Availability avail);
//! Mark this input stack as having a signature.
InputStack& SetWithSig();
//! Mark this input stack as non-canonical (known to not be necessary in non-malleable satisfactions).
InputStack& SetNonCanon();
//! Mark this input stack as malleable.
InputStack& SetMalleable(bool x = true);
//! Concatenate two input stacks.
friend InputStack operator+(InputStack a, InputStack b);
//! Choose between two potential input stacks.
friend InputStack operator|(InputStack a, InputStack b);
};
/** A stack consisting of a single zero-length element (interpreted as 0 by the script interpreter in numeric context). */
static const auto ZERO = InputStack(std::vector<unsigned char>());
/** A stack consisting of a single malleable 32-byte 0x0000...0000 element (for dissatisfying hash challenges). */
static const auto ZERO32 = InputStack(std::vector<unsigned char>(32, 0)).SetMalleable();
/** A stack consisting of a single 0x01 element (interpreted as 1 by the script interpreted in numeric context). */
static const auto ONE = InputStack(Vector((unsigned char)1));
/** The empty stack. */
static const auto EMPTY = InputStack();
/** A stack representing the lack of any (dis)satisfactions. */
static const auto INVALID = InputStack().SetAvailable(Availability::NO);
//! A pair of a satisfaction and a dissatisfaction InputStack.
struct InputResult {
InputStack nsat, sat;
template<typename A, typename B>
InputResult(A&& in_nsat, B&& in_sat) : nsat(std::forward<A>(in_nsat)), sat(std::forward<B>(in_sat)) {}
};
//! Class whose objects represent the maximum of a list of integers.
template<typename I>
struct MaxInt {
const bool valid;
const I value;
MaxInt() : valid(false), value(0) {}
MaxInt(I val) : valid(true), value(val) {}
friend MaxInt<I> operator+(const MaxInt<I>& a, const MaxInt<I>& b) {
if (!a.valid || !b.valid) return {};
return a.value + b.value;
}
friend MaxInt<I> operator|(const MaxInt<I>& a, const MaxInt<I>& b) {
if (!a.valid) return b;
if (!b.valid) return a;
return std::max(a.value, b.value);
}
};
struct Ops {
//! Non-push opcodes.
uint32_t count;
//! Number of keys in possibly executed OP_CHECKMULTISIG(VERIFY)s to satisfy.
MaxInt<uint32_t> sat;
//! Number of keys in possibly executed OP_CHECKMULTISIG(VERIFY)s to dissatisfy.
MaxInt<uint32_t> dsat;
Ops(uint32_t in_count, MaxInt<uint32_t> in_sat, MaxInt<uint32_t> in_dsat) : count(in_count), sat(in_sat), dsat(in_dsat) {};
};
/** A data structure to help the calculation of stack size limits.
*
* Conceptually, every SatInfo object corresponds to a (possibly empty) set of script execution
* traces (sequences of opcodes).
* - SatInfo{} corresponds to the empty set.
* - SatInfo{n, e} corresponds to a single trace whose net effect is removing n elements from the
* stack (may be negative for a net increase), and reaches a maximum of e stack elements more
* than it ends with.
* - operator| is the union operation: (a | b) corresponds to the union of the traces in a and the
* traces in b.
* - operator+ is the concatenation operator: (a + b) corresponds to the set of traces formed by
* concatenating any trace in a with any trace in b.
*
* Its fields are:
* - valid is true if the set is non-empty.
* - netdiff (if valid) is the largest difference between stack size at the beginning and at the
* end of the script across all traces in the set.
* - exec (if valid) is the largest difference between stack size anywhere during execution and at
* the end of the script, across all traces in the set (note that this is not necessarily due
* to the same trace as the one that resulted in the value for netdiff).
*
* This allows us to build up stack size limits for any script efficiently, by starting from the
* individual opcodes miniscripts correspond to, using concatenation to construct scripts, and
* using the union operation to choose between execution branches. Since any top-level script
* satisfaction ends with a single stack element, we know that for a full script:
* - netdiff+1 is the maximal initial stack size (relevant for P2WSH stack limits).
* - exec+1 is the maximal stack size reached during execution (relevant for P2TR stack limits).
*
* Mathematically, SatInfo forms a semiring:
* - operator| is the semiring addition operator, with identity SatInfo{}, and which is commutative
* and associative.
* - operator+ is the semiring multiplication operator, with identity SatInfo{0}, and which is
* associative.
* - operator+ is distributive over operator|, so (a + (b | c)) = (a+b | a+c). This means we do not
* need to actually materialize all possible full execution traces over the whole script (which
* may be exponential in the length of the script); instead we can use the union operation at the
* individual subexpression level, and concatenate the result with subexpressions before and
* after it.
* - It is not a commutative semiring, because a+b can differ from b+a. For example, "OP_1 OP_DROP"
* has exec=1, while "OP_DROP OP_1" has exec=0.
*/
struct SatInfo {
//! Whether a canonical satisfaction/dissatisfaction is possible at all.
const bool valid;
//! How much higher the stack size at start of execution can be compared to at the end.
const int32_t netdiff;
//! Mow much higher the stack size can be during execution compared to at the end.
const int32_t exec;
/** Empty script set. */
constexpr SatInfo() noexcept : valid(false), netdiff(0), exec(0) {}
/** Script set with a single script in it, with specified netdiff and exec. */
constexpr SatInfo(int32_t in_netdiff, int32_t in_exec) noexcept :
valid{true}, netdiff{in_netdiff}, exec{in_exec} {}
/** Script set union. */
constexpr friend SatInfo operator|(const SatInfo& a, const SatInfo& b) noexcept
{
// Union with an empty set is itself.
if (!a.valid) return b;
if (!b.valid) return a;
// Otherwise the netdiff and exec of the union is the maximum of the individual values.
return {std::max(a.netdiff, b.netdiff), std::max(a.exec, b.exec)};
}
/** Script set concatenation. */
constexpr friend SatInfo operator+(const SatInfo& a, const SatInfo& b) noexcept
{
// Concatenation with an empty set yields an empty set.
if (!a.valid || !b.valid) return {};
// Otherwise, the maximum stack size difference for the combined scripts is the sum of the
// netdiffs, and the maximum stack size difference anywhere is either b.exec (if the
// maximum occurred in b) or b.netdiff+a.exec (if the maximum occurred in a).
return {a.netdiff + b.netdiff, std::max(b.exec, b.netdiff + a.exec)};
}
/** The empty script. */
static constexpr SatInfo Empty() noexcept { return {0, 0}; }
/** A script consisting of a single push opcode. */
static constexpr SatInfo Push() noexcept { return {-1, 0}; }
/** A script consisting of a single hash opcode. */
static constexpr SatInfo Hash() noexcept { return {0, 0}; }
/** A script consisting of just a repurposed nop (OP_CHECKLOCKTIMEVERIFY, OP_CHECKSEQUENCEVERIFY). */
static constexpr SatInfo Nop() noexcept { return {0, 0}; }
/** A script consisting of just OP_IF or OP_NOTIF. Note that OP_ELSE and OP_ENDIF have no stack effect. */
static constexpr SatInfo If() noexcept { return {1, 1}; }
/** A script consisting of just a binary operator (OP_BOOLAND, OP_BOOLOR, OP_ADD). */
static constexpr SatInfo BinaryOp() noexcept { return {1, 1}; }
// Scripts for specific individual opcodes.
static constexpr SatInfo OP_DUP() noexcept { return {-1, 0}; }
static constexpr SatInfo OP_IFDUP(bool nonzero) noexcept { return {nonzero ? -1 : 0, 0}; }
static constexpr SatInfo OP_EQUALVERIFY() noexcept { return {2, 2}; }
static constexpr SatInfo OP_EQUAL() noexcept { return {1, 1}; }
static constexpr SatInfo OP_SIZE() noexcept { return {-1, 0}; }
static constexpr SatInfo OP_CHECKSIG() noexcept { return {1, 1}; }
static constexpr SatInfo OP_0NOTEQUAL() noexcept { return {0, 0}; }
static constexpr SatInfo OP_VERIFY() noexcept { return {1, 1}; }
};
struct StackSize {
const SatInfo sat, dsat;
constexpr StackSize(SatInfo in_sat, SatInfo in_dsat) noexcept : sat(in_sat), dsat(in_dsat) {};
constexpr StackSize(SatInfo in_both) noexcept : sat(in_both), dsat(in_both) {};
};
struct WitnessSize {
//! Maximum witness size to satisfy;
MaxInt<uint32_t> sat;
//! Maximum witness size to dissatisfy;
MaxInt<uint32_t> dsat;
WitnessSize(MaxInt<uint32_t> in_sat, MaxInt<uint32_t> in_dsat) : sat(in_sat), dsat(in_dsat) {};
};
struct NoDupCheck {};
} // namespace internal
//! A node in a miniscript expression.
template<typename Key>
struct Node {
//! What node type this node is.
const Fragment fragment;
//! The k parameter (time for OLDER/AFTER, threshold for THRESH(_M))
const uint32_t k = 0;
//! The keys used by this expression (only for PK_K/PK_H/MULTI)
const std::vector<Key> keys;
//! The data bytes in this expression (only for HASH160/HASH256/SHA256/RIPEMD10).
const std::vector<unsigned char> data;
//! Subexpressions (for WRAP_*/AND_*/OR_*/ANDOR/THRESH)
mutable std::vector<NodeRef<Key>> subs;
//! The Script context for this node. Either P2WSH or Tapscript.
const MiniscriptContext m_script_ctx;
/* Destroy the shared pointers iteratively to avoid a stack-overflow due to recursive calls
* to the subs' destructors. */
~Node() {
while (!subs.empty()) {
auto node = std::move(subs.back());
subs.pop_back();
while (!node->subs.empty()) {
subs.push_back(std::move(node->subs.back()));
node->subs.pop_back();
}
}
}
private:
//! Cached ops counts.
const internal::Ops ops;
//! Cached stack size bounds.
const internal::StackSize ss;
//! Cached witness size bounds.
const internal::WitnessSize ws;
//! Cached expression type (computed by CalcType and fed through SanitizeType).
const Type typ;
//! Cached script length (computed by CalcScriptLen).
const size_t scriptlen;
//! Whether a public key appears more than once in this node. This value is initialized
//! by all constructors except the NoDupCheck ones. The NoDupCheck ones skip the
//! computation, requiring it to be done manually by invoking DuplicateKeyCheck().
//! DuplicateKeyCheck(), or a non-NoDupCheck constructor, will compute has_duplicate_keys
//! for all subnodes as well.
mutable std::optional<bool> has_duplicate_keys;
//! Compute the length of the script for this miniscript (including children).
size_t CalcScriptLen() const {
size_t subsize = 0;
for (const auto& sub : subs) {
subsize += sub->ScriptSize();
}
Type sub0type = subs.size() > 0 ? subs[0]->GetType() : ""_mst;
return internal::ComputeScriptLen(fragment, sub0type, subsize, k, subs.size(), keys.size(), m_script_ctx);
}
/* Apply a recursive algorithm to a Miniscript tree, without actual recursive calls.
*
* The algorithm is defined by two functions: downfn and upfn. Conceptually, the
* result can be thought of as first using downfn to compute a "state" for each node,
* from the root down to the leaves. Then upfn is used to compute a "result" for each
* node, from the leaves back up to the root, which is then returned. In the actual
* implementation, both functions are invoked in an interleaved fashion, performing a
* depth-first traversal of the tree.
*
* In more detail, it is invoked as node.TreeEvalMaybe<Result>(root, downfn, upfn):
* - root is the state of the root node, of type State.
* - downfn is a callable (State&, const Node&, size_t) -> State, which given a
* node, its state, and an index of one of its children, computes the state of that
* child. It can modify the state. Children of a given node will have downfn()
* called in order.
* - upfn is a callable (State&&, const Node&, Span<Result>) -> std::optional<Result>,
* which given a node, its state, and a Span of the results of its children,
* computes the result of the node. If std::nullopt is returned by upfn,
* TreeEvalMaybe() immediately returns std::nullopt.
* The return value of TreeEvalMaybe is the result of the root node.
*
* Result type cannot be bool due to the std::vector<bool> specialization.
*/
template<typename Result, typename State, typename DownFn, typename UpFn>
std::optional<Result> TreeEvalMaybe(State root_state, DownFn downfn, UpFn upfn) const
{
/** Entries of the explicit stack tracked in this algorithm. */
struct StackElem
{
const Node& node; //!< The node being evaluated.
size_t expanded; //!< How many children of this node have been expanded.
State state; //!< The state for that node.
StackElem(const Node& node_, size_t exp_, State&& state_) :
node(node_), expanded(exp_), state(std::move(state_)) {}
};
/* Stack of tree nodes being explored. */
std::vector<StackElem> stack;
/* Results of subtrees so far. Their order and mapping to tree nodes
* is implicitly defined by stack. */
std::vector<Result> results;
stack.emplace_back(*this, 0, std::move(root_state));
/* Here is a demonstration of the algorithm, for an example tree A(B,C(D,E),F).
* State variables are omitted for simplicity.
