1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
|
// Copyright (c) 2019-2022 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <string>
#include <vector>
#include <script/script.h>
#include <script/standard.h>
#include <script/miniscript.h>
#include <assert.h>
namespace miniscript {
namespace internal {
Type SanitizeType(Type e) {
int num_types = (e << "K"_mst) + (e << "V"_mst) + (e << "B"_mst) + (e << "W"_mst);
if (num_types == 0) return ""_mst; // No valid type, don't care about the rest
assert(num_types == 1); // K, V, B, W all conflict with each other
assert(!(e << "z"_mst) || !(e << "o"_mst)); // z conflicts with o
assert(!(e << "n"_mst) || !(e << "z"_mst)); // n conflicts with z
assert(!(e << "n"_mst) || !(e << "W"_mst)); // n conflicts with W
assert(!(e << "V"_mst) || !(e << "d"_mst)); // V conflicts with d
assert(!(e << "K"_mst) || (e << "u"_mst)); // K implies u
assert(!(e << "V"_mst) || !(e << "u"_mst)); // V conflicts with u
assert(!(e << "e"_mst) || !(e << "f"_mst)); // e conflicts with f
assert(!(e << "e"_mst) || (e << "d"_mst)); // e implies d
assert(!(e << "V"_mst) || !(e << "e"_mst)); // V conflicts with e
assert(!(e << "d"_mst) || !(e << "f"_mst)); // d conflicts with f
assert(!(e << "V"_mst) || (e << "f"_mst)); // V implies f
assert(!(e << "K"_mst) || (e << "s"_mst)); // K implies s
assert(!(e << "z"_mst) || (e << "m"_mst)); // z implies m
return e;
}
Type ComputeType(Fragment fragment, Type x, Type y, Type z, const std::vector<Type>& sub_types, uint32_t k, size_t data_size, size_t n_subs, size_t n_keys) {
// Sanity check on data
if (fragment == Fragment::SHA256 || fragment == Fragment::HASH256) {
assert(data_size == 32);
} else if (fragment == Fragment::RIPEMD160 || fragment == Fragment::HASH160) {
assert(data_size == 20);
} else {
assert(data_size == 0);
}
// Sanity check on k
if (fragment == Fragment::OLDER || fragment == Fragment::AFTER) {
assert(k >= 1 && k < 0x80000000UL);
} else if (fragment == Fragment::MULTI) {
assert(k >= 1 && k <= n_keys);
} else if (fragment == Fragment::THRESH) {
assert(k >= 1 && k <= n_subs);
} else {
assert(k == 0);
}
// Sanity check on subs
if (fragment == Fragment::AND_V || fragment == Fragment::AND_B || fragment == Fragment::OR_B ||
fragment == Fragment::OR_C || fragment == Fragment::OR_I || fragment == Fragment::OR_D) {
assert(n_subs == 2);
} else if (fragment == Fragment::ANDOR) {
assert(n_subs == 3);
} else if (fragment == Fragment::WRAP_A || fragment == Fragment::WRAP_S || fragment == Fragment::WRAP_C ||
fragment == Fragment::WRAP_D || fragment == Fragment::WRAP_V || fragment == Fragment::WRAP_J ||
fragment == Fragment::WRAP_N) {
assert(n_subs == 1);
} else if (fragment != Fragment::THRESH) {
assert(n_subs == 0);
}
// Sanity check on keys
if (fragment == Fragment::PK_K || fragment == Fragment::PK_H) {
assert(n_keys == 1);
} else if (fragment == Fragment::MULTI) {
assert(n_keys >= 1 && n_keys <= 20);
} else {
assert(n_keys == 0);
}
// Below is the per-fragment logic for computing the expression types.
