aboutsummaryrefslogtreecommitdiff
path: root/src/script/interpreter.cpp
blob: 9d0e9b5e3cfb2289e7f42eaaf58ab180d6a8b6ab (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2022 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.

#include <script/interpreter.h>

#include <crypto/ripemd160.h>
#include <crypto/sha1.h>
#include <crypto/sha256.h>
#include <pubkey.h>
#include <script/script.h>
#include <uint256.h>

typedef std::vector<unsigned char> valtype;

namespace {

inline bool set_success(ScriptError* ret)
{
    if (ret)
        *ret = SCRIPT_ERR_OK;
    return true;
}

inline bool set_error(ScriptError* ret, const ScriptError serror)
{
    if (ret)
        *ret = serror;
    return false;
}

} // namespace

bool CastToBool(const valtype& vch)
{
    for (unsigned int i = 0; i < vch.size(); i++)
    {
        if (vch[i] != 0)
        {
            // Can be negative zero
            if (i == vch.size()-1 && vch[i] == 0x80)
                return false;
            return true;
        }
    }
    return false;
}

/**
 * Script is a stack machine (like Forth) that evaluates a predicate
 * returning a bool indicating valid or not.  There are no loops.
 */
#define stacktop(i)  (stack.at(stack.size()+(i)))
#define altstacktop(i)  (altstack.at(altstack.size()+(i)))
static inline void popstack(std::vector<valtype>& stack)
{
    if (stack.empty())
        throw std::runtime_error("popstack(): stack empty");
    stack.pop_back();
}

bool static IsCompressedOrUncompressedPubKey(const valtype &vchPubKey) {
    if (vchPubKey.size() < CPubKey::COMPRESSED_SIZE) {
        //  Non-canonical public key: too short
        return false;
    }
    if (vchPubKey[0] == 0x04) {
        if (vchPubKey.size() != CPubKey::SIZE) {
            //  Non-canonical public key: invalid length for uncompressed key
            return false;
        }
    } else if (vchPubKey[0] == 0x02 || vchPubKey[0] == 0x03) {
        if (vchPubKey.size() != CPubKey::COMPRESSED_SIZE) {
            //  Non-canonical public key: invalid length for compressed key
            return false;
        }
    } else {
        //  Non-canonical public key: neither compressed nor uncompressed
        return false;
    }
    return true;
}

bool static IsCompressedPubKey(const valtype &vchPubKey) {
    if (vchPubKey.size() != CPubKey::COMPRESSED_SIZE) {
        //  Non-canonical public key: invalid length for compressed key
        return false;
    }
    if (vchPubKey[0] != 0x02 && vchPubKey[0] != 0x03) {
        //  Non-canonical public key: invalid prefix for compressed key
        return false;
    }
    return true;
}

/**
 * A canonical signature exists of: <30> <total len> <02> <len R> <R> <02> <len S> <S> <hashtype>
 * Where R and S are not negative (their first byte has its highest bit not set), and not
 * excessively padded (do not start with a 0 byte, unless an otherwise negative number follows,
 * in which case a single 0 byte is necessary and even required).
 *
 * See https://bitcointalk.org/index.php?topic=8392.msg127623#msg127623
 *
 * This function is consensus-critical since BIP66.
 */
bool static IsValidSignatureEncoding(const std::vector<unsigned char> &sig) {
    // Format: 0x30 [total-length] 0x02 [R-length] [R] 0x02 [S-length] [S] [sighash]
    // * total-length: 1-byte length descriptor of everything that follows,
    //   excluding the sighash byte.
    // * R-length: 1-byte length descriptor of the R value that follows.
    // * R: arbitrary-length big-endian encoded R value. It must use the shortest
    //   possible encoding for a positive integer (which means no null bytes at
    //   the start, except a single one when the next byte has its highest bit set).
    // * S-length: 1-byte length descriptor of the S value that follows.
    // * S: arbitrary-length big-endian encoded S value. The same rules apply.
    // * sighash: 1-byte value indicating what data is hashed (not part of the DER
    //   signature)