*
* First: stack=[(A,0)] results=[]
* stack=[(A,1),(B,0)] results=[]
* stack=[(A,1)] results=[B]
* stack=[(A,2),(C,0)] results=[B]
* stack=[(A,2),(C,1),(D,0)] results=[B]
* stack=[(A,2),(C,1)] results=[B,D]
* stack=[(A,2),(C,2),(E,0)] results=[B,D]
* stack=[(A,2),(C,2)] results=[B,D,E]
* stack=[(A,2)] results=[B,C]
* stack=[(A,3),(F,0)] results=[B,C]
* stack=[(A,3)] results=[B,C,F]
* Final: stack=[] results=[A]
*/
while (stack.size()) {
const Node& node = stack.back().node;
if (stack.back().expanded < node.subs.size()) {
/* We encounter a tree node with at least one unexpanded child.
* Expand it. By the time we hit this node again, the result of
* that child (and all earlier children) will be at the end of `results`. */
size_t child_index = stack.back().expanded++;
State child_state = downfn(stack.back().state, node, child_index);
stack.emplace_back(*node.subs[child_index], 0, std::move(child_state));
continue;
}
// Invoke upfn with the last node.subs.size() elements of results as input.
assert(results.size() >= node.subs.size());
std::optional<Result> result{upfn(std::move(stack.back().state), node,
Span<Result>{results}.last(node.subs.size()))};
// If evaluation returns std::nullopt, abort immediately.
if (!result) return {};
// Replace the last node.subs.size() elements of results with the new result.
results.erase(results.end() - node.subs.size(), results.end());
results.push_back(std::move(*result));
stack.pop_back();
}
// The final remaining results element is the root result, return it.
assert(results.size() == 1);
return std::move(results[0]);
}
/** Like TreeEvalMaybe, but without downfn or State type.
* upfn takes (const Node&, Span<Result>) and returns std::optional<Result>. */
template<typename Result, typename UpFn>
std::optional<Result> TreeEvalMaybe(UpFn upfn) const
{
struct DummyState {};
return TreeEvalMaybe<Result>(DummyState{},
[](DummyState, const Node&, size_t) { return DummyState{}; },
[&upfn](DummyState, const Node& node, Span<Result> subs) {
return upfn(node, subs);
}
);
}
/** Like TreeEvalMaybe, but always produces a result. upfn must return Result. */
template<typename Result, typename State, typename DownFn, typename UpFn>
Result TreeEval(State root_state, DownFn&& downfn, UpFn upfn) const
{
// Invoke TreeEvalMaybe with upfn wrapped to return std::optional<Result>, and then
// unconditionally dereference the result (it cannot be std::nullopt).
return std::move(*TreeEvalMaybe<Result>(std::move(root_state),
std::forward<DownFn>(downfn),
[&upfn](State&& state, const Node& node, Span<Result> subs) {
Result res{upfn(std::move(state), node, subs)};
return std::optional<Result>(std::move(res));
}
));
}
/** Like TreeEval, but without downfn or State type.
* upfn takes (const Node&, Span<Result>) and returns Result. */
template<typename Result, typename UpFn>
Result TreeEval(UpFn upfn) const
{
struct DummyState {};
return std::move(*TreeEvalMaybe<Result>(DummyState{},
[](DummyState, const Node&, size_t) { return DummyState{}; },
[&upfn](DummyState, const Node& node, Span<Result> subs) {
Result res{upfn(node, subs)};
return std::optional<Result>(std::move(res));
}
));
}
/** Compare two miniscript subtrees, using a non-recursive algorithm. */
friend int Compare(const Node<Key>& node1, const Node<Key>& node2)
{
std::vector<std::pair<const Node<Key>&, const Node<Key>&>> queue;
queue.emplace_back(node1, node2);
while (!queue.empty()) {
const auto& [a, b] = queue.back();
queue.pop_back();
if (std::tie(a.fragment, a.k, a.keys, a.data) < std::tie(b.fragment, b.k, b.keys, b.data)) return -1;
if (std::tie(b.fragment, b.k, b.keys, b.data) < std::tie(a.fragment, a.k, a.keys, a.data)) return 1;
if (a.subs.size() < b.subs.size()) return -1;
if (b.subs.size() < a.subs.size()) return 1;
size_t n = a.subs.size();
for (size_t i = 0; i < n; ++i) {
queue.emplace_back(*a.subs[n - 1 - i], *b.subs[n - 1 - i]);
}
}
return 0;
}
//! Compute the type for this miniscript.
Type CalcType() const {
using namespace internal;
// THRESH has a variable number of subexpressions
std::vector<Type> sub_types;
if (fragment == Fragment::THRESH) {
for (const auto& sub : subs) sub_types.push_back(sub->GetType());
}
// All other nodes than THRESH can be computed just from the types of the 0-3 subexpressions.
Type x = subs.size() > 0 ? subs[0]->GetType() : ""_mst;
Type y = subs.size() > 1 ? subs[1]->GetType() : ""_mst;
Type z = subs.size() > 2 ? subs[2]->GetType() : ""_mst;
return SanitizeType(ComputeType(fragment, x, y, z, sub_types, k, data.size(), subs.size(), keys.size(), m_script_ctx));
}
public:
template<typename Ctx>
CScript ToScript(const Ctx& ctx) const
{
// To construct the CScript for a Miniscript object, we use the TreeEval algorithm.
// The State is a boolean: whether or not the node's script expansion is followed
// by an OP_VERIFY (which may need to be combined with the last script opcode).
auto downfn = [](bool verify, const Node& node, size_t index) {
// For WRAP_V, the subexpression is certainly followed by OP_VERIFY.
if (node.fragment == Fragment::WRAP_V) return true;
// The subexpression of WRAP_S, and the last subexpression of AND_V
// inherit the followed-by-OP_VERIFY property from the parent.
if (node.fragment == Fragment::WRAP_S ||
(node.fragment == Fragment::AND_V && index == 1)) return verify;
return false;
};
// The upward function computes for a node, given its followed-by-OP_VERIFY status
// and the CScripts of its child nodes, the CScript of the node.
const bool is_tapscript{IsTapscript(m_script_ctx)};
auto upfn = [&ctx, is_tapscript](bool verify, const Node& node, Span<CScript> subs) -> CScript {
switch (node.fragment) {
case Fragment::PK_K: return BuildScript(ctx.ToPKBytes(node.keys[0]));
case Fragment::PK_H: return BuildScript(OP_DUP, OP_HASH160, ctx.ToPKHBytes(node.keys[0]), OP_EQUALVERIFY);
case Fragment::OLDER: return BuildScript(node.k, OP_CHECKSEQUENCEVERIFY);
case Fragment::AFTER: return BuildScript(node.k, OP_CHECKLOCKTIMEVERIFY);
case Fragment::SHA256: return BuildScript(OP_SIZE, 32, OP_EQUALVERIFY, OP_SHA256, node.data, verify ? OP_EQUALVERIFY : OP_EQUAL);
case Fragment::RIPEMD160: return BuildScript(OP_SIZE, 32, OP_EQUALVERIFY, OP_RIPEMD160, node.data, verify ? OP_EQUALVERIFY : OP_EQUAL);
case Fragment::HASH256: return BuildScript(OP_SIZE, 32, OP_EQUALVERIFY, OP_HASH256, node.data, verify ? OP_EQUALVERIFY : OP_EQUAL);
case Fragment::HASH160: return BuildScript(OP_SIZE, 32, OP_EQUALVERIFY, OP_HASH160, node.data, verify ? OP_EQUALVERIFY : OP_EQUAL);
case Fragment::WRAP_A: return BuildScript(OP_TOALTSTACK, subs[0], OP_FROMALTSTACK);
case Fragment::WRAP_S: return BuildScript(OP_SWAP, subs[0]);
case Fragment::WRAP_C: return BuildScript(std::move(subs[0]), verify ? OP_CHECKSIGVERIFY : OP_CHECKSIG);
case Fragment::WRAP_D: return BuildScript(OP_DUP, OP_IF, subs[0], OP_ENDIF);
case Fragment::WRAP_V: {
if (node.subs[0]->GetType() << "x"_mst) {
return BuildScript(std::move(subs[0]), OP_VERIFY);
} else {
return std::move(subs[0]);
}
}
case Fragment::WRAP_J: return BuildScript(OP_SIZE, OP_0NOTEQUAL, OP_IF, subs[0], OP_ENDIF);
case Fragment::WRAP_N: return BuildScript(std::move(subs[0]), OP_0NOTEQUAL);
case Fragment::JUST_1: return BuildScript(OP_1);
case Fragment::JUST_0: return BuildScript(OP_0);
case Fragment::AND_V: return BuildScript(std::move(subs[0]), subs[1]);
case Fragment::AND_B: return BuildScript(std::move(subs[0]), subs[1], OP_BOOLAND);
case Fragment::OR_B: return BuildScript(std::move(subs[0]), subs[1], OP_BOOLOR);
case Fragment::OR_D: return BuildScript(std::move(subs[0]), OP_IFDUP, OP_NOTIF, subs[1], OP_ENDIF);
case Fragment::OR_C: return BuildScript(std::move(subs[0]), OP_NOTIF, subs[1], OP_ENDIF);
case Fragment::OR_I: return BuildScript(OP_IF, subs[0], OP_ELSE, subs[1], OP_ENDIF);
case Fragment::ANDOR: return BuildScript(std::move(subs[0]), OP_NOTIF, subs[2], OP_ELSE, subs[1], OP_ENDIF);
case Fragment::MULTI: {
CHECK_NONFATAL(!is_tapscript);
CScript script = BuildScript(node.k);
for (const auto& key : node.keys) {
script = BuildScript(std::move(script), ctx.ToPKBytes(key));
}
return BuildScript(std::move(script), node.keys.size(), verify ? OP_CHECKMULTISIGVERIFY : OP_CHECKMULTISIG);
}
case Fragment::MULTI_A: {
CHECK_NONFATAL(is_tapscript);
CScript script = BuildScript(ctx.ToPKBytes(*node.keys.begin()), OP_CHECKSIG);
for (auto it = node.keys.begin() + 1; it != node.keys.end(); ++it) {
script = BuildScript(std::move(script), ctx.ToPKBytes(*it), OP_CHECKSIGADD);
}
return BuildScript(std::move(script), node.k, verify ? OP_NUMEQUALVERIFY : OP_NUMEQUAL);
}
case Fragment::THRESH: {
CScript script = std::move(subs[0]);
for (size_t i = 1; i < subs.size(); ++i) {
script = BuildScript(std::move(script), subs[i], OP_ADD);
}
return BuildScript(std::move(script), node.k, verify ? OP_EQUALVERIFY : OP_EQUAL);
}
}
assert(false);
};
return TreeEval<CScript>(false, downfn, upfn);
}
template<typename CTx>
std::optional<std::string> ToString(const CTx& ctx) const {
// To construct the std::string representation for a Miniscript object, we use
// the TreeEvalMaybe algorithm. The State is a boolean: whether the parent node is a
// wrapper. If so, non-wrapper expressions must be prefixed with a ":".
auto downfn = [](bool, const Node& node, size_t) {
return (node.fragment == Fragment::WRAP_A || node.fragment == Fragment::WRAP_S ||
node.fragment == Fragment::WRAP_D || node.fragment == Fragment::WRAP_V ||
node.fragment == Fragment::WRAP_J || node.fragment == Fragment::WRAP_N ||
node.fragment == Fragment::WRAP_C ||
(node.fragment == Fragment::AND_V && node.subs[1]->fragment == Fragment::JUST_1) ||
(node.fragment == Fragment::OR_I && node.subs[0]->fragment == Fragment::JUST_0) ||
(node.fragment == Fragment::OR_I && node.subs[1]->fragment == Fragment::JUST_0));
};
// The upward function computes for a node, given whether its parent is a wrapper,
// and the string representations of its child nodes, the string representation of the node.
const bool is_tapscript{IsTapscript(m_script_ctx)};
auto upfn = [&ctx, is_tapscript](bool wrapped, const Node& node, Span<std::string> subs) -> std::optional<std::string> {
std::string ret = wrapped ? ":" : "";
switch (node.fragment) {
case Fragment::WRAP_A: return "a" + std::move(subs[0]);
case Fragment::WRAP_S: return "s" + std::move(subs[0]);
case Fragment::WRAP_C:
if (node.subs[0]->fragment == Fragment::PK_K) {
// pk(K) is syntactic sugar for c:pk_k(K)
auto key_str = ctx.ToString(node.subs[0]->keys[0]);
if (!key_str) return {};
return std::move(ret) + "pk(" + std::move(*key_str) + ")";
}
if (node.subs[0]->fragment == Fragment::PK_H) {
// pkh(K) is syntactic sugar for c:pk_h(K)
auto key_str = ctx.ToString(node.subs[0]->keys[0]);
if (!key_str) return {};
return std::move(ret) + "pkh(" + std::move(*key_str) + ")";
}
return "c" + std::move(subs[0]);
case Fragment::WRAP_D: return "d" + std::move(subs[0]);
case Fragment::WRAP_V: return "v" + std::move(subs[0]);
case Fragment::WRAP_J: return "j" + std::move(subs[0]);
case Fragment::WRAP_N: return "n" + std::move(subs[0]);
case Fragment::AND_V:
// t:X is syntactic sugar for and_v(X,1).