// It heavily relies on Type's << operator (where "X << a_mst" means
// "X has all properties listed in a").
switch (fragment) {
case Fragment::PK_K: return "Konudemsxk"_mst;
case Fragment::PK_H: return "Knudemsxk"_mst;
case Fragment::OLDER: return
"g"_mst.If(k & CTxIn::SEQUENCE_LOCKTIME_TYPE_FLAG) |
"h"_mst.If(!(k & CTxIn::SEQUENCE_LOCKTIME_TYPE_FLAG)) |
"Bzfmxk"_mst;
case Fragment::AFTER: return
"i"_mst.If(k >= LOCKTIME_THRESHOLD) |
"j"_mst.If(k < LOCKTIME_THRESHOLD) |
"Bzfmxk"_mst;
case Fragment::SHA256: return "Bonudmk"_mst;
case Fragment::RIPEMD160: return "Bonudmk"_mst;
case Fragment::HASH256: return "Bonudmk"_mst;
case Fragment::HASH160: return "Bonudmk"_mst;
case Fragment::JUST_1: return "Bzufmxk"_mst;
case Fragment::JUST_0: return "Bzudemsxk"_mst;
case Fragment::WRAP_A: return
"W"_mst.If(x << "B"_mst) | // W=B_x
(x & "ghijk"_mst) | // g=g_x, h=h_x, i=i_x, j=j_x, k=k_x
(x & "udfems"_mst) | // u=u_x, d=d_x, f=f_x, e=e_x, m=m_x, s=s_x
"x"_mst; // x
case Fragment::WRAP_S: return
"W"_mst.If(x << "Bo"_mst) | // W=B_x*o_x
(x & "ghijk"_mst) | // g=g_x, h=h_x, i=i_x, j=j_x, k=k_x
(x & "udfemsx"_mst); // u=u_x, d=d_x, f=f_x, e=e_x, m=m_x, s=s_x, x=x_x
case Fragment::WRAP_C: return
"B"_mst.If(x << "K"_mst) | // B=K_x
(x & "ghijk"_mst) | // g=g_x, h=h_x, i=i_x, j=j_x, k=k_x
(x & "ondfem"_mst) | // o=o_x, n=n_x, d=d_x, f=f_x, e=e_x, m=m_x
"us"_mst; // u, s
case Fragment::WRAP_D: return
"B"_mst.If(x << "Vz"_mst) | // B=V_x*z_x
"o"_mst.If(x << "z"_mst) | // o=z_x
"e"_mst.If(x << "f"_mst) | // e=f_x
(x & "ghijk"_mst) | // g=g_x, h=h_x, i=i_x, j=j_x, k=k_x
(x & "ms"_mst) | // m=m_x, s=s_x
// NOTE: 'd:' is not 'u' under P2WSH as MINIMALIF is only a policy rule there.
"ndx"_mst; // n, d, x
case Fragment::WRAP_V: return
"V"_mst.If(x << "B"_mst) | // V=B_x
(x & "ghijk"_mst) | // g=g_x, h=h_x, i=i_x, j=j_x, k=k_x
(x & "zonms"_mst) | // z=z_x, o=o_x, n=n_x, m=m_x, s=s_x
"fx"_mst; // f, x
case Fragment::WRAP_J: return
"B"_mst.If(x << "Bn"_mst) | // B=B_x*n_x
"e"_mst.If(x << "f"_mst) | // e=f_x
(x & "ghijk"_mst) | // g=g_x, h=h_x, i=i_x, j=j_x, k=k_x
(x & "oums"_mst) | // o=o_x, u=u_x, m=m_x, s=s_x
"ndx"_mst; // n, d, x
case Fragment::WRAP_N: return
(x & "ghijk"_mst) | // g=g_x, h=h_x, i=i_x, j=j_x, k=k_x
(x & "Bzondfems"_mst) | // B=B_x, z=z_x, o=o_x, n=n_x, d=d_x, f=f_x, e=e_x, m=m_x, s=s_x