    // Minimum and maximum size constraints.
    if (sig.size() < 9) return false;
    if (sig.size() > 73) return false;

    // A signature is of type 0x30 (compound).
    if (sig[0] != 0x30) return false;

    // Make sure the length covers the entire signature.
    if (sig[1] != sig.size() - 3) return false;

    // Extract the length of the R element.
    unsigned int lenR = sig[3];

    // Make sure the length of the S element is still inside the signature.
    if (5 + lenR >= sig.size()) return false;

    // Extract the length of the S element.
    unsigned int lenS = sig[5 + lenR];

    // Verify that the length of the signature matches the sum of the length
    // of the elements.
    if ((size_t)(lenR + lenS + 7) != sig.size()) return false;

    // Check whether the R element is an integer.
    if (sig[2] != 0x02) return false;

    // Zero-length integers are not allowed for R.
    if (lenR == 0) return false;

    // Negative numbers are not allowed for R.
    if (sig[4] & 0x80) return false;

    // Null bytes at the start of R are not allowed, unless R would
    // otherwise be interpreted as a negative number.
    if (lenR > 1 && (sig[4] == 0x00) && !(sig[5] & 0x80)) return false;

    // Check whether the S element is an integer.
    if (sig[lenR + 4] != 0x02) return false;

    // Zero-length integers are not allowed for S.
    if (lenS == 0) return false;

    // Negative numbers are not allowed for S.
    if (sig[lenR + 6] & 0x80) return false;

    // Null bytes at the start of S are not allowed, unless S would otherwise be
    // interpreted as a negative number.
    if (lenS > 1 && (sig[lenR + 6] == 0x00) && !(sig[lenR + 7] & 0x80)) return false;

    return true;
}

bool static IsLowDERSignature(const valtype &vchSig, ScriptError* serror) {
    if (!IsValidSignatureEncoding(vchSig)) {
        return set_error(serror, SCRIPT_ERR_SIG_DER);
    }
    // https://bitcoin.stackexchange.com/a/12556:
    //     Also note that inside transaction signatures, an extra hashtype byte
    //     follows the actual signature data.
    std::vector<unsigned char> vchSigCopy(vchSig.begin(), vchSig.begin() + vchSig.size() - 1);
    // If the S value is above the order of the curve divided by two, its
    // complement modulo the order could have been used instead, which is
    // one byte shorter when encoded correctly.
    if (!CPubKey::CheckLowS(vchSigCopy)) {
        return set_error(serror, SCRIPT_ERR_SIG_HIGH_S);
    }
    return true;
}

bool static IsDefinedHashtypeSignature(const valtype &vchSig) {
    if (vchSig.size() == 0) {
        return false;
    }
    unsigned char nHashType = vchSig[vchSig.size() - 1] & (~(SIGHASH_ANYONECANPAY));
    if (nHashType < SIGHASH_ALL || nHashType > SIGHASH_SINGLE)
        return false;

    return true;
}

bool CheckSignatureEncoding(const std::vector<unsigned char> &vchSig, unsigned int flags, ScriptError* serror) {
    // Empty signature. Not strictly DER encoded, but allowed to provide a
    // compact way to provide an invalid signature for use with CHECK(MULTI)SIG
    if (vchSig.size() == 0) {
        return true;
    }
    if ((flags & (SCRIPT_VERIFY_DERSIG | SCRIPT_VERIFY_LOW_S | SCRIPT_VERIFY_STRICTENC)) != 0 && !IsValidSignatureEncoding(vchSig)) {
        return set_error(serror, SCRIPT_ERR_SIG_DER);
    } else if ((flags & SCRIPT_VERIFY_LOW_S) != 0 && !IsLowDERSignature(vchSig, serror)) {
        // serror is set
        return false;
    } else if ((flags & SCRIPT_VERIFY_STRICTENC) != 0 && !IsDefinedHashtypeSignature(vchSig)) {
        return set_error(serror, SCRIPT_ERR_SIG_HASHTYPE);
    }
    return true;
}