if (node.subs[1]->fragment == Fragment::JUST_1) return "t" + std::move(subs[0]);
break;
case Fragment::OR_I:
if (node.subs[0]->fragment == Fragment::JUST_0) return "l" + std::move(subs[1]);
if (node.subs[1]->fragment == Fragment::JUST_0) return "u" + std::move(subs[0]);
break;
default: break;
}
switch (node.fragment) {
case Fragment::PK_K: {
auto key_str = ctx.ToString(node.keys[0]);
if (!key_str) return {};
return std::move(ret) + "pk_k(" + std::move(*key_str) + ")";
}
case Fragment::PK_H: {
auto key_str = ctx.ToString(node.keys[0]);
if (!key_str) return {};
return std::move(ret) + "pk_h(" + std::move(*key_str) + ")";
}
case Fragment::AFTER: return std::move(ret) + "after(" + ::ToString(node.k) + ")";
case Fragment::OLDER: return std::move(ret) + "older(" + ::ToString(node.k) + ")";
case Fragment::HASH256: return std::move(ret) + "hash256(" + HexStr(node.data) + ")";
case Fragment::HASH160: return std::move(ret) + "hash160(" + HexStr(node.data) + ")";
case Fragment::SHA256: return std::move(ret) + "sha256(" + HexStr(node.data) + ")";
case Fragment::RIPEMD160: return std::move(ret) + "ripemd160(" + HexStr(node.data) + ")";
case Fragment::JUST_1: return std::move(ret) + "1";
case Fragment::JUST_0: return std::move(ret) + "0";
case Fragment::AND_V: return std::move(ret) + "and_v(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")";
case Fragment::AND_B: return std::move(ret) + "and_b(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")";
case Fragment::OR_B: return std::move(ret) + "or_b(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")";
case Fragment::OR_D: return std::move(ret) + "or_d(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")";
case Fragment::OR_C: return std::move(ret) + "or_c(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")";
case Fragment::OR_I: return std::move(ret) + "or_i(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")";
case Fragment::ANDOR:
// and_n(X,Y) is syntactic sugar for andor(X,Y,0).
if (node.subs[2]->fragment == Fragment::JUST_0) return std::move(ret) + "and_n(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")";
return std::move(ret) + "andor(" + std::move(subs[0]) + "," + std::move(subs[1]) + "," + std::move(subs[2]) + ")";
case Fragment::MULTI: {
CHECK_NONFATAL(!is_tapscript);
auto str = std::move(ret) + "multi(" + ::ToString(node.k);
for (const auto& key : node.keys) {
auto key_str = ctx.ToString(key);
if (!key_str) return {};
str += "," + std::move(*key_str);
}
return std::move(str) + ")";
}
case Fragment::MULTI_A: {
CHECK_NONFATAL(is_tapscript);
auto str = std::move(ret) + "multi_a(" + ::ToString(node.k);
for (const auto& key : node.keys) {
auto key_str = ctx.ToString(key);
if (!key_str) return {};
str += "," + std::move(*key_str);
}
return std::move(str) + ")";
}
case Fragment::THRESH: {
auto str = std::move(ret) + "thresh(" + ::ToString(node.k);
for (auto& sub : subs) {
str += "," + std::move(sub);
}
return std::move(str) + ")";
}
default: break;
}
assert(false);
};
return TreeEvalMaybe<std::string>(false, downfn, upfn);
}
private:
internal::Ops CalcOps() const {
switch (fragment) {
case Fragment::JUST_1: return {0, 0, {}};
case Fragment::JUST_0: return {0, {}, 0};
case Fragment::PK_K: return {0, 0, 0};
case Fragment::PK_H: return {3, 0, 0};
case Fragment::OLDER:
case Fragment::AFTER: return {1, 0, {}};
case Fragment::SHA256:
case Fragment::RIPEMD160:
case Fragment::HASH256:
case Fragment::HASH160: return {4, 0, {}};
case Fragment::AND_V: return {subs[0]->ops.count + subs[1]->ops.count, subs[0]->ops.sat + subs[1]->ops.sat, {}};
case Fragment::AND_B: {
const auto count{1 + subs[0]->ops.count + subs[1]->ops.count};
const auto sat{subs[0]->ops.sat + subs[1]->ops.sat};
const auto dsat{subs[0]->ops.dsat + subs[1]->ops.dsat};
return {count, sat, dsat};
}
case Fragment::OR_B: {
const auto count{1 + subs[0]->ops.count + subs[1]->ops.count};
const auto sat{(subs[0]->ops.sat + subs[1]->ops.dsat) | (subs[1]->ops.sat + subs[0]->ops.dsat)};
const auto dsat{subs[0]->ops.dsat + subs[1]->ops.dsat};
return {count, sat, dsat};
}
case Fragment::OR_D: {
const auto count{3 + subs[0]->ops.count + subs[1]->ops.count};
const auto sat{subs[0]->ops.sat | (subs[1]->ops.sat + subs[0]->ops.dsat)};
const auto dsat{subs[0]->ops.dsat + subs[1]->ops.dsat};
return {count, sat, dsat};
}
case Fragment::OR_C: {
const auto count{2 + subs[0]->ops.count + subs[1]->ops.count};
const auto sat{subs[0]->ops.sat | (subs[1]->ops.sat + subs[0]->ops.dsat)};
return {count, sat, {}};
}
case Fragment::OR_I: {
const auto count{3 + subs[0]->ops.count + subs[1]->ops.count};
const auto sat{subs[0]->ops.sat | subs[1]->ops.sat};
const auto dsat{subs[0]->ops.dsat | subs[1]->ops.dsat};
return {count, sat, dsat};
}
case Fragment::ANDOR: {
const auto count{3 + subs[0]->ops.count + subs[1]->ops.count + subs[2]->ops.count};
const auto sat{(subs[1]->ops.sat + subs[0]->ops.sat) | (subs[0]->ops.dsat + subs[2]->ops.sat)};
const auto dsat{subs[0]->ops.dsat + subs[2]->ops.dsat};
return {count, sat, dsat};
}
case Fragment::MULTI: return {1, (uint32_t)keys.size(), (uint32_t)keys.size()};
case Fragment::MULTI_A: return {(uint32_t)keys.size() + 1, 0, 0};
case Fragment::WRAP_S:
case Fragment::WRAP_C:
case Fragment::WRAP_N: return {1 + subs[0]->ops.count, subs[0]->ops.sat, subs[0]->ops.dsat};
case Fragment::WRAP_A: return {2 + subs[0]->ops.count, subs[0]->ops.sat, subs[0]->ops.dsat};
case Fragment::WRAP_D: return {3 + subs[0]->ops.count, subs[0]->ops.sat, 0};
case Fragment::WRAP_J: return {4 + subs[0]->ops.count, subs[0]->ops.sat, 0};
case Fragment::WRAP_V: return {subs[0]->ops.count + (subs[0]->GetType() << "x"_mst), subs[0]->ops.sat, {}};
case Fragment::THRESH: {
uint32_t count = 0;
auto sats = Vector(internal::MaxInt<uint32_t>(0));
for (const auto& sub : subs) {
count += sub->ops.count + 1;
auto next_sats = Vector(sats[0] + sub->ops.dsat);
for (size_t j = 1; j < sats.size(); ++j) next_sats.push_back((sats[j] + sub->ops.dsat) | (sats[j - 1] + sub->ops.sat));
next_sats.push_back(sats[sats.size() - 1] + sub->ops.sat);
sats = std::move(next_sats);
}
assert(k <= sats.size());
return {count, sats[k], sats[0]};
}
}
assert(false);
}
internal::StackSize CalcStackSize() const {
using namespace internal;
switch (fragment) {
case Fragment::JUST_0: return {{}, SatInfo::Push()};
case Fragment::JUST_1: return {SatInfo::Push(), {}};
case Fragment::OLDER:
case Fragment::AFTER: return {SatInfo::Push() + SatInfo::Nop(), {}};
case Fragment::PK_K: return {SatInfo::Push()};
case Fragment::PK_H: return {SatInfo::OP_DUP() + SatInfo::Hash() + SatInfo::Push() + SatInfo::OP_EQUALVERIFY()};
case Fragment::SHA256:
case Fragment::RIPEMD160:
case Fragment::HASH256:
case Fragment::HASH160: return {
SatInfo::OP_SIZE() + SatInfo::Push() + SatInfo::OP_EQUALVERIFY() + SatInfo::Hash() + SatInfo::Push() + SatInfo::OP_EQUAL(),
{}
};
case Fragment::ANDOR: {
const auto& x{subs[0]->ss};
const auto& y{subs[1]->ss};
const auto& z{subs[2]->ss};
return {
(x.sat + SatInfo::If() + y.sat) | (x.dsat + SatInfo::If() + z.sat),
x.dsat + SatInfo::If() + z.dsat
};
}
case Fragment::AND_V: {
const auto& x{subs[0]->ss};
const auto& y{subs[1]->ss};
return {x.sat + y.sat, {}};
}
case Fragment::AND_B: {
const auto& x{subs[0]->ss};
const auto& y{subs[1]->ss};
return {x.sat + y.sat + SatInfo::BinaryOp(), x.dsat + y.dsat + SatInfo::BinaryOp()};
}
case Fragment::OR_B: {
const auto& x{subs[0]->ss};
const auto& y{subs[1]->ss};
return {
((x.sat + y.dsat) | (x.dsat + y.sat)) + SatInfo::BinaryOp(),
x.dsat + y.dsat + SatInfo::BinaryOp()
};
}
case Fragment::OR_C: {
const auto& x{subs[0]->ss};
const auto& y{subs[1]->ss};
return {(x.sat + SatInfo::If()) | (x.dsat + SatInfo::If() + y.sat), {}};
}
case Fragment::OR_D: {
const auto& x{subs[0]->ss};
const auto& y{subs[1]->ss};
return {
(x.sat + SatInfo::OP_IFDUP(true) + SatInfo::If()) | (x.dsat + SatInfo::OP_IFDUP(false) + SatInfo::If() + y.sat),
x.dsat + SatInfo::OP_IFDUP(false) + SatInfo::If() + y.dsat
};
}
case Fragment::OR_I: {
const auto& x{subs[0]->ss};
const auto& y{subs[1]->ss};
return {SatInfo::If() + (x.sat | y.sat), SatInfo::If() + (x.dsat | y.dsat)};
}
// multi(k, key1, key2, ..., key_n) starts off with k+1 stack elements (a 0, plus k
// signatures), then reaches n+k+3 stack elements after pushing the n keys, plus k and
// n itself, and ends with 1 stack element (success or failure). Thus, it net removes
// k elements (from k+1 to 1), while reaching k+n+2 more than it ends with.
case Fragment::MULTI: return {SatInfo(k, k + keys.size() + 2)};
// multi_a(k, key1, key2, ..., key_n) starts off with n stack elements (the
// signatures), reaches 1 more (after the first key push), and ends with 1. Thus it net
// removes n-1 elements (from n to 1) while reaching n more than it ends with.
case Fragment::MULTI_A: return {SatInfo(keys.size() - 1, keys.size())};
case Fragment::WRAP_A:
case Fragment::WRAP_N:
case Fragment::WRAP_S: return subs[0]->ss;
case Fragment::WRAP_C: return {
subs[0]->ss.sat + SatInfo::OP_CHECKSIG(),
subs[0]->ss.dsat + SatInfo::OP_CHECKSIG()
};
case Fragment::WRAP_D: return {
SatInfo::OP_DUP() + SatInfo::If() + subs[0]->ss.sat,
SatInfo::OP_DUP() + SatInfo::If()
};
case Fragment::WRAP_V: return {subs[0]->ss.sat + SatInfo::OP_VERIFY(), {}};
case Fragment::WRAP_J: return {
SatInfo::OP_SIZE() + SatInfo::OP_0NOTEQUAL() + SatInfo::If() + subs[0]->ss.sat,
SatInfo::OP_SIZE() + SatInfo::OP_0NOTEQUAL() + SatInfo::If()
};
case Fragment::THRESH: {
// sats[j] is the SatInfo corresponding to all traces reaching j satisfactions.
auto sats = Vector(SatInfo::Empty());
for (size_t i = 0; i < subs.size(); ++i) {
// Loop over the subexpressions, processing them one by one. After adding
// element i we need to add OP_ADD (if i>0).
auto add = i ? SatInfo::BinaryOp() : SatInfo::Empty();
// Construct a variable that will become the next sats, starting with index 0.
auto next_sats = Vector(sats[0] + subs[i]->ss.dsat + add);
// Then loop to construct next_sats[1..i].
for (size_t j = 1; j < sats.size(); ++j) {
next_sats.push_back(((sats[j] + subs[i]->ss.dsat) | (sats[j - 1] + subs[i]->ss.sat)) + add);
}
// Finally construct next_sats[i+1].
next_sats.push_back(sats[sats.size() - 1] + subs[i]->ss.sat + add);
// Switch over.
sats = std::move(next_sats);
}
// To satisfy thresh we need k satisfactions; to dissatisfy we need 0. In both
// cases a push of k and an OP_EQUAL follow.