"ux"_mst; // u, x
case Fragment::AND_V: return
(y & "KVB"_mst).If(x << "V"_mst) | // B=V_x*B_y, V=V_x*V_y, K=V_x*K_y
(x & "n"_mst) | (y & "n"_mst).If(x << "z"_mst) | // n=n_x+z_x*n_y
((x | y) & "o"_mst).If((x | y) << "z"_mst) | // o=o_x*z_y+z_x*o_y
(x & y & "dmz"_mst) | // d=d_x*d_y, m=m_x*m_y, z=z_x*z_y
((x | y) & "s"_mst) | // s=s_x+s_y
"f"_mst.If((y << "f"_mst) || (x << "s"_mst)) | // f=f_y+s_x
(y & "ux"_mst) | // u=u_y, x=x_y
((x | y) & "ghij"_mst) | // g=g_x+g_y, h=h_x+h_y, i=i_x+i_y, j=j_x+j_y
"k"_mst.If(((x & y) << "k"_mst) &&
!(((x << "g"_mst) && (y << "h"_mst)) ||
((x << "h"_mst) && (y << "g"_mst)) ||
((x << "i"_mst) && (y << "j"_mst)) ||
((x << "j"_mst) && (y << "i"_mst)))); // k=k_x*k_y*!(g_x*h_y + h_x*g_y + i_x*j_y + j_x*i_y)
case Fragment::AND_B: return
(x & "B"_mst).If(y << "W"_mst) | // B=B_x*W_y
((x | y) & "o"_mst).If((x | y) << "z"_mst) | // o=o_x*z_y+z_x*o_y
(x & "n"_mst) | (y & "n"_mst).If(x << "z"_mst) | // n=n_x+z_x*n_y
(x & y & "e"_mst).If((x & y) << "s"_mst) | // e=e_x*e_y*s_x*s_y
(x & y & "dzm"_mst) | // d=d_x*d_y, z=z_x*z_y, m=m_x*m_y
"f"_mst.If(((x & y) << "f"_mst) || (x << "sf"_mst) || (y << "sf"_mst)) | // f=f_x*f_y + f_x*s_x + f_y*s_y
((x | y) & "s"_mst) | // s=s_x+s_y
"ux"_mst | // u, x
((x | y) & "ghij"_mst) | // g=g_x+g_y, h=h_x+h_y, i=i_x+i_y, j=j_x+j_y
"k"_mst.If(((x & y) << "k"_mst) &&
!(((x << "g"_mst) && (y << "h"_mst)) ||
((x << "h"_mst) && (y << "g"_mst)) ||
((x << "i"_mst) && (y << "j"_mst)) ||
((x << "j"_mst) && (y << "i"_mst)))); // k=k_x*k_y*!(g_x*h_y + h_x*g_y + i_x*j_y + j_x*i_y)
case Fragment::OR_B: return
"B"_mst.If(x << "Bd"_mst && y << "Wd"_mst) | // B=B_x*d_x*W_x*d_y
((x | y) & "o"_mst).If((x | y) << "z"_mst) | // o=o_x*z_y+z_x*o_y
(x & y & "m"_mst).If((x | y) << "s"_mst && (x & y) << "e"_mst) | // m=m_x*m_y*e_x*e_y*(s_x+s_y)
(x & y & "zse"_mst) | // z=z_x*z_y, s=s_x*s_y, e=e_x*e_y
"dux"_mst | // d, u, x
((x | y) & "ghij"_mst) | // g=g_x+g_y, h=h_x+h_y, i=i_x+i_y, j=j_x+j_y
(x & y & "k"_mst); // k=k_x*k_y
case Fragment::OR_D: return
(y & "B"_mst).If(x << "Bdu"_mst) | // B=B_y*B_x*d_x*u_x
(x & "o"_mst).If(y << "z"_mst) | // o=o_x*z_y
(x & y & "m"_mst).If(x << "e"_mst && (x | y) << "s"_mst) | // m=m_x*m_y*e_x*(s_x+s_y)
(x & y & "zs"_mst) | // z=z_x*z_y, s=s_x*s_y