bool static CheckPubKeyEncoding(const valtype &vchPubKey, unsigned int flags, const SigVersion &sigversion, ScriptError* serror) {
    if ((flags & SCRIPT_VERIFY_STRICTENC) != 0 && !IsCompressedOrUncompressedPubKey(vchPubKey)) {
        return set_error(serror, SCRIPT_ERR_PUBKEYTYPE);
    }
    // Only compressed keys are accepted in segwit
    if ((flags & SCRIPT_VERIFY_WITNESS_PUBKEYTYPE) != 0 && sigversion == SigVersion::WITNESS_V0 && !IsCompressedPubKey(vchPubKey)) {
        return set_error(serror, SCRIPT_ERR_WITNESS_PUBKEYTYPE);
    }
    return true;
}

int FindAndDelete(CScript& script, const CScript& b)
{
    int nFound = 0;
    if (b.empty())
        return nFound;
    CScript result;
    CScript::const_iterator pc = script.begin(), pc2 = script.begin(), end = script.end();
    opcodetype opcode;
    do
    {
        result.insert(result.end(), pc2, pc);
        while (static_cast<size_t>(end - pc) >= b.size() && std::equal(b.begin(), b.end(), pc))
        {
            pc = pc + b.size();
            ++nFound;
        }
        pc2 = pc;
    }
    while (script.GetOp(pc, opcode));

    if (nFound > 0) {
        result.insert(result.end(), pc2, end);
        script = std::move(result);
    }

    return nFound;
}

namespace {
/** A data type to abstract out the condition stack during script execution.
 *
 * Conceptually it acts like a vector of booleans, one for each level of nested
 * IF/THEN/ELSE, indicating whether we're in the active or inactive branch of
 * each.
 *
 * The elements on the stack cannot be observed individually; we only need to
 * expose whether the stack is empty and whether or not any false values are
 * present at all. To implement OP_ELSE, a toggle_top modifier is added, which
 * flips the last value without returning it.
 *
 * This uses an optimized implementation that does not materialize the
 * actual stack. Instead, it just stores the size of the would-be stack,
 * and the position of the first false value in it.
 */
class ConditionStack {
private:
    //! A constant for m_first_false_pos to indicate there are no falses.
    static constexpr uint32_t NO_FALSE = std::numeric_limits<uint32_t>::max();

    //! The size of the implied stack.
    uint32_t m_stack_size = 0;
    //! The position of the first false value on the implied stack, or NO_FALSE if all true.
    uint32_t m_first_false_pos = NO_FALSE;

public:
    bool empty() const { return m_stack_size == 0; }
    bool all_true() const { return m_first_false_pos == NO_FALSE; }
    void push_back(bool f)
    {
        if (m_first_false_pos == NO_FALSE && !f) {
            // The stack consists of all true values, and a false is added.
            // The first false value will appear at the current size.
            m_first_false_pos = m_stack_size;
        }
        ++m_stack_size;
    }
    void pop_back()
    {
        assert(m_stack_size > 0);
        --m_stack_size;
        if (m_first_false_pos == m_stack_size) {
            // When popping off the first false value, everything becomes true.
            m_first_false_pos = NO_FALSE;
        }
    }
    void toggle_top()
    {
        assert(m_stack_size > 0);
        if (m_first_false_pos == NO_FALSE) {
            // The current stack is all true values; the first false will be the top.
            m_first_false_pos = m_stack_size - 1;
        } else if (m_first_false_pos == m_stack_size - 1) {
            // The top is the first false value; toggling it will make everything true.
            m_first_false_pos = NO_FALSE;
        } else {
            // There is a false value, but not on top. No action is needed as toggling
            // anything but the first false value is unobservable.
        }
    }
};
}

static bool EvalChecksigPreTapscript(const valtype& vchSig, const valtype& vchPubKey, CScript::const_iterator pbegincodehash, CScript::const_iterator pend, unsigned int flags, const BaseSignatureChecker& checker, SigVersion sigversion, ScriptError* serror, bool& fSuccess)
{
    assert(sigversion == SigVersion::BASE || sigversion == SigVersion::WITNESS_V0);