return {
sats[k] + SatInfo::Push() + SatInfo::OP_EQUAL(),
sats[0] + SatInfo::Push() + SatInfo::OP_EQUAL()
};
}
}
assert(false);
}
internal::WitnessSize CalcWitnessSize() const {
const uint32_t sig_size = IsTapscript(m_script_ctx) ? 1 + 65 : 1 + 72;
const uint32_t pubkey_size = IsTapscript(m_script_ctx) ? 1 + 32 : 1 + 33;
switch (fragment) {
case Fragment::JUST_0: return {{}, 0};
case Fragment::JUST_1:
case Fragment::OLDER:
case Fragment::AFTER: return {0, {}};
case Fragment::PK_K: return {sig_size, 1};
case Fragment::PK_H: return {sig_size + pubkey_size, 1 + pubkey_size};
case Fragment::SHA256:
case Fragment::RIPEMD160:
case Fragment::HASH256:
case Fragment::HASH160: return {1 + 32, {}};
case Fragment::ANDOR: {
const auto sat{(subs[0]->ws.sat + subs[1]->ws.sat) | (subs[0]->ws.dsat + subs[2]->ws.sat)};
const auto dsat{subs[0]->ws.dsat + subs[2]->ws.dsat};
return {sat, dsat};
}
case Fragment::AND_V: return {subs[0]->ws.sat + subs[1]->ws.sat, {}};
case Fragment::AND_B: return {subs[0]->ws.sat + subs[1]->ws.sat, subs[0]->ws.dsat + subs[1]->ws.dsat};
case Fragment::OR_B: {
const auto sat{(subs[0]->ws.dsat + subs[1]->ws.sat) | (subs[0]->ws.sat + subs[1]->ws.dsat)};
const auto dsat{subs[0]->ws.dsat + subs[1]->ws.dsat};
return {sat, dsat};
}
case Fragment::OR_C: return {subs[0]->ws.sat | (subs[0]->ws.dsat + subs[1]->ws.sat), {}};
case Fragment::OR_D: return {subs[0]->ws.sat | (subs[0]->ws.dsat + subs[1]->ws.sat), subs[0]->ws.dsat + subs[1]->ws.dsat};
case Fragment::OR_I: return {(subs[0]->ws.sat + 1 + 1) | (subs[1]->ws.sat + 1), (subs[0]->ws.dsat + 1 + 1) | (subs[1]->ws.dsat + 1)};
case Fragment::MULTI: return {k * sig_size + 1, k + 1};
case Fragment::MULTI_A: return {k * sig_size + static_cast<uint32_t>(keys.size()) - k, static_cast<uint32_t>(keys.size())};
case Fragment::WRAP_A:
case Fragment::WRAP_N:
case Fragment::WRAP_S:
case Fragment::WRAP_C: return subs[0]->ws;
case Fragment::WRAP_D: return {1 + 1 + subs[0]->ws.sat, 1};
case Fragment::WRAP_V: return {subs[0]->ws.sat, {}};
case Fragment::WRAP_J: return {subs[0]->ws.sat, 1};
case Fragment::THRESH: {
auto sats = Vector(internal::MaxInt<uint32_t>(0));
for (const auto& sub : subs) {
auto next_sats = Vector(sats[0] + sub->ws.dsat);
for (size_t j = 1; j < sats.size(); ++j) next_sats.push_back((sats[j] + sub->ws.dsat) | (sats[j - 1] + sub->ws.sat));
next_sats.push_back(sats[sats.size() - 1] + sub->ws.sat);
sats = std::move(next_sats);
}
assert(k <= sats.size());
return {sats[k], sats[0]};
}
}
assert(false);
}
template<typename Ctx>
internal::InputResult ProduceInput(const Ctx& ctx) const {
using namespace internal;
// Internal function which is invoked for every tree node, constructing satisfaction/dissatisfactions
// given those of its subnodes.
auto helper = [&ctx](const Node& node, Span<InputResult> subres) -> InputResult {
switch (node.fragment) {
case Fragment::PK_K: {
std::vector<unsigned char> sig;
Availability avail = ctx.Sign(node.keys[0], sig);
return {ZERO, InputStack(std::move(sig)).SetWithSig().SetAvailable(avail)};
}
case Fragment::PK_H: {
std::vector<unsigned char> key = ctx.ToPKBytes(node.keys[0]), sig;
Availability avail = ctx.Sign(node.keys[0], sig);
return {ZERO + InputStack(key), (InputStack(std::move(sig)).SetWithSig() + InputStack(key)).SetAvailable(avail)};
}
case Fragment::MULTI_A: {
// sats[j] represents the best stack containing j valid signatures (out of the first i keys).
// In the loop below, these stacks are built up using a dynamic programming approach.
std::vector<InputStack> sats = Vector(EMPTY);
for (size_t i = 0; i < node.keys.size(); ++i) {
// Get the signature for the i'th key in reverse order (the signature for the first key needs to
// be at the top of the stack, contrary to CHECKMULTISIG's satisfaction).
std::vector<unsigned char> sig;
Availability avail = ctx.Sign(node.keys[node.keys.size() - 1 - i], sig);
// Compute signature stack for just this key.
auto sat = InputStack(std::move(sig)).SetWithSig().SetAvailable(avail);
// Compute the next sats vector: next_sats[0] is a copy of sats[0] (no signatures). All further
// next_sats[j] are equal to either the existing sats[j] + ZERO, or sats[j-1] plus a signature
// for the current (i'th) key. The very last element needs all signatures filled.
std::vector<InputStack> next_sats;
next_sats.push_back(sats[0] + ZERO);
for (size_t j = 1; j < sats.size(); ++j) next_sats.push_back((sats[j] + ZERO) | (std::move(sats[j - 1]) + sat));
next_sats.push_back(std::move(sats[sats.size() - 1]) + std::move(sat));
// Switch over.
sats = std::move(next_sats);
}
// The dissatisfaction consists of as many empty vectors as there are keys, which is the same as
// satisfying 0 keys.
auto& nsat{sats[0]};
assert(node.k != 0);
assert(node.k <= sats.size());
return {std::move(nsat), std::move(sats[node.k])};
}
case Fragment::MULTI: {
// sats[j] represents the best stack containing j valid signatures (out of the first i keys).
// In the loop below, these stacks are built up using a dynamic programming approach.
// sats[0] starts off being {0}, due to the CHECKMULTISIG bug that pops off one element too many.
std::vector<InputStack> sats = Vector(ZERO);
for (size_t i = 0; i < node.keys.size(); ++i) {
std::vector<unsigned char> sig;
Availability avail = ctx.Sign(node.keys[i], sig);
// Compute signature stack for just the i'th key.
auto sat = InputStack(std::move(sig)).SetWithSig().SetAvailable(avail);
// Compute the next sats vector: next_sats[0] is a copy of sats[0] (no signatures). All further
// next_sats[j] are equal to either the existing sats[j], or sats[j-1] plus a signature for the
// current (i'th) key. The very last element needs all signatures filled.
std::vector<InputStack> next_sats;
next_sats.push_back(sats[0]);
for (size_t j = 1; j < sats.size(); ++j) next_sats.push_back(sats[j] | (std::move(sats[j - 1]) + sat));
next_sats.push_back(std::move(sats[sats.size() - 1]) + std::move(sat));
// Switch over.
sats = std::move(next_sats);
}
// The dissatisfaction consists of k+1 stack elements all equal to 0.
InputStack nsat = ZERO;
for (size_t i = 0; i < node.k; ++i) nsat = std::move(nsat) + ZERO;
assert(node.k <= sats.size());
return {std::move(nsat), std::move(sats[node.k])};
}
case Fragment::THRESH: {
// sats[k] represents the best stack that satisfies k out of the *last* i subexpressions.
// In the loop below, these stacks are built up using a dynamic programming approach.
// sats[0] starts off empty.
std::vector<InputStack> sats = Vector(EMPTY);
for (size_t i = 0; i < subres.size(); ++i) {
// Introduce an alias for the i'th last satisfaction/dissatisfaction.
auto& res = subres[subres.size() - i - 1];
// Compute the next sats vector: next_sats[0] is sats[0] plus res.nsat (thus containing all dissatisfactions
// so far. next_sats[j] is either sats[j] + res.nsat (reusing j earlier satisfactions) or sats[j-1] + res.sat
// (reusing j-1 earlier satisfactions plus a new one). The very last next_sats[j] is all satisfactions.
std::vector<InputStack> next_sats;
next_sats.push_back(sats[0] + res.nsat);
for (size_t j = 1; j < sats.size(); ++j) next_sats.push_back((sats[j] + res.nsat) | (std::move(sats[j - 1]) + res.sat));
next_sats.push_back(std::move(sats[sats.size() - 1]) + std::move(res.sat));
// Switch over.
sats = std::move(next_sats);
}
// At this point, sats[k].sat is the best satisfaction for the overall thresh() node. The best dissatisfaction
// is computed by gathering all sats[i].nsat for i != k.
InputStack nsat = INVALID;
for (size_t i = 0; i < sats.size(); ++i) {
// i==k is the satisfaction; i==0 is the canonical dissatisfaction;
// the rest are non-canonical (a no-signature dissatisfaction - the i=0
// form - is always available) and malleable (due to overcompleteness).
// Marking the solutions malleable here is not strictly necessary, as they
// should already never be picked in non-malleable solutions due to the
// availability of the i=0 form.
if (i != 0 && i != node.k) sats[i].SetMalleable().SetNonCanon();
// Include all dissatisfactions (even these non-canonical ones) in nsat.
if (i != node.k) nsat = std::move(nsat) | std::move(sats[i]);
}
assert(node.k <= sats.size());
return {std::move(nsat), std::move(sats[node.k])};
}
case Fragment::OLDER: {
return {INVALID, ctx.CheckOlder(node.k) ? EMPTY : INVALID};
}
case Fragment::AFTER: {
return {INVALID, ctx.CheckAfter(node.k) ? EMPTY : INVALID};
}
case Fragment::SHA256: {
std::vector<unsigned char> preimage;
Availability avail = ctx.SatSHA256(node.data, preimage);
return {ZERO32, InputStack(std::move(preimage)).SetAvailable(avail)};
}
case Fragment::RIPEMD160: {
std::vector<unsigned char> preimage;
Availability avail = ctx.SatRIPEMD160(node.data, preimage);
return {ZERO32, InputStack(std::move(preimage)).SetAvailable(avail)};
}
case Fragment::HASH256: {
std::vector<unsigned char> preimage;
Availability avail = ctx.SatHASH256(node.data, preimage);
return {ZERO32, InputStack(std::move(preimage)).SetAvailable(avail)};
}
case Fragment::HASH160: {
std::vector<unsigned char> preimage;
Availability avail = ctx.SatHASH160(node.data, preimage);
return {ZERO32, InputStack(std::move(preimage)).SetAvailable(avail)};
}
case Fragment::AND_V: {
auto& x = subres[0], &y = subres[1];
// As the dissatisfaction here only consist of a single option, it doesn't
// actually need to be listed (it's not required for reasoning about malleability of
// other options), and is never required (no valid miniscript relies on the ability
// to satisfy the type V left subexpression). It's still listed here for
// completeness, as a hypothetical (not currently implemented) satisfier that doesn't
// care about malleability might in some cases prefer it still.
return {(y.nsat + x.sat).SetNonCanon(), y.sat + x.sat};
}
case Fragment::AND_B: {
auto& x = subres[0], &y = subres[1];
// Note that it is not strictly necessary to mark the 2nd and 3rd dissatisfaction here
// as malleable. While they are definitely malleable, they are also non-canonical due
// to the guaranteed existence of a no-signature other dissatisfaction (the 1st)
// option. Because of that, the 2nd and 3rd option will never be chosen, even if they
// weren't marked as malleable.
return {(y.nsat + x.nsat) | (y.sat + x.nsat).SetMalleable().SetNonCanon() | (y.nsat + x.sat).SetMalleable().SetNonCanon(), y.sat + x.sat};
}
case Fragment::OR_B: {
auto& x = subres[0], &z = subres[1];
// The (sat(Z) sat(X)) solution is overcomplete (attacker can change either into dsat).
return {z.nsat + x.nsat, (z.nsat + x.sat) | (z.sat + x.nsat) | (z.sat + x.sat).SetMalleable().SetNonCanon()};
}
case Fragment::OR_C: {
auto& x = subres[0], &z = subres[1];
return {INVALID, std::move(x.sat) | (z.sat + x.nsat)};
}
case Fragment::OR_D: {
auto& x = subres[0], &z = subres[1];
return {z.nsat + x.nsat, std::move(x.sat) | (z.sat + x.nsat)};
}
case Fragment::OR_I: {
auto& x = subres[0], &z = subres[1];
return {(x.nsat + ONE) | (z.nsat + ZERO), (x.sat + ONE) | (z.sat + ZERO)};
}
case Fragment::ANDOR: {
auto& x = subres[0], &y = subres[1], &z = subres[2];
return {(y.nsat + x.sat).SetNonCanon() | (z.nsat + x.nsat), (y.sat + x.sat) | (z.sat + x.nsat)};
}
case Fragment::WRAP_A:
case Fragment::WRAP_S:
case Fragment::WRAP_C:
case Fragment::WRAP_N:
return std::move(subres[0]);
case Fragment::WRAP_D: {
auto &x = subres[0];
return {ZERO, x.sat + ONE};
}
case Fragment::WRAP_J: {
auto &x = subres[0];
// If a dissatisfaction with a nonzero top stack element exists, an alternative dissatisfaction exists.