(y & "ufde"_mst) | // u=u_y, f=f_y, d=d_y, e=e_y
"x"_mst | // x
((x | y) & "ghij"_mst) | // g=g_x+g_y, h=h_x+h_y, i=i_x+i_y, j=j_x+j_y
(x & y & "k"_mst); // k=k_x*k_y
case Fragment::OR_C: return
(y & "V"_mst).If(x << "Bdu"_mst) | // V=V_y*B_x*u_x*d_x
(x & "o"_mst).If(y << "z"_mst) | // o=o_x*z_y
(x & y & "m"_mst).If(x << "e"_mst && (x | y) << "s"_mst) | // m=m_x*m_y*e_x*(s_x+s_y)
(x & y & "zs"_mst) | // z=z_x*z_y, s=s_x*s_y
"fx"_mst | // f, x
((x | y) & "ghij"_mst) | // g=g_x+g_y, h=h_x+h_y, i=i_x+i_y, j=j_x+j_y
(x & y & "k"_mst); // k=k_x*k_y
case Fragment::OR_I: return
(x & y & "VBKufs"_mst) | // V=V_x*V_y, B=B_x*B_y, K=K_x*K_y, u=u_x*u_y, f=f_x*f_y, s=s_x*s_y
"o"_mst.If((x & y) << "z"_mst) | // o=z_x*z_y
((x | y) & "e"_mst).If((x | y) << "f"_mst) | // e=e_x*f_y+f_x*e_y
(x & y & "m"_mst).If((x | y) << "s"_mst) | // m=m_x*m_y*(s_x+s_y)
((x | y) & "d"_mst) | // d=d_x+d_y
"x"_mst | // x
((x | y) & "ghij"_mst) | // g=g_x+g_y, h=h_x+h_y, i=i_x+i_y, j=j_x+j_y
(x & y & "k"_mst); // k=k_x*k_y
case Fragment::ANDOR: return
(y & z & "BKV"_mst).If(x << "Bdu"_mst) | // B=B_x*d_x*u_x*B_y*B_z, K=B_x*d_x*u_x*K_y*K_z, V=B_x*d_x*u_x*V_y*V_z
(x & y & z & "z"_mst) | // z=z_x*z_y*z_z
((x | (y & z)) & "o"_mst).If((x | (y & z)) << "z"_mst) | // o=o_x*z_y*z_z+z_x*o_y*o_z
(y & z & "u"_mst) | // u=u_y*u_z
(z & "f"_mst).If((x << "s"_mst) || (y << "f"_mst)) | // f=(s_x+f_y)*f_z
(z & "d"_mst) | // d=d_z
(z & "e"_mst).If(x << "s"_mst || y << "f"_mst) | // e=e_z*(s_x+f_y)
(x & y & z & "m"_mst).If(x << "e"_mst && (x | y | z) << "s"_mst) | // m=m_x*m_y*m_z*e_x*(s_x+s_y+s_z)
(z & (x | y) & "s"_mst) | // s=s_z*(s_x+s_y)
"x"_mst | // x
((x | y | z) & "ghij"_mst) | // g=g_x+g_y+g_z, h=h_x+h_y+h_z, i=i_x+i_y+i_z, j=j_x+j_y_j_z
"k"_mst.If(((x & y & z) << "k"_mst) &&
!(((x << "g"_mst) && (y << "h"_mst)) ||
((x << "h"_mst) && (y << "g"_mst)) ||
((x << "i"_mst) && (y << "j"_mst)) ||
((x << "j"_mst) && (y << "i"_mst)))); // k=k_x*k_y*k_z* !(g_x*h_y + h_x*g_y + i_x*j_y + j_x*i_y)
case Fragment::MULTI: return "Bnudemsk"_mst;
case Fragment::THRESH: {
bool all_e = true;
bool all_m = true;
uint32_t args = 0;
uint32_t num_s = 0;
Type acc_tl = "k"_mst;
for (size_t i = 0; i < sub_types.size(); ++i) {
Type t = sub_types[i];
if (!(t << (i ? "Wdu"_mst : "Bdu"_mst))) return ""_mst; // Require Bdu, Wdu, Wdu, ...