    // Subset of script starting at the most recent codeseparator
    CScript scriptCode(pbegincodehash, pend);

    // Drop the signature in pre-segwit scripts but not segwit scripts
    if (sigversion == SigVersion::BASE) {
        int found = FindAndDelete(scriptCode, CScript() << vchSig);
        if (found > 0 && (flags & SCRIPT_VERIFY_CONST_SCRIPTCODE))
            return set_error(serror, SCRIPT_ERR_SIG_FINDANDDELETE);
    }

    if (!CheckSignatureEncoding(vchSig, flags, serror) || !CheckPubKeyEncoding(vchPubKey, flags, sigversion, serror)) {
        //serror is set
        return false;
    }
    fSuccess = checker.CheckECDSASignature(vchSig, vchPubKey, scriptCode, sigversion);

    if (!fSuccess && (flags & SCRIPT_VERIFY_NULLFAIL) && vchSig.size())
        return set_error(serror, SCRIPT_ERR_SIG_NULLFAIL);

    return true;
}

static bool EvalChecksigTapscript(const valtype& sig, const valtype& pubkey, ScriptExecutionData& execdata, unsigned int flags, const BaseSignatureChecker& checker, SigVersion sigversion, ScriptError* serror, bool& success)
{
    assert(sigversion == SigVersion::TAPSCRIPT);

    /*
     *  The following validation sequence is consensus critical. Please note how --
     *    upgradable public key versions precede other rules;
     *    the script execution fails when using empty signature with invalid public key;
     *    the script execution fails when using non-empty invalid signature.
     */
    success = !sig.empty();
    if (success) {
        // Implement the sigops/witnesssize ratio test.
        // Passing with an upgradable public key version is also counted.
        assert(execdata.m_validation_weight_left_init);
        execdata.m_validation_weight_left -= VALIDATION_WEIGHT_PER_SIGOP_PASSED;
        if (execdata.m_validation_weight_left < 0) {
            return set_error(serror, SCRIPT_ERR_TAPSCRIPT_VALIDATION_WEIGHT);
        }
    }
    if (pubkey.size() == 0) {
        return set_error(serror, SCRIPT_ERR_PUBKEYTYPE);
    } else if (pubkey.size() == 32) {
        if (success && !checker.CheckSchnorrSignature(sig, pubkey, sigversion, execdata, serror)) {
            return false; // serror is set
        }
    } else {
        /*
         *  New public key version softforks should be defined before this `else` block.
         *  Generally, the new code should not do anything but failing the script execution. To avoid
         *  consensus bugs, it should not modify any existing values (including `success`).
         */
        if ((flags & SCRIPT_VERIFY_DISCOURAGE_UPGRADABLE_PUBKEYTYPE) != 0) {
            return set_error(serror, SCRIPT_ERR_DISCOURAGE_UPGRADABLE_PUBKEYTYPE);
        }
    }

    return true;
}

/** Helper for OP_CHECKSIG, OP_CHECKSIGVERIFY, and (in Tapscript) OP_CHECKSIGADD.
 *
 * A return value of false means the script fails entirely. When true is returned, the
 * success variable indicates whether the signature check itself succeeded.
 */
static bool EvalChecksig(const valtype& sig, const valtype& pubkey, CScript::const_iterator pbegincodehash, CScript::const_iterator pend, ScriptExecutionData& execdata, unsigned int flags, const BaseSignatureChecker& checker, SigVersion sigversion, ScriptError* serror, bool& success)
{
    switch (sigversion) {
    case SigVersion::BASE:
    case SigVersion::WITNESS_V0:
        return EvalChecksigPreTapscript(sig, pubkey, pbegincodehash, pend, flags, checker, sigversion, serror, success);
    case SigVersion::TAPSCRIPT:
        return EvalChecksigTapscript(sig, pubkey, execdata, flags, checker, sigversion, serror, success);
    case SigVersion::TAPROOT:
        // Key path spending in Taproot has no script, so this is unreachable.
        break;
    }
    assert(false);
}

bool EvalScript(std::vector<std::vector<unsigned char> >& stack, const CScript& script, unsigned int flags, const BaseSignatureChecker& checker, SigVersion sigversion, ScriptExecutionData& execdata, ScriptError* serror)
{
    static const CScriptNum bnZero(0);
    static const CScriptNum bnOne(1);
    // static const CScriptNum bnFalse(0);
    // static const CScriptNum bnTrue(1);
    static const valtype vchFalse(0);
    // static const valtype vchZero(0);
    static const valtype vchTrue(1, 1);