// As the dissatisfaction logic currently doesn't keep track of this nonzeroness property, and thus even
// if a dissatisfaction with a top zero element is found, we don't know whether another one with a
// nonzero top stack element exists. Make the conservative assumption that whenever the subexpression is weakly
// dissatisfiable, this alternative dissatisfaction exists and leads to malleability.
return {InputStack(ZERO).SetMalleable(x.nsat.available != Availability::NO && !x.nsat.has_sig), std::move(x.sat)};
}
case Fragment::WRAP_V: {
auto &x = subres[0];
return {INVALID, std::move(x.sat)};
}
case Fragment::JUST_0: return {EMPTY, INVALID};
case Fragment::JUST_1: return {INVALID, EMPTY};
}
assert(false);
return {INVALID, INVALID};
};
auto tester = [&helper](const Node& node, Span<InputResult> subres) -> InputResult {
auto ret = helper(node, subres);
// Do a consistency check between the satisfaction code and the type checker
// (the actual satisfaction code in ProduceInputHelper does not use GetType)
// For 'z' nodes, available satisfactions/dissatisfactions must have stack size 0.
if (node.GetType() << "z"_mst && ret.nsat.available != Availability::NO) assert(ret.nsat.stack.size() == 0);
if (node.GetType() << "z"_mst && ret.sat.available != Availability::NO) assert(ret.sat.stack.size() == 0);
// For 'o' nodes, available satisfactions/dissatisfactions must have stack size 1.
if (node.GetType() << "o"_mst && ret.nsat.available != Availability::NO) assert(ret.nsat.stack.size() == 1);
if (node.GetType() << "o"_mst && ret.sat.available != Availability::NO) assert(ret.sat.stack.size() == 1);
// For 'n' nodes, available satisfactions/dissatisfactions must have stack size 1 or larger. For satisfactions,
// the top element cannot be 0.
if (node.GetType() << "n"_mst && ret.sat.available != Availability::NO) assert(ret.sat.stack.size() >= 1);
if (node.GetType() << "n"_mst && ret.nsat.available != Availability::NO) assert(ret.nsat.stack.size() >= 1);
if (node.GetType() << "n"_mst && ret.sat.available != Availability::NO) assert(!ret.sat.stack.back().empty());
// For 'd' nodes, a dissatisfaction must exist, and they must not need a signature. If it is non-malleable,
// it must be canonical.
if (node.GetType() << "d"_mst) assert(ret.nsat.available != Availability::NO);
if (node.GetType() << "d"_mst) assert(!ret.nsat.has_sig);
if (node.GetType() << "d"_mst && !ret.nsat.malleable) assert(!ret.nsat.non_canon);
// For 'f'/'s' nodes, dissatisfactions/satisfactions must have a signature.
if (node.GetType() << "f"_mst && ret.nsat.available != Availability::NO) assert(ret.nsat.has_sig);
if (node.GetType() << "s"_mst && ret.sat.available != Availability::NO) assert(ret.sat.has_sig);
// For non-malleable 'e' nodes, a non-malleable dissatisfaction must exist.
if (node.GetType() << "me"_mst) assert(ret.nsat.available != Availability::NO);
if (node.GetType() << "me"_mst) assert(!ret.nsat.malleable);
// For 'm' nodes, if a satisfaction exists, it must be non-malleable.
if (node.GetType() << "m"_mst && ret.sat.available != Availability::NO) assert(!ret.sat.malleable);
// If a non-malleable satisfaction exists, it must be canonical.
if (ret.sat.available != Availability::NO && !ret.sat.malleable) assert(!ret.sat.non_canon);
return ret;
};
return TreeEval<InputResult>(tester);
}
public:
/** Update duplicate key information in this Node.
*
* This uses a custom key comparator provided by the context in order to still detect duplicates
* for more complicated types.
*/
template<typename Ctx> void DuplicateKeyCheck(const Ctx& ctx) const
{
// We cannot use a lambda here, as lambdas are non assignable, and the set operations
// below require moving the comparators around.
struct Comp {
const Ctx* ctx_ptr;
Comp(const Ctx& ctx) : ctx_ptr(&ctx) {}
bool operator()(const Key& a, const Key& b) const { return ctx_ptr->KeyCompare(a, b); }
};
// state in the recursive computation:
// - std::nullopt means "this node has duplicates"
// - an std::set means "this node has no duplicate keys, and they are: ...".
using keyset = std::set<Key, Comp>;
using state = std::optional<keyset>;
auto upfn = [&ctx](const Node& node, Span<state> subs) -> state {
// If this node is already known to have duplicates, nothing left to do.
if (node.has_duplicate_keys.has_value() && *node.has_duplicate_keys) return {};
// Check if one of the children is already known to have duplicates.
for (auto& sub : subs) {
if (!sub.has_value()) {
node.has_duplicate_keys = true;
return {};
}
}
// Start building the set of keys involved in this node and children.
// Start by keys in this node directly.
size_t keys_count = node.keys.size();
keyset key_set{node.keys.begin(), node.keys.end(), Comp(ctx)};
if (key_set.size() != keys_count) {
// It already has duplicates; bail out.
node.has_duplicate_keys = true;
return {};
}
// Merge the keys from the children into this set.
for (auto& sub : subs) {
keys_count += sub->size();
// Small optimization: std::set::merge is linear in the size of the second arg but
// logarithmic in the size of the first.
if (key_set.size() < sub->size()) std::swap(key_set, *sub);
key_set.merge(*sub);
if (key_set.size() != keys_count) {
node.has_duplicate_keys = true;
return {};
}
}
node.has_duplicate_keys = false;
return key_set;
};
TreeEval<state>(upfn);
}
//! Return the size of the script for this expression (faster than ToScript().size()).
size_t ScriptSize() const { return scriptlen; }
//! Return the maximum number of ops needed to satisfy this script non-malleably.
std::optional<uint32_t> GetOps() const {
if (!ops.sat.valid) return {};
return ops.count + ops.sat.value;
}
//! Return the number of ops in the script (not counting the dynamic ones that depend on execution).
uint32_t GetStaticOps() const { return ops.count; }
//! Check the ops limit of this script against the consensus limit.
bool CheckOpsLimit() const {
if (IsTapscript(m_script_ctx)) return true;
if (const auto ops = GetOps()) return *ops <= MAX_OPS_PER_SCRIPT;
return true;
}
/** Whether this node is of type B, K or W. (That is, anything but V.) */
bool IsBKW() const {
return !((GetType() & "BKW"_mst) == ""_mst);
}
/** Return the maximum number of stack elements needed to satisfy this script non-malleably. */
std::optional<uint32_t> GetStackSize() const {
if (!ss.sat.valid) return {};
return ss.sat.netdiff + static_cast<int32_t>(IsBKW());
}
//! Return the maximum size of the stack during execution of this script.
std::optional<uint32_t> GetExecStackSize() const {
if (!ss.sat.valid) return {};
return ss.sat.exec + static_cast<int32_t>(IsBKW());
}
//! Check the maximum stack size for this script against the policy limit.
bool CheckStackSize() const {
// Since in Tapscript there is no standardness limit on the script and witness sizes, we may run
// into the maximum stack size while executing the script. Make sure it doesn't happen.
if (IsTapscript(m_script_ctx)) {
if (const auto exec_ss = GetExecStackSize()) return exec_ss <= MAX_STACK_SIZE;
return true;
}
if (const auto ss = GetStackSize()) return *ss <= MAX_STANDARD_P2WSH_STACK_ITEMS;
return true;
}
//! Whether no satisfaction exists for this node.
bool IsNotSatisfiable() const { return !GetStackSize(); }
/** Return the maximum size in bytes of a witness to satisfy this script non-malleably. Note this does
* not include the witness script push. */
std::optional<uint32_t> GetWitnessSize() const {
if (!ws.sat.valid) return {};
return ws.sat.value;
}
//! Return the expression type.
Type GetType() const { return typ; }
//! Return the script context for this node.
MiniscriptContext GetMsCtx() const { return m_script_ctx; }
//! Find an insane subnode which has no insane children. Nullptr if there is none.
const Node* FindInsaneSub() const {
return TreeEval<const Node*>([](const Node& node, Span<const Node*> subs) -> const Node* {
for (auto& sub: subs) if (sub) return sub;
if (!node.IsSaneSubexpression()) return &node;
return nullptr;
});
}
//! Determine whether a Miniscript node is satisfiable. fn(node) will be invoked for all
//! key, time, and hashing nodes, and should return their satisfiability.
template<typename F>
bool IsSatisfiable(F fn) const
{
// TreeEval() doesn't support bool as NodeType, so use int instead.
return TreeEval<int>([&fn](const Node& node, Span<int> subs) -> bool {
switch (node.fragment) {
case Fragment::JUST_0:
return false;
case Fragment::JUST_1:
return true;
case Fragment::PK_K:
case Fragment::PK_H:
case Fragment::MULTI:
case Fragment::MULTI_A:
case Fragment::AFTER:
case Fragment::OLDER:
case Fragment::HASH256:
case Fragment::HASH160:
case Fragment::SHA256:
case Fragment::RIPEMD160:
return bool{fn(node)};
case Fragment::ANDOR:
return (subs[0] && subs[1]) || subs[2];
case Fragment::AND_V:
case Fragment::AND_B:
return subs[0] && subs[1];
case Fragment::OR_B:
case Fragment::OR_C:
case Fragment::OR_D:
case Fragment::OR_I:
return subs[0] || subs[1];
case Fragment::THRESH:
return static_cast<uint32_t>(std::count(subs.begin(), subs.end(), true)) >= node.k;
default: // wrappers
assert(subs.size() == 1);
return subs[0];
}
});
}
//! Check whether this node is valid at all.
bool IsValid() const {
if (GetType() == ""_mst) return false;
return ScriptSize() <= internal::MaxScriptSize(m_script_ctx);
}
//! Check whether this node is valid as a script on its own.
bool IsValidTopLevel() const { return IsValid() && GetType() << "B"_mst; }
//! Check whether this script can always be satisfied in a non-malleable way.
bool IsNonMalleable() const { return GetType() << "m"_mst; }
//! Check whether this script always needs a signature.
bool NeedsSignature() const { return GetType() << "s"_mst; }
//! Check whether there is no satisfaction path that contains both timelocks and heightlocks
bool CheckTimeLocksMix() const { return GetType() << "k"_mst; }
//! Check whether there is no duplicate key across this fragment and all its sub-fragments.
bool CheckDuplicateKey() const { return has_duplicate_keys && !*has_duplicate_keys; }
//! Whether successful non-malleable satisfactions are guaranteed to be valid.
bool ValidSatisfactions() const { return IsValid() && CheckOpsLimit() && CheckStackSize(); }
//! Whether the apparent policy of this node matches its script semantics. Doesn't guarantee it is a safe script on its own.
bool IsSaneSubexpression() const { return ValidSatisfactions() && IsNonMalleable() && CheckTimeLocksMix() && CheckDuplicateKey(); }
//! Check whether this node is safe as a script on its own.
bool IsSane() const { return IsValidTopLevel() && IsSaneSubexpression() && NeedsSignature(); }
//! Produce a witness for this script, if possible and given the information available in the context.
//! The non-malleable satisfaction is guaranteed to be valid if it exists, and ValidSatisfaction()
//! is true. If IsSane() holds, this satisfaction is guaranteed to succeed in case the node's
//! conditions are satisfied (private keys and hash preimages available, locktimes satsified).
template<typename Ctx>
Availability Satisfy(const Ctx& ctx, std::vector<std::vector<unsigned char>>& stack, bool nonmalleable = true) const {
auto ret = ProduceInput(ctx);
if (nonmalleable && (ret.sat.malleable || !ret.sat.has_sig)) return Availability::NO;
stack = std::move(ret.sat.stack);
return ret.sat.available;
}
//! Equality testing.
bool operator==(const Node<Key>& arg) const { return Compare(*this, arg) == 0; }
// Constructors with various argument combinations, which bypass the duplicate key check.