if (!(t << "e"_mst)) all_e = false;
if (!(t << "m"_mst)) all_m = false;
if (t << "s"_mst) num_s += 1;
args += (t << "z"_mst) ? 0 : (t << "o"_mst) ? 1 : 2;
acc_tl = ((acc_tl | t) & "ghij"_mst) |
// Thresh contains a combination of timelocks if it has threshold > 1 and
// it contains two different children that have different types of timelocks
// Note how if any of the children don't have "k", the parent also does not have "k"
"k"_mst.If(((acc_tl & t) << "k"_mst) && ((k <= 1) ||
((k > 1) && !(((acc_tl << "g"_mst) && (t << "h"_mst)) ||
((acc_tl << "h"_mst) && (t << "g"_mst)) ||
((acc_tl << "i"_mst) && (t << "j"_mst)) ||
((acc_tl << "j"_mst) && (t << "i"_mst))))));
}
return "Bdu"_mst |
"z"_mst.If(args == 0) | // z=all z
"o"_mst.If(args == 1) | // o=all z except one o
"e"_mst.If(all_e && num_s == n_subs) | // e=all e and all s
"m"_mst.If(all_e && all_m && num_s >= n_subs - k) | // m=all e, >=(n-k) s
"s"_mst.If(num_s >= n_subs - k + 1) | // s= >=(n-k+1) s
acc_tl; // timelock info
}
}
assert(false);
}
size_t ComputeScriptLen(Fragment fragment, Type sub0typ, size_t subsize, uint32_t k, size_t n_subs, size_t n_keys) {
switch (fragment) {
case Fragment::JUST_1:
case Fragment::JUST_0: return 1;
case Fragment::PK_K: return 34;
case Fragment::PK_H: return 3 + 21;
case Fragment::OLDER:
case Fragment::AFTER: return 1 + BuildScript(k).size();
case Fragment::HASH256:
case Fragment::SHA256: return 4 + 2 + 33;
case Fragment::HASH160:
case Fragment::RIPEMD160: return 4 + 2 + 21;
case Fragment::MULTI: return 1 + BuildScript(n_keys).size() + BuildScript(k).size() + 34 * n_keys;
case Fragment::AND_V: return subsize;
case Fragment::WRAP_V: return subsize + (sub0typ << "x"_mst);
case Fragment::WRAP_S:
case Fragment::WRAP_C:
case Fragment::WRAP_N:
case Fragment::AND_B:
case Fragment::OR_B: return subsize + 1;
case Fragment::WRAP_A:
case Fragment::OR_C: return subsize + 2;
case Fragment::WRAP_D:
case Fragment::OR_D:
case Fragment::OR_I:
case Fragment::ANDOR: return subsize + 3;
case Fragment::WRAP_J: return subsize + 4;
case Fragment::THRESH: return subsize + n_subs + BuildScript(k).size();
}
assert(false);
}
InputStack& InputStack::SetAvailable(Availability avail) {
available = avail;
if (avail == Availability::NO) {
stack.clear();
size = std::numeric_limits<size_t>::max();
has_sig = false;
malleable = false;
non_canon = false;
}
return *this;
}
InputStack& InputStack::SetWithSig() {
has_sig = true;
return *this;
}
InputStack& InputStack::SetNonCanon() {
non_canon = true;
return *this;
}
InputStack& InputStack::SetMalleable(bool x) {
malleable = x;
return *this;
}
InputStack operator+(InputStack a, InputStack b) {
a.stack = Cat(std::move(a.stack), std::move(b.stack));
if (a.available != Availability::NO && b.available != Availability::NO) a.size += b.size;
a.has_sig |= b.has_sig;
a.malleable |= b.malleable;
a.non_canon |= b.non_canon;
if (a.available == Availability::NO || b.available == Availability::NO) {
a.SetAvailable(Availability::NO);
} else if (a.available == Availability::MAYBE || b.available == Availability::MAYBE) {
a.SetAvailable(Availability::MAYBE);
}
return a;
}
InputStack operator|(InputStack a, InputStack b) {
// If only one is invalid, pick the other one. If both are invalid, pick an arbitrary one.