    // sigversion cannot be TAPROOT here, as it admits no script execution.
    assert(sigversion == SigVersion::BASE || sigversion == SigVersion::WITNESS_V0 || sigversion == SigVersion::TAPSCRIPT);

    CScript::const_iterator pc = script.begin();
    CScript::const_iterator pend = script.end();
    CScript::const_iterator pbegincodehash = script.begin();
    opcodetype opcode;
    valtype vchPushValue;
    ConditionStack vfExec;
    std::vector<valtype> altstack;
    set_error(serror, SCRIPT_ERR_UNKNOWN_ERROR);
    if ((sigversion == SigVersion::BASE || sigversion == SigVersion::WITNESS_V0) && script.size() > MAX_SCRIPT_SIZE) {
        return set_error(serror, SCRIPT_ERR_SCRIPT_SIZE);
    }
    int nOpCount = 0;
    bool fRequireMinimal = (flags & SCRIPT_VERIFY_MINIMALDATA) != 0;
    uint32_t opcode_pos = 0;
    execdata.m_codeseparator_pos = 0xFFFFFFFFUL;
    execdata.m_codeseparator_pos_init = true;

    try
    {
        for (; pc < pend; ++opcode_pos) {
            bool fExec = vfExec.all_true();

            //
            // Read instruction
            //
            if (!script.GetOp(pc, opcode, vchPushValue))
                return set_error(serror, SCRIPT_ERR_BAD_OPCODE);
            if (vchPushValue.size() > MAX_SCRIPT_ELEMENT_SIZE)
                return set_error(serror, SCRIPT_ERR_PUSH_SIZE);

            if (sigversion == SigVersion::BASE || sigversion == SigVersion::WITNESS_V0) {
                // Note how OP_RESERVED does not count towards the opcode limit.
                if (opcode > OP_16 && ++nOpCount > MAX_OPS_PER_SCRIPT) {
                    return set_error(serror, SCRIPT_ERR_OP_COUNT);
                }
            }

            if (opcode == OP_CAT ||
                opcode == OP_SUBSTR ||
                opcode == OP_LEFT ||
                opcode == OP_RIGHT ||
                opcode == OP_INVERT ||
                opcode == OP_AND ||
                opcode == OP_OR ||
                opcode == OP_XOR ||
                opcode == OP_2MUL ||
                opcode == OP_2DIV ||
                opcode == OP_MUL ||
                opcode == OP_DIV ||
                opcode == OP_MOD ||
                opcode == OP_LSHIFT ||
                opcode == OP_RSHIFT)
                return set_error(serror, SCRIPT_ERR_DISABLED_OPCODE); // Disabled opcodes (CVE-2010-5137).

            // With SCRIPT_VERIFY_CONST_SCRIPTCODE, OP_CODESEPARATOR in non-segwit script is rejected even in an unexecuted branch
            if (opcode == OP_CODESEPARATOR && sigversion == SigVersion::BASE && (flags & SCRIPT_VERIFY_CONST_SCRIPTCODE))
                return set_error(serror, SCRIPT_ERR_OP_CODESEPARATOR);