Node(internal::NoDupCheck, MiniscriptContext script_ctx, Fragment nt, std::vector<NodeRef<Key>> sub, std::vector<unsigned char> arg, uint32_t val = 0)
: fragment(nt), k(val), data(std::move(arg)), subs(std::move(sub)), m_script_ctx{script_ctx}, ops(CalcOps()), ss(CalcStackSize()), ws(CalcWitnessSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {}
Node(internal::NoDupCheck, MiniscriptContext script_ctx, Fragment nt, std::vector<unsigned char> arg, uint32_t val = 0)
: fragment(nt), k(val), data(std::move(arg)), m_script_ctx{script_ctx}, ops(CalcOps()), ss(CalcStackSize()), ws(CalcWitnessSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {}
Node(internal::NoDupCheck, MiniscriptContext script_ctx, Fragment nt, std::vector<NodeRef<Key>> sub, std::vector<Key> key, uint32_t val = 0)
: fragment(nt), k(val), keys(std::move(key)), m_script_ctx{script_ctx}, subs(std::move(sub)), ops(CalcOps()), ss(CalcStackSize()), ws(CalcWitnessSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {}
Node(internal::NoDupCheck, MiniscriptContext script_ctx, Fragment nt, std::vector<Key> key, uint32_t val = 0)
: fragment(nt), k(val), keys(std::move(key)), m_script_ctx{script_ctx}, ops(CalcOps()), ss(CalcStackSize()), ws(CalcWitnessSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {}
Node(internal::NoDupCheck, MiniscriptContext script_ctx, Fragment nt, std::vector<NodeRef<Key>> sub, uint32_t val = 0)
: fragment(nt), k(val), subs(std::move(sub)), m_script_ctx{script_ctx}, ops(CalcOps()), ss(CalcStackSize()), ws(CalcWitnessSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {}
Node(internal::NoDupCheck, MiniscriptContext script_ctx, Fragment nt, uint32_t val = 0)
: fragment(nt), k(val), m_script_ctx{script_ctx}, ops(CalcOps()), ss(CalcStackSize()), ws(CalcWitnessSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {}
// Constructors with various argument combinations, which do perform the duplicate key check.
template <typename Ctx> Node(const Ctx& ctx, Fragment nt, std::vector<NodeRef<Key>> sub, std::vector<unsigned char> arg, uint32_t val = 0)
: Node(internal::NoDupCheck{}, ctx.MsContext(), nt, std::move(sub), std::move(arg), val) { DuplicateKeyCheck(ctx); }
template <typename Ctx> Node(const Ctx& ctx, Fragment nt, std::vector<unsigned char> arg, uint32_t val = 0)
: Node(internal::NoDupCheck{}, ctx.MsContext(), nt, std::move(arg), val) { DuplicateKeyCheck(ctx);}
template <typename Ctx> Node(const Ctx& ctx, Fragment nt, std::vector<NodeRef<Key>> sub, std::vector<Key> key, uint32_t val = 0)
: Node(internal::NoDupCheck{}, ctx.MsContext(), nt, std::move(sub), std::move(key), val) { DuplicateKeyCheck(ctx); }
template <typename Ctx> Node(const Ctx& ctx, Fragment nt, std::vector<Key> key, uint32_t val = 0)
: Node(internal::NoDupCheck{}, ctx.MsContext(), nt, std::move(key), val) { DuplicateKeyCheck(ctx); }
template <typename Ctx> Node(const Ctx& ctx, Fragment nt, std::vector<NodeRef<Key>> sub, uint32_t val = 0)
: Node(internal::NoDupCheck{}, ctx.MsContext(), nt, std::move(sub), val) { DuplicateKeyCheck(ctx); }
template <typename Ctx> Node(const Ctx& ctx, Fragment nt, uint32_t val = 0)
: Node(internal::NoDupCheck{}, ctx.MsContext(), nt, val) { DuplicateKeyCheck(ctx); }
};
namespace internal {
enum class ParseContext {
/** An expression which may be begin with wrappers followed by a colon. */
WRAPPED_EXPR,
/** A miniscript expression which does not begin with wrappers. */
EXPR,
/** SWAP wraps the top constructed node with s: */
SWAP,
/** ALT wraps the top constructed node with a: */
ALT,
/** CHECK wraps the top constructed node with c: */
CHECK,
/** DUP_IF wraps the top constructed node with d: */
DUP_IF,
/** VERIFY wraps the top constructed node with v: */
VERIFY,
/** NON_ZERO wraps the top constructed node with j: */
NON_ZERO,
/** ZERO_NOTEQUAL wraps the top constructed node with n: */
ZERO_NOTEQUAL,
/** WRAP_U will construct an or_i(X,0) node from the top constructed node. */
WRAP_U,
/** WRAP_T will construct an and_v(X,1) node from the top constructed node. */
WRAP_T,
/** AND_N will construct an andor(X,Y,0) node from the last two constructed nodes. */
AND_N,
/** AND_V will construct an and_v node from the last two constructed nodes. */
AND_V,
/** AND_B will construct an and_b node from the last two constructed nodes. */
AND_B,
/** ANDOR will construct an andor node from the last three constructed nodes. */
ANDOR,
/** OR_B will construct an or_b node from the last two constructed nodes. */
OR_B,
/** OR_C will construct an or_c node from the last two constructed nodes. */
OR_C,
/** OR_D will construct an or_d node from the last two constructed nodes. */
OR_D,
/** OR_I will construct an or_i node from the last two constructed nodes. */
OR_I,
/** THRESH will read a wrapped expression, and then look for a COMMA. If
* no comma follows, it will construct a thresh node from the appropriate
* number of constructed children. Otherwise, it will recurse with another
* THRESH. */
THRESH,
/** COMMA expects the next element to be ',' and fails if not. */
COMMA,
/** CLOSE_BRACKET expects the next element to be ')' and fails if not. */
CLOSE_BRACKET,
};
int FindNextChar(Span<const char> in, const char m);
/** Parse a key string ending at the end of the fragment's text representation. */
template<typename Key, typename Ctx>
std::optional<std::pair<Key, int>> ParseKeyEnd(Span<const char> in, const Ctx& ctx)
{
int key_size = FindNextChar(in, ')');
if (key_size < 1) return {};
auto key = ctx.FromString(in.begin(), in.begin() + key_size);
if (!key) return {};
return {{std::move(*key), key_size}};
}
/** Parse a hex string ending at the end of the fragment's text representation. */
template<typename Ctx>
std::optional<std::pair<std::vector<unsigned char>, int>> ParseHexStrEnd(Span<const char> in, const size_t expected_size,
const Ctx& ctx)
{
int hash_size = FindNextChar(in, ')');
if (hash_size < 1) return {};
std::string val = std::string(in.begin(), in.begin() + hash_size);
if (!IsHex(val)) return {};
auto hash = ParseHex(val);
if (hash.size() != expected_size) return {};
return {{std::move(hash), hash_size}};
}
/** BuildBack pops the last two elements off `constructed` and wraps them in the specified Fragment */
template<typename Key>
void BuildBack(const MiniscriptContext script_ctx, Fragment nt, std::vector<NodeRef<Key>>& constructed, const bool reverse = false)
{
NodeRef<Key> child = std::move(constructed.back());
constructed.pop_back();
if (reverse) {
constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, script_ctx, nt, Vector(std::move(child), std::move(constructed.back())));
} else {
constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, script_ctx, nt, Vector(std::move(constructed.back()), std::move(child)));
}
}
/**
* Parse a miniscript from its textual descriptor form.
* This does not check whether the script is valid, let alone sane. The caller is expected to use
* the `IsValidTopLevel()` and `IsSaneTopLevel()` to check for these properties on the node.
*/
template<typename Key, typename Ctx>
inline NodeRef<Key> Parse(Span<const char> in, const Ctx& ctx)
{
using namespace spanparsing;
// Account for the minimum script size for all parsed fragments so far. It "borrows" 1
// script byte from all leaf nodes, counting it instead whenever a space for a recursive
// expression is added (through andor, and_*, or_*, thresh). This guarantees that all fragments
// increment the script_size by at least one, except for:
// - "0", "1": these leafs are only a single byte, so their subtracted-from increment is 0.
// This is not an issue however, as "space" for them has to be created by combinators,
// which do increment script_size.
// - "v:": the v wrapper adds nothing as in some cases it results in no opcode being added
// (instead transforming another opcode into its VERIFY form). However, the v: wrapper has
// to be interleaved with other fragments to be valid, so this is not a concern.
size_t script_size{1};
size_t max_size{internal::MaxScriptSize(ctx.MsContext())};
// The two integers are used to hold state for thresh()
std::vector<std::tuple<ParseContext, int64_t, int64_t>> to_parse;
std::vector<NodeRef<Key>> constructed;
to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
// Parses a multi() or multi_a() from its string representation. Returns false on parsing error.
const auto parse_multi_exp = [&](Span<const char>& in, const bool is_multi_a) -> bool {
const auto max_keys{is_multi_a ? MAX_PUBKEYS_PER_MULTI_A : MAX_PUBKEYS_PER_MULTISIG};
const auto required_ctx{is_multi_a ? MiniscriptContext::TAPSCRIPT : MiniscriptContext::P2WSH};
if (ctx.MsContext() != required_ctx) return false;
// Get threshold
int next_comma = FindNextChar(in, ',');
if (next_comma < 1) return false;
int64_t k;
if (!ParseInt64(std::string(in.begin(), in.begin() + next_comma), &k)) return false;
in = in.subspan(next_comma + 1);
// Get keys. It is compatible for both compressed and x-only keys.
std::vector<Key> keys;
while (next_comma != -1) {
next_comma = FindNextChar(in, ',');
int key_length = (next_comma == -1) ? FindNextChar(in, ')') : next_comma;
if (key_length < 1) return false;
auto key = ctx.FromString(in.begin(), in.begin() + key_length);
if (!key) return false;
keys.push_back(std::move(*key));
in = in.subspan(key_length + 1);
}
if (keys.size() < 1 || keys.size() > max_keys) return false;
if (k < 1 || k > (int64_t)keys.size()) return false;
if (is_multi_a) {
// (push + xonly-key + CHECKSIG[ADD]) * n + k + OP_NUMEQUAL(VERIFY), minus one.
script_size += (1 + 32 + 1) * keys.size() + BuildScript(k).size();
constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::MULTI_A, std::move(keys), k));
} else {
script_size += 2 + (keys.size() > 16) + (k > 16) + 34 * keys.size();
constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::MULTI, std::move(keys), k));
}
return true;
};
while (!to_parse.empty()) {
if (script_size > max_size) return {};
// Get the current context we are decoding within
auto [cur_context, n, k] = to_parse.back();
to_parse.pop_back();
switch (cur_context) {
case ParseContext::WRAPPED_EXPR: {
std::optional<size_t> colon_index{};
for (size_t i = 1; i < in.size(); ++i) {
if (in[i] == ':') {
colon_index = i;
break;
}
if (in[i] < 'a' || in[i] > 'z') break;
}
// If there is no colon, this loop won't execute
bool last_was_v{false};
for (size_t j = 0; colon_index && j < *colon_index; ++j) {
if (script_size > max_size) return {};
if (in[j] == 'a') {
script_size += 2;
to_parse.emplace_back(ParseContext::ALT, -1, -1);
} else if (in[j] == 's') {
script_size += 1;
to_parse.emplace_back(ParseContext::SWAP, -1, -1);
} else if (in[j] == 'c') {
script_size += 1;
to_parse.emplace_back(ParseContext::CHECK, -1, -1);
} else if (in[j] == 'd') {
script_size += 3;
to_parse.emplace_back(ParseContext::DUP_IF, -1, -1);
} else if (in[j] == 'j') {
script_size += 4;
to_parse.emplace_back(ParseContext::NON_ZERO, -1, -1);
} else if (in[j] == 'n') {
script_size += 1;
to_parse.emplace_back(ParseContext::ZERO_NOTEQUAL, -1, -1);
} else if (in[j] == 'v') {
// do not permit "...vv...:"; it's not valid, and also doesn't trigger early
// failure as script_size isn't incremented.