if (a.available == Availability::NO) return b;
if (b.available == Availability::NO) return a;
// If only one of the solutions has a signature, we must pick the other one.
if (!a.has_sig && b.has_sig) return a;
if (!b.has_sig && a.has_sig) return b;
if (!a.has_sig && !b.has_sig) {
// If neither solution requires a signature, the result is inevitably malleable.
a.malleable = true;
b.malleable = true;
} else {
// If both options require a signature, prefer the non-malleable one.
if (b.malleable && !a.malleable) return a;
if (a.malleable && !b.malleable) return b;
}
// Between two malleable or two non-malleable solutions, pick the smaller one between
// YESes, and the bigger ones between MAYBEs. Prefer YES over MAYBE.
if (a.available == Availability::YES && b.available == Availability::YES) {
return std::move(a.size <= b.size ? a : b);
} else if (a.available == Availability::MAYBE && b.available == Availability::MAYBE) {
return std::move(a.size >= b.size ? a : b);
} else if (a.available == Availability::YES) {
return a;
} else {
return b;
}
}
std::optional<std::vector<Opcode>> DecomposeScript(const CScript& script)
{
std::vector<Opcode> out;
CScript::const_iterator it = script.begin(), itend = script.end();
while (it != itend) {
std::vector<unsigned char> push_data;
opcodetype opcode;
if (!script.GetOp(it, opcode, push_data)) {
return {};
} else if (opcode >= OP_1 && opcode <= OP_16) {
// Deal with OP_n (GetOp does not turn them into pushes).
push_data.assign(1, CScript::DecodeOP_N(opcode));
} else if (opcode == OP_CHECKSIGVERIFY) {
// Decompose OP_CHECKSIGVERIFY into OP_CHECKSIG OP_VERIFY
out.emplace_back(OP_CHECKSIG, std::vector<unsigned char>());
opcode = OP_VERIFY;
} else if (opcode == OP_CHECKMULTISIGVERIFY) {
// Decompose OP_CHECKMULTISIGVERIFY into OP_CHECKMULTISIG OP_VERIFY
out.emplace_back(OP_CHECKMULTISIG, std::vector<unsigned char>());
opcode = OP_VERIFY;
} else if (opcode == OP_EQUALVERIFY) {
// Decompose OP_EQUALVERIFY into OP_EQUAL OP_VERIFY
out.emplace_back(OP_EQUAL, std::vector<unsigned char>());
opcode = OP_VERIFY;
} else if (IsPushdataOp(opcode)) {
if (!CheckMinimalPush(push_data, opcode)) return {};
} else if (it != itend && (opcode == OP_CHECKSIG || opcode == OP_CHECKMULTISIG || opcode == OP_EQUAL) && (*it == OP_VERIFY)) {
// Rule out non minimal VERIFY sequences
return {};
}
out.emplace_back(opcode, std::move(push_data));
}
std::reverse(out.begin(), out.end());
return out;
}
std::optional<int64_t> ParseScriptNumber(const Opcode& in) {
if (in.first == OP_0) {
return 0;
}
if (!in.second.empty()) {
if (IsPushdataOp(in.first) && !CheckMinimalPush(in.second, in.first)) return {};
try {
return CScriptNum(in.second, true).GetInt64();
} catch(const scriptnum_error&) {}
}
return {};
}
int FindNextChar(Span<const char> sp, const char m)
{
for (int i = 0; i < (int)sp.size(); ++i) {
if (sp[i] == m) return i;
// We only search within the current parentheses
if (sp[i] == ')') break;
}
return -1;
}
} // namespace internal
} // namespace miniscript
|