            if (fExec && 0 <= opcode && opcode <= OP_PUSHDATA4) {
                if (fRequireMinimal && !CheckMinimalPush(vchPushValue, opcode)) {
                    return set_error(serror, SCRIPT_ERR_MINIMALDATA);
                }
                stack.push_back(vchPushValue);
            } else if (fExec || (OP_IF <= opcode && opcode <= OP_ENDIF))
            switch (opcode)
            {
                //
                // Push value
                //
                case OP_1NEGATE:
                case OP_1:
                case OP_2:
                case OP_3:
                case OP_4:
                case OP_5:
                case OP_6:
                case OP_7:
                case OP_8:
                case OP_9:
                case OP_10:
                case OP_11:
                case OP_12:
                case OP_13:
                case OP_14:
                case OP_15:
                case OP_16:
                {
                    // ( -- value)
                    CScriptNum bn((int)opcode - (int)(OP_1 - 1));
                    stack.push_back(bn.getvch());
                    // The result of these opcodes should always be the minimal way to push the data
                    // they push, so no need for a CheckMinimalPush here.
                }
                break;


                //
                // Control
                //
                case OP_NOP:
                    break;

                case OP_CHECKLOCKTIMEVERIFY:
                {
                    if (!(flags & SCRIPT_VERIFY_CHECKLOCKTIMEVERIFY)) {
                        // not enabled; treat as a NOP2
                        break;
                    }

                    if (stack.size() < 1)
                        return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);

                    // Note that elsewhere numeric opcodes are limited to
                    // operands in the range -2**31+1 to 2**31-1, however it is
                    // legal for opcodes to produce results exceeding that
                    // range. This limitation is implemented by CScriptNum's
                    // default 4-byte limit.
                    //
                    // If we kept to that limit we'd have a year 2038 problem,
                    // even though the nLockTime field in transactions
                    // themselves is uint32 which only becomes meaningless
                    // after the year 2106.
                    //
                    // Thus as a special case we tell CScriptNum to accept up
                    // to 5-byte bignums, which are good until 2**39-1, well
                    // beyond the 2**32-1 limit of the nLockTime field itself.
                    const CScriptNum nLockTime(stacktop(-1), fRequireMinimal, 5);

                    // In the rare event that the argument may be < 0 due to
                    // some arithmetic being done first, you can always use
                    // 0 MAX CHECKLOCKTIMEVERIFY.
                    if (nLockTime < 0)
                        return set_error(serror, SCRIPT_ERR_NEGATIVE_LOCKTIME);

                    // Actually compare the specified lock time with the transaction.
                    if (!checker.CheckLockTime(nLockTime))
                        return set_error(serror, SCRIPT_ERR_UNSATISFIED_LOCKTIME);

                    break;
                }

                case OP_CHECKSEQUENCEVERIFY:
                {
                    if (!(flags & SCRIPT_VERIFY_CHECKSEQUENCEVERIFY)) {
                        // not enabled; treat as a NOP3
                        break;
                    }

                    if (stack.size() < 1)
                        return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);

                    // nSequence, like nLockTime, is a 32-bit unsigned integer
                    // field. See the comment in CHECKLOCKTIMEVERIFY regarding
                    // 5-byte numeric operands.
                    const CScriptNum nSequence(stacktop(-1), fRequireMinimal, 5);

                    // In the rare event that the argument may be < 0 due to
                    // some arithmetic being done first, you can always use
                    // 0 MAX CHECKSEQUENCEVERIFY.
                    if (nSequence < 0)
                        return set_error(serror, SCRIPT_ERR_NEGATIVE_LOCKTIME);

                    // To provide for future soft-fork extensibility, if the
                    // operand has the disabled lock-time flag set,
                    // CHECKSEQUENCEVERIFY behaves as a NOP.
                    if ((nSequence & CTxIn::SEQUENCE_LOCKTIME_DISABLE_FLAG) != 0)
                        break;

                    // Compare the specified sequence number with the input.
                    if (!checker.CheckSequence(nSequence))
                        return set_error(serror, SCRIPT_ERR_UNSATISFIED_LOCKTIME);

                    break;
                }

                case OP_NOP1: case OP_NOP4: case OP_NOP5:
                case OP_NOP6: case OP_NOP7: case OP_NOP8: case OP_NOP9: case OP_NOP10:
                {
                    if (flags & SCRIPT_VERIFY_DISCOURAGE_UPGRADABLE_NOPS)
                        return set_error(serror, SCRIPT_ERR_DISCOURAGE_UPGRADABLE_NOPS);
                }
                break;

                case OP_IF:
                case OP_NOTIF:
                {
                    // <expression> if [statements] [else [statements]] endif
                    bool fValue = false;
                    if (fExec)
                    {
                        if (stack.size() < 1)
                            return set_error(serror, SCRIPT_ERR_UNBALANCED_CONDITIONAL);
                        valtype& vch = stacktop(-1);
                        // Tapscript requires minimal IF/NOTIF inputs as a consensus rule.
                        if (sigversion == SigVersion::TAPSCRIPT) {
                            // The input argument to the OP_IF and OP_NOTIF opcodes must be either
                            // exactly 0 (the empty vector) or exactly 1 (the one-byte vector with value 1).
                            if (vch.size() > 1 || (vch.size() == 1 && vch[0] != 1)) {
                                return set_error(serror, SCRIPT_ERR_TAPSCRIPT_MINIMALIF);
                            }
                        }
                        // Under witness v0 rules it is only a policy rule, enabled through SCRIPT_VERIFY_MINIMALIF.
                        if (sigversion == SigVersion::WITNESS_V0 && (flags & SCRIPT_VERIFY_MINIMALIF)) {
                            if (vch.size() > 1)
                                return set_error(serror, SCRIPT_ERR_MINIMALIF);
                            if (vch.size() == 1 && vch[0] != 1)
                                return set_error(serror, SCRIPT_ERR_MINIMALIF);
                        }
                        fValue = CastToBool(vch);
                        if (opcode == OP_NOTIF)
                            fValue = !fValue;
                        popstack(stack);
                    }
                    vfExec.push_back(fValue);
                }
                break;

                case OP_ELSE:
                {
                    if (vfExec.empty())
                        return set_error(serror, SCRIPT_ERR_UNBALANCED_CONDITIONAL);
                    vfExec.toggle_top();
                }
                break;

                case OP_ENDIF:
                {
                    if (vfExec.empty())
                        return set_error(serror, SCRIPT_ERR_UNBALANCED_CONDITIONAL);
                    vfExec.pop_back();
                }
                break;

                case OP_VERIFY:
                {
                    // (true -- ) or
                    // (false -- false) and return
                    if (stack.size() < 1)
                        return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
                    bool fValue = CastToBool(stacktop(-1));
                    if (fValue)
                        popstack(stack);
                    else
                        return set_error(serror, SCRIPT_ERR_VERIFY);
                }
                break;

                case OP_RETURN:
                {
                    return set_error(serror, SCRIPT_ERR_OP_RETURN);
                }
                break;


                //
                // Stack ops
                //
                case OP_TOALTSTACK:
                {
                    if (stack.size() < 1)
                        return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
                    altstack.push_back(stacktop(-1));
                    popstack(stack);
                }
                break;

                case OP_FROMALTSTACK:
                {
                    if (altstack.size() < 1)
                        return set_error(serror, SCRIPT_ERR_INVALID_ALTSTACK_OPERATION);
                    stack.push_back(altstacktop(-1));
                    popstack(altstack);
                }
                break;

                case OP_2DROP:
                {
                    // (x1 x2 -- )
                    if (stack.size() < 2)
                        return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
                    popstack(stack);
                    popstack(stack);
                }
                break;

                case OP_2DUP:
                {
                    // (x1 x2 -- x1 x2 x1 x2)
                    if (stack.size() < 2)
                        return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
                    valtype vch1 = stacktop(-2);
                    valtype vch2 = stacktop(-1);
                    stack.push_back(vch1);
                    stack.push_back(vch2);
                }
                break;

                case OP_3DUP:
                {
                    // (x1 x2 x3 -- x1 x2 x3 x1 x2 x3)
                    if (stack.size() < 3)
                        return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
                    valtype vch1 = stacktop(-3);
                    valtype vch2 = stacktop(-2);
                    valtype vch3 = stacktop(-1);
                    stack.push_back(vch1);
                    stack.push_back(vch2);
                    stack.push_back(vch3);
                }
                break;

                case OP_2OVER:
                {
                    // (x1 x2 x3 x4 -- x1 x2 x3 x4 x1 x2)
                    if (stack.size() < 4)
                        return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
                    valtype vch1 = stacktop(-4);
                    valtype vch2 = stacktop(-3);
                    stack.push_back(vch1);
                    stack.push_back(vch2);
                }
                break;

                case OP_2ROT:
                {
                    // (x1 x2 x3 x4 x5 x6 -- x3 x4 x5 x6 x1 x2)
                    if (stack.size() < 6)
                        return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
                    valtype vch1 = stacktop(-6);
                    valtype vch2 = stacktop(-5);
                    stack.erase(stack.end()-6, stack.end()-4);
                    stack.push_back(vch1);
                    stack.push_back(vch2);
                }
                break;

                case OP_2SWAP:
                {
                    // (x1 x2 x3 x4 -- x3 x4 x1 x2)
                    if (stack.size() < 4)
                        return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
                    swap(stacktop(-4), stacktop(-2));
                    swap(stacktop(-3), stacktop(-1));
                }
                break;

                case OP_IFDUP:
                {
                    // (x - 0 | x x)
                    if (stack.size() < 1)
                        return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
                    valtype vch = stacktop(-1);
                    if (CastToBool(vch))
                        stack.push_back(vch);
                }
                break;

                case OP_DEPTH:
                {
                    // -- stacksize
                    CScriptNum bn(stack.size());
                    stack.push_back(bn.getvch());
                }
                break;

                case OP_DROP:
                {
                    // (x -- )
                    if (stack.size() < 1)
                        return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
                    popstack(stack);
                }
                break;

                case OP_DUP:
                {
                    // (x -- x x)
                    if (stack.size() < 1)
                        return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
                    valtype vch = stacktop(-1);
                    stack.push_back(vch);
                }
                break;

                case OP_NIP:
                {
                    // (x1 x2 -- x2)
                    if (stack.size() < 2)
                        return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
                    stack.erase(stack.end() - 2);
                }
                break;

                case OP_OVER:
                {
                    // (x1 x2 -- x1 x2 x1)
                    if (stack.size() < 2)
                        return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
                    valtype vch = stacktop(-2);
                    stack.push_back(vch);
                }
                break;

                case OP_PICK:
                case OP_ROLL:
                {
                    // (xn ... x2 x1 x0 n - xn ... x2 x1 x0 xn)
                    // (xn ... x2 x1 x0 n - ... x2 x1 x0 xn)
                    if (stack.size() < 2)
                        return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
                    int n = CScriptNum(stacktop(-1), fRequireMinimal).getint();
                    popstack(stack);
                    if (n < 0 || n >= (int)stack.size())
                        return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
                    valtype vch = stacktop(-n-1);
                    if (opcode == OP_ROLL)
                        stack.erase(stack.end()-n-1);
                    stack.push_back(vch);
                }
                break;

                case OP_ROT:
                {
                    // (x1 x2 x3 -- x2 x3 x1)
                    //  x2 x1 x3  after first swap
                    //  x2 x3 x1  after second swap
                    if (stack.size() < 3)
                        return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
                    swap(stacktop(-3), stacktop(-2));
                    swap(stacktop(-2), stacktop(-1));
                }
                break;

                case OP_SWAP:
                {
                    // (x1 x2 -- x2 x1)
                    if (stack.size() < 2)
                        return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
                    swap(stacktop(-2), stacktop(-1));
                }
                break;

                case OP_TUCK:
                {
                    // (x1 x2 -- x2 x1 x2)
                    if (stack.size() < 2)
                        return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
                    valtype vch = stacktop(-1);
                    stack.insert(stack.end()-2, vch);
                }
                break;


                case OP_SIZE:
                {
                    // (in -- in size)
                    if (stack.size() < 1)
                        return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
                    CScriptNum bn(stacktop(-1).size());
                    stack.push_back(bn.getvch());
                }
                break;


                //
                // Bitwise logic
                //
                case OP_EQUAL:
                case OP_EQUALVERIFY:
                //case OP_