if (last_was_v) return {};
to_parse.emplace_back(ParseContext::VERIFY, -1, -1);
} else if (in[j] == 'u') {
script_size += 4;
to_parse.emplace_back(ParseContext::WRAP_U, -1, -1);
} else if (in[j] == 't') {
script_size += 1;
to_parse.emplace_back(ParseContext::WRAP_T, -1, -1);
} else if (in[j] == 'l') {
// The l: wrapper is equivalent to or_i(0,X)
script_size += 4;
constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::JUST_0));
to_parse.emplace_back(ParseContext::OR_I, -1, -1);
} else {
return {};
}
last_was_v = (in[j] == 'v');
}
to_parse.emplace_back(ParseContext::EXPR, -1, -1);
if (colon_index) in = in.subspan(*colon_index + 1);
break;
}
case ParseContext::EXPR: {
if (Const("0", in)) {
constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::JUST_0));
} else if (Const("1", in)) {
constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::JUST_1));
} else if (Const("pk(", in)) {
auto res = ParseKeyEnd<Key, Ctx>(in, ctx);
if (!res) return {};
auto& [key, key_size] = *res;
constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_C, Vector(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::PK_K, Vector(std::move(key))))));
in = in.subspan(key_size + 1);
script_size += IsTapscript(ctx.MsContext()) ? 33 : 34;
} else if (Const("pkh(", in)) {
auto res = ParseKeyEnd<Key>(in, ctx);
if (!res) return {};
auto& [key, key_size] = *res;
constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_C, Vector(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::PK_H, Vector(std::move(key))))));
in = in.subspan(key_size + 1);
script_size += 24;
} else if (Const("pk_k(", in)) {
auto res = ParseKeyEnd<Key>(in, ctx);
if (!res) return {};
auto& [key, key_size] = *res;
constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::PK_K, Vector(std::move(key))));
in = in.subspan(key_size + 1);
script_size += IsTapscript(ctx.MsContext()) ? 32 : 33;
} else if (Const("pk_h(", in)) {
auto res = ParseKeyEnd<Key>(in, ctx);
if (!res) return {};
auto& [key, key_size] = *res;
constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::PK_H, Vector(std::move(key))));
in = in.subspan(key_size + 1);
script_size += 23;
} else if (Const("sha256(", in)) {
auto res = ParseHexStrEnd(in, 32, ctx);
if (!res) return {};
auto& [hash, hash_size] = *res;
constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::SHA256, std::move(hash)));
in = in.subspan(hash_size + 1);
script_size += 38;
} else if (Const("ripemd160(", in)) {
auto res = ParseHexStrEnd(in, 20, ctx);
if (!res) return {};
auto& [hash, hash_size] = *res;
constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::RIPEMD160, std::move(hash)));
in = in.subspan(hash_size + 1);
script_size += 26;
} else if (Const("hash256(", in)) {
auto res = ParseHexStrEnd(in, 32, ctx);
if (!res) return {};
auto& [hash, hash_size] = *res;
constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::HASH256, std::move(hash)));
in = in.subspan(hash_size + 1);
script_size += 38;
} else if (Const("hash160(", in)) {
auto res = ParseHexStrEnd(in, 20, ctx);
if (!res) return {};
auto& [hash, hash_size] = *res;
constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::HASH160, std::move(hash)));
in = in.subspan(hash_size + 1);
script_size += 26;
} else if (Const("after(", in)) {
int arg_size = FindNextChar(in, ')');
if (arg_size < 1) return {};
int64_t num;
if (!ParseInt64(std::string(in.begin(), in.begin() + arg_size), &num)) return {};
if (num < 1 || num >= 0x80000000L) return {};
constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::AFTER, num));
in = in.subspan(arg_size + 1);
script_size += 1 + (num > 16) + (num > 0x7f) + (num > 0x7fff) + (num > 0x7fffff);
} else if (Const("older(", in)) {
int arg_size = FindNextChar(in, ')');
if (arg_size < 1) return {};
int64_t num;
if (!ParseInt64(std::string(in.begin(), in.begin() + arg_size), &num)) return {};
if (num < 1 || num >= 0x80000000L) return {};
constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::OLDER, num));
in = in.subspan(arg_size + 1);
script_size += 1 + (num > 16) + (num > 0x7f) + (num > 0x7fff) + (num > 0x7fffff);
} else if (Const("multi(", in)) {
if (!parse_multi_exp(in, /* is_multi_a = */false)) return {};
} else if (Const("multi_a(", in)) {
if (!parse_multi_exp(in, /* is_multi_a = */true)) return {};
} else if (Const("thresh(", in)) {
int next_comma = FindNextChar(in, ',');
if (next_comma < 1) return {};
if (!ParseInt64(std::string(in.begin(), in.begin() + next_comma), &k)) return {};
if (k < 1) return {};
in = in.subspan(next_comma + 1);
// n = 1 here because we read the first WRAPPED_EXPR before reaching THRESH
to_parse.emplace_back(ParseContext::THRESH, 1, k);
to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
script_size += 2 + (k > 16) + (k > 0x7f) + (k > 0x7fff) + (k > 0x7fffff);
} else if (Const("andor(", in)) {
to_parse.emplace_back(ParseContext::ANDOR, -1, -1);
to_parse.emplace_back(ParseContext::CLOSE_BRACKET, -1, -1);
to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
to_parse.emplace_back(ParseContext::COMMA, -1, -1);
to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
to_parse.emplace_back(ParseContext::COMMA, -1, -1);
to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
script_size += 5;
} else {
if (Const("and_n(", in)) {
to_parse.emplace_back(ParseContext::AND_N, -1, -1);
script_size += 5;
} else if (Const("and_b(", in)) {
to_parse.emplace_back(ParseContext::AND_B, -1, -1);
script_size += 2;
} else if (Const("and_v(", in)) {
to_parse.emplace_back(ParseContext::AND_V, -1, -1);
script_size += 1;
} else if (Const("or_b(", in)) {
to_parse.emplace_back(ParseContext::OR_B, -1, -1);
script_size += 2;
} else if (Const("or_c(", in)) {
to_parse.emplace_back(ParseContext::OR_C, -1, -1);
script_size += 3;
} else if (Const("or_d(", in)) {
to_parse.emplace_back(ParseContext::OR_D, -1, -1);
script_size += 4;
} else if (Const("or_i(", in)) {
to_parse.emplace_back(ParseContext::OR_I, -1, -1);
script_size += 4;
} else {
return {};
}
to_parse.emplace_back(ParseContext::CLOSE_BRACKET, -1, -1);
to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
to_parse.emplace_back(ParseContext::COMMA, -1, -1);
to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
}
break;
}
case ParseContext::ALT: {
constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_A, Vector(std::move(constructed.back())));
break;
}
case ParseContext::SWAP: {
constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_S, Vector(std::move(constructed.back())));
break;
}
case ParseContext::CHECK: {
constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_C, Vector(std::move(constructed.back())));
break;
}
case ParseContext::DUP_IF: {
constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_D, Vector(std::move(constructed.back())));
break;
}
case ParseContext::NON_ZERO: {
constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_J, Vector(std::move(constructed.back())));
break;
}
case ParseContext::ZERO_NOTEQUAL: {
constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_N, Vector(std::move(constructed.back())));
break;
}
case ParseContext::VERIFY: {
script_size += (constructed.back()->GetType() << "x"_mst);
constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_V, Vector(std::move(constructed.back())));
break;
}
case ParseContext::WRAP_U: {
constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::OR_I, Vector(std::move(constructed.back()), MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::JUST_0)));
break;
}
case ParseContext::WRAP_T: {
constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::AND_V, Vector(std::move(constructed.back()), MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::JUST_1)));
break;
}
case ParseContext::AND_B: {
BuildBack(ctx.MsContext(), Fragment::AND_B, constructed);
break;
}
case ParseContext::AND_N: {
auto mid = std::move(constructed.back());
constructed.pop_back();
constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::ANDOR, Vector(std::move(constructed.back()), std::move(mid), MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::JUST_0)));
break;
}
case ParseContext::AND_V: {
BuildBack(ctx.MsContext(), Fragment::AND_V, constructed);
break;
}
case ParseContext::OR_B: {
BuildBack(ctx.MsContext(), Fragment::OR_B, constructed);
break;
}
case ParseContext::OR_C: {
BuildBack(ctx.MsContext(), Fragment::OR_C, constructed);
break;
}
case ParseContext::OR_D: {
BuildBack(ctx.MsContext(), Fragment::OR_D, constructed);
break;
}
case ParseContext::OR_I: {
BuildBack(ctx.MsContext(), Fragment::OR_I, constructed);
break;
}
case ParseContext::ANDOR: {
auto right = std::move(constructed.back());
constructed.pop_back();
auto mid = std::move(constructed.back());
constructed.pop_back();
constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::ANDOR, Vector(std::move(constructed.back()), std::move(mid), std::move(right)));
break;
}
case ParseContext::THRESH: {
if (in.size() < 1) return {};
if (in[0] == ',') {
in = in.subspan(1);
to_parse.emplace_back(ParseContext::THRESH, n+1, k);
to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
script_size += 2;
} else if (in[0] == ')') {
if (k > n) return {};
in = in.subspan(1);
// Children are constructed in reverse order, so iterate from end to beginning
std::vector<NodeRef<Key>> subs;
for (int i = 0; i < n; ++i) {
subs.push_back(std::move(constructed.back()));
constructed.pop_back();
}
std::reverse(subs.begin(), subs.end());
constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::THRESH, std::move(subs), k));
} else {
return {};
}
break;
}
case ParseContext::COMMA: {
if (in.size() < 1 || in[0] != ',') return {};
in = in.subspan(1);
break;
}
case ParseContext::CLOSE_BRACKET: {
if (in.size() < 1 || in[0] != ')') return {};
in = in.subspan(1);
break;
}
}
}
// Sanity checks on the produced miniscript
assert(constructed.size() == 1);
assert(constructed[0]->ScriptSize() == script_size);
if (in.size() > 0) return {};
NodeRef<Key> tl_node = std::move(constructed.front());
tl_node->DuplicateKeyCheck(ctx);
return tl_node;
}
/** Decode a script into opcode/push pairs.
*
* Construct a vector with one element per opcode in the script, in reverse order.
* Each element is a pair consisting of the opcode, as well as the data pushed by
* the opcode (including OP_n), if any. OP_CHECKSIGVERIFY, OP_CHECKMULTISIGVERIFY,
* OP_NUMEQUALVERIFY and OP_EQUALVERIFY are decomposed into OP_CHECKSIG, OP_CHECKMULTISIG,
* OP_EQUAL and OP_NUMEQUAL respectively, plus OP_VERIFY.
*/
std::optional<std::vector<Opcode>> DecomposeScript(const CScript& script);
/** Determine whether the passed pair (created by DecomposeScript) is pushing a number. */
std::optional<int64_t> ParseScriptNumber(const Opcode& in);
enum class DecodeContext {
/** A single expression of type B, K, or V. Specifically, this can't be an
* and_v or an expression of type W (a: and s: wrappers). */
SINGLE_BKV_EXPR,
/** Potentially multiple SINGLE_BKV_EXPRs as children of (potentially multiple)
* and_v expressions. Syntactic sugar for MAYBE_AND_V + SINGLE_BKV_EXPR. */
BKV_EXPR,
/** An expression of type W (a: or s: wrappers). */
W_EXPR,
/** SWAP expects the next element to be OP_SWAP (inside a W-type expression that
* didn't end with FROMALTSTACK), and wraps the top of the constructed stack
* with s: */
SWAP,
/** ALT expects the next element to be TOALTSTACK (we must have already read a
* FROMALTSTACK earlier), and wraps the top of the constructed stack with a: */
ALT,
/** CHECK wraps the top constructed node with c: */
CHECK,
/** DUP_IF wraps the top constructed node with d: */
DUP_IF,
/** VERIFY wraps the top constructed node with v: */
VERIFY,
/** NON_ZERO wraps the top constructed node with j: */
NON_ZERO,
/** ZERO_NOTEQUAL wraps the top constructed node with n: */
ZERO_NOTEQUAL,
/** MAYBE_AND_V will check if the next part of the script could be a valid
* miniscript sub-expression, and if so it will push AND_V and SINGLE_BKV_EXPR
* to decode it and construct the and_v node. This is recursive, to deal with
* multiple and_v nodes inside each other. */
MAYBE_AND_V,
/** AND_V will construct an and_v node from the last two constructed nodes. */
AND_V,
/** AND_B will construct an and_b node from the last two constructed nodes. */
AND_B,
/** ANDOR will construct an andor node from the last three constructed nodes. */
ANDOR,
/** OR_B will construct an or_b node from the last two constructed nodes. */
OR_B,
/** OR_C will construct an or_c node from the last two constructed nodes. */
OR_C,
/** OR_D will construct an or_d node from the last two constructed nodes. */
OR_D,
/** In a thresh expression, all sub-expressions other than the first are W-type,
* and end in OP_ADD. THRESH_W will check for this OP_ADD and either push a W_EXPR
* or a SINGLE_BKV_EXPR and jump to THRESH_E accordingly. */
THRESH_W,
/** THRESH_E constructs a thresh node from the appropriate number of constructed
* children. */
THRESH_E,
/** ENDIF signals that we are inside some sort of OP_IF structure, which could be
* or_d, or_c, or_i, andor, d:, or j: wrapper, depending on what follows. We read
* a BKV_EXPR and then deal with the next opcode case-by-case. */
ENDIF,
/** If, inside an ENDIF context, we find an OP_NOTIF before finding an OP_ELSE,
* we could either be in an or_d or an or_c node. We then check for IFDUP to
* distinguish these cases. */
ENDIF_NOTIF,
/** If, inside an ENDIF context, we find an OP_ELSE, then we could be in either an
* or_i or an andor node. Read the next BKV_EXPR and find either an OP_IF or an
* OP_NOTIF. */
ENDIF_ELSE,
};
//! Parse a miniscript from a bitcoin script
template<typename Key, typename Ctx, typename I>
inline NodeRef<Key> DecodeScript(I& in, I last, const Ctx& ctx)
{
// The two integers are used to hold state for thresh()
std::vector<std::tuple<DecodeContext, int64_t, int64_t>> to_parse;
std::vector<NodeRef<Key>> constructed;
// This is the top level, so we assume the type is B
// (in particular, disallowing top level W expressions)
to_parse.emplace_back(DecodeContext::BKV_EXPR, -1, -1);
while (!to_parse.empty()) {
// Exit early if the Miniscript is not going to be valid.
if (!constructed.empty() && !constructed.back()->IsValid()) return {};
// Get the current context we are decoding within
auto [cur_context, n, k] = to_parse.back();
to_parse.pop_back();
switch(cur_context) {
case DecodeContext::SINGLE_BKV_EXPR: {
if (in >= last) return {};
// Constants
if (in[0].first == OP_1) {
++in;
constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::JUST_1));
break;
}
if (in[0].first == OP_0) {
++in;
constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::JUST_0));
break;
}
// Public keys
if (in[0].second.size() == 33 || in[0].second.size() == 32) {
auto key = ctx.FromPKBytes(in[0].second.begin(), in[0].second.end());
if (!key) return {};
++in;
constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::PK_K, Vector(std::move(*key))));
break;
}
if (last - in >= 5 && in[0].first == OP_VERIFY && in[1].first == OP_EQUAL && in[3].first == OP_HASH160 && in[4].first == OP_DUP && in[2].second.size() == 20) {
auto key = ctx.FromPKHBytes(in[2].second.begin(), in[2].second.end());
if (!key) return {};
in += 5;
constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::PK_H, Vector(std::move(*key))));
break;
}
// Time locks
std::optional<int64_t> num;
if (last - in >= 2 && in[0].first == OP_CHECKSEQUENCEVERIFY && (num = ParseScriptNumber(in[1]))) {
in += 2;
if (*num < 1 || *num > 0x7FFFFFFFL) return {};
constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::OLDER, *num));
break;
}
if (last - in >= 2 && in[0].first == OP_CHECKLOCKTIMEVERIFY && (num = ParseScriptNumber(in[1]))) {
in += 2;
if (num < 1 || num > 0x7FFFFFFFL) return {};
constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::AFTER, *num));
break;
}
// Hashes
if (last - in >= 7 && in[0].first == OP_EQUAL && in[3].first == OP_VERIFY && in[4].first == OP_EQUAL && (num = ParseScriptNumber(in[5])) && num == 32 && in[6].first == OP_SIZE) {
if (in[2].first == OP_SHA256 && in[1].second.size() == 32) {
constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::SHA256, in[1].second));
in += 7;
break;
} else if (in[2].first == OP_RIPEMD160 && in[1].second.size() == 20) {
constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::RIPEMD160, in[1].second));
in += 7;
break;
} else if (in[2].first == OP_HASH256 && in[1].second.size() == 32) {
constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::HASH256, in[1].second));
in += 7;
break;
} else if (in[2].first == OP_HASH160 && in[1].second.size() == 20) {
constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::HASH160, in[1].second));
in += 7;
break;
}
}
// Multi
if (last - in >= 3 && in[0].first == OP_CHECKMULTISIG) {
if (IsTapscript(ctx.MsContext())) return {};
std::vector<Key> keys;
const auto n = ParseScriptNumber(in[1]);
if (!n || last - in < 3 + *n) return {};
if (*n < 1 || *n > 20) return {};
for (int i = 0; i < *n; ++i) {
if (in[2 + i].second.size() != 33) return {};
auto key = ctx.FromPKBytes(in[2 + i].second.begin(), in[2 + i].second.end());
if (!key) return {};
keys.push_back(std::move(*key));
}
const auto k = ParseScriptNumber(in[2 + *n]);
if (!k || *k < 1 || *k > *n) return {};
in += 3 + *n;
std::reverse(keys.begin(), keys.end());
constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::MULTI, std::move(keys), *k));
break;
}
// Tapscript's equivalent of multi
if (last - in >= 4 && in[0].first == OP_NUMEQUAL) {
if (!IsTapscript(ctx.MsContext())) return {};
// The necessary threshold of signatures.
const auto k = ParseScriptNumber(in[1]);
if (!k) return {};
if (*k < 1 || *k > MAX_PUBKEYS_PER_MULTI_A) return {};
if (last - in < 2 + *k * 2) return {};
std::vector<Key> keys;
keys.reserve(*k);
// Walk through the expected (pubkey, CHECKSIG[ADD]) pairs.
for (int pos = 2;; pos += 2) {
if (last - in < pos + 2) return {};
// Make sure it's indeed an x-only pubkey and a CHECKSIG[ADD], then parse the key.
if (in[pos].first != OP_CHECKSIGADD && in[pos].first != OP_CHECKSIG) return {};
if (in[pos + 1].second.size() != 32) return {};
auto key = ctx.FromPKBytes(in[pos + 1].second.begin(), in[pos + 1].second.end());
if (!key) return {};
keys.push_back(std::move(*key));
// Make sure early we don't parse an arbitrary large expression.
if (keys.size() > MAX_PUBKEYS_PER_MULTI_A) return {};
// OP_CHECKSIG means it was the last one to parse.
if (in[pos].first == OP_CHECKSIG) break;
}
if (keys.size() < (size_t)*k) return {};
in += 2 + keys.size() * 2;
std::reverse(keys.begin(), keys.end());
constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::MULTI_A, std::move(keys), *k));
break;
}
/** In the following wrappers, we only need to push SINGLE_BKV_EXPR rather
* than BKV_EXPR, because and_v commutes with these wrappers. For example,
* c:and_v(X,Y) produces the same script as and_v(X,c:Y). */
// c: wrapper
if (in[0].first == OP_CHECKSIG) {
++in;
to_parse.emplace_back(DecodeContext::CHECK, -1, -1);
to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
break;
}
// v: wrapper
if (in[0].first == OP_VERIFY) {
++in;
to_parse.emplace_back(DecodeContext::VERIFY, -1, -1);
to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
break;
}
// n: wrapper
if (in[0].first == OP_0NOTEQUAL) {
++in;
to_parse.emplace_back(DecodeContext::ZERO_NOTEQUAL, -1, -1);
to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
break;
}
// Thresh
if (last - in >= 3 && in[0].first == OP_EQUAL && (num = ParseScriptNumber(in[1]))) {
if (*num < 1) return {};
in += 2;
to_parse.emplace_back(DecodeContext::THRESH_W, 0, *num);
break;
}
// OP_ENDIF can be WRAP_J, WRAP_D, ANDOR, OR_C, OR_D, or OR_I
if (in[0].first == OP_ENDIF) {
++in;
to_parse.emplace_back(DecodeContext::ENDIF, -1, -1);
to_parse.emplace_back(DecodeContext::BKV_EXPR, -1, -1);
break;
}
/** In and_b and or_b nodes, we only look for SINGLE_BKV_EXPR, because
* or_b(and_v(X,Y),Z) has script [X] [Y] [Z] OP_BOOLOR, the same as
* and_v(X,or_b(Y,Z)). In this example, the former of these is invalid as
* miniscript, while the latter is valid. So we leave the and_v "outside"
* while decoding. */
// and_b
if (in[0].first == OP_BOOLAND) {
++in;
to_parse.emplace_back(DecodeContext::AND_B, -1, -1);
to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
to_parse.emplace_back(DecodeContext::W_EXPR, -1, -1);
break;
}
// or_b
if (in[0].first == OP_BOOLOR) {
++in;
to_parse.emplace_back(DecodeContext::OR_B, -1, -1);
to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
to_parse.emplace_back(DecodeContext::W_EXPR, -1, -1);
break;
}
// Unrecognised expression
return {};
}
case DecodeContext::BKV_EXPR: {
to_parse.emplace_back(DecodeContext::MAYBE_AND_V, -1, -1);
to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
break;
}
case DecodeContext::W_EXPR: {
// a: wrapper
if (in >= last) return {};
if (in[0].first == OP_FROMALTSTACK) {
++in;
to_parse.emplace_back(DecodeContext::ALT, -1, -1);
} else {
to_parse.emplace_back(DecodeContext::SWAP, -1, -1);
}
to_parse.emplace_back(DecodeContext::BKV_EXPR, -1, -1);
break;
}
case DecodeContext::MAYBE_AND_V: {
// If we reach a potential AND_V top-level, check if the next part of the script could be another AND_V child
// These op-codes cannot end any well-formed miniscript so cannot be used in an and_v node.
if (in < last && in[0].first != OP_IF && in[0].first != OP_ELSE && in[0].first != OP_NOTIF && in[0].first != OP_TOALTSTACK && in[0].first != OP_SWAP) {
to_parse.emplace_back(DecodeContext::AND_V, -1, -1);
// BKV_EXPR can contain more AND_V nodes
to_parse.emplace_back(DecodeContext::BKV_EXPR, -1, -1);
}
break;
}
case DecodeContext::SWAP: {
if (in >= last || in[0].first != OP_SWAP || constructed.empty()) return {};
++in;
constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_S, Vector(std::move(constructed.back())));
break;
}
case DecodeContext::ALT: {
if (in >= last || in[0].first != OP_TOALTSTACK || constructed.empty()) return {};
++in;
constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_A, Vector(std::move(constructed.back())));
break;
}
case DecodeContext::CHECK: {
if (constructed.empty()) return {};
constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_C, Vector(std::move(constructed.back())));
break;
}
case DecodeContext::DUP_IF: {
if (constructed.empty()) return {};
constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_D, Vector(std::move(constructed.back())));
break;
}
case DecodeContext::VERIFY: {
if (constructed.empty()) return {};
constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_V, Vector(std::move(constructed.back())));
break;
}
case DecodeContext::NON_ZERO: {
if (constructed.empty()) return {};
constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_J, Vector(std::move(constructed.back())));
break;
}
case DecodeContext::ZERO_NOTEQUAL: {
if (constructed.empty()) return {};
constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_N, Vector(std::move(constructed.back())));
break;
}
case DecodeContext::AND_V: {
if (constructed.size() < 2) return {};
BuildBack(ctx.MsContext(), Fragment::AND_V, constructed, /*reverse=*/true);
break;
}
case DecodeContext::AND_B: {
if (constructed.size() < 2) return {};
BuildBack(ctx.MsContext(), Fragment::AND_B, constructed, /*reverse=*/true);
break;
}
case DecodeContext::OR_B: {
if (constructed.size() < 2) return {};
BuildBack(ctx.MsContext(), Fragment::OR_B, constructed, /*reverse=*/true);
break;
}
case DecodeContext::OR_C: {
if (constructed.size() < 2) return {};
BuildBack(ctx.MsContext(), Fragment::OR_C, constructed, /*reverse=*/true);
break;
}
case DecodeContext::OR_D: {
if (constructed.size() < 2) return {};
BuildBack(ctx.MsContext(), Fragment::OR_D, constructed, /*reverse=*/true);
break;
}
case DecodeContext::ANDOR: {
if (constructed.size() < 3) return {};
NodeRef<Key> left = std::move(constructed.back());
constructed.pop_back();
NodeRef<Key> right = std::move(constructed.back());
constructed.pop_back();
NodeRef<Key> mid = std::move(constructed.back());
constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::ANDOR, Vector(std::move(left), std::move(mid), std::move(right)));
break;
}
case DecodeContext::THRESH_W: {
if (in >= last) return {};
if (in[0].first == OP_ADD) {
++in;
to_parse.emplace_back(DecodeContext::THRESH_W, n+1, k);
to_parse.emplace_back(DecodeContext::W_EXPR, -1, -1);
} else {
to_parse.emplace_back(DecodeContext::THRESH_E, n+1, k);
// All children of thresh have type modifier d, so cannot be and_v
to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
}
break;
}
case DecodeContext::THRESH_E: {
if (k < 1 || k > n || constructed.size() < static_cast<size_t>(n)) return {};
std::vector<NodeRef<Key>> subs;
for (int i = 0; i < n; ++i) {
NodeRef<Key> sub = std::move(constructed.back());
constructed.pop_back();
subs.push_back(std::move(sub));
}
constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::THRESH, std::move(subs), k));
break;
}
case DecodeContext::ENDIF: {
if (in >= last) return {};
// could be andor or or_i
if (in[0].first == OP_ELSE) {
++in;
to_parse.emplace_back(DecodeContext::ENDIF_ELSE, -1, -1);
to_parse.emplace_back(DecodeContext::BKV_EXPR, -1, -1);
}
// could be j: or d: wrapper
else if (in[0].first == OP_IF) {
if (last - in >= 2 && in[1].first == OP_DUP) {
in += 2;
to_parse.emplace_back(DecodeContext::DUP_IF, -1, -1);
} else if (last - in >= 3 && in[1].first == OP_0NOTEQUAL && in[2].first == OP_SIZE) {
in += 3;
to_parse.emplace_back(DecodeContext::NON_ZERO, -1, -1);
}
else {
return {};
}
// could be or_c or or_d
} else if (in[0].first == OP_NOTIF) {
++in;
to_parse.emplace_back(DecodeContext::ENDIF_NOTIF, -1, -1);
}
else {
return {};
}
break;
}
case DecodeContext::ENDIF_NOTIF: {
if (in >= last) return {};
if (in[0].first == OP_IFDUP) {
++in;
to_parse.emplace_back(DecodeContext::OR_D, -1, -1);
} else {
to_parse.emplace_back(DecodeContext::OR_C, -1, -1);
}
// or_c and or_d both require X to have type modifier d so, can't contain and_v
to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
break;
}
case DecodeContext::ENDIF_ELSE: {
if (in >= last) return {};
if (in[0].first == OP_IF) {
++in;
BuildBack(ctx.MsContext(), Fragment::OR_I, constructed, /*reverse=*/true);
} else if (in[0].first == OP_NOTIF) {
++in;
to_parse.emplace_back(DecodeContext::ANDOR, -1, -1);
// andor requires X to have type modifier d, so it can't be and_v
to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
} else {
return {};
}
break;
}
}
}
if (constructed.size() != 1) return {};
NodeRef<Key> tl_node = std::move(constructed.front());
tl_node->DuplicateKeyCheck(ctx);
// Note that due to how ComputeType works (only assign the type to the node if the
// subs' types are valid) this would fail if any node of tree is badly typed.
if (!tl_node->IsValidTopLevel()) return {};
return tl_node;
}
} // namespace internal
template<typename Ctx>
inline NodeRef<typename Ctx::Key> FromString(const std::string& str, const Ctx& ctx) {
return internal::Parse<typename Ctx::Key>(str, ctx);
}
template<typename Ctx>
inline NodeRef<typename Ctx::Key> FromScript(const CScript& script, const Ctx& ctx) {
using namespace internal;
// A too large Script is necessarily invalid, don't bother parsing it.
if (script.size() > MaxScriptSize(ctx.MsContext())) return {};
auto decomposed = DecomposeScript(script);
if (!decomposed) return {};
auto it = decomposed->begin();
auto ret = DecodeScript<typename Ctx::Key>(it, decomposed->end(), ctx);
if (!ret) return {};
if (it != decomposed->end()) return {};
return ret;
}
} // namespace miniscript
#endif // BITCOIN_SCRIPT_MINISCRIPT_H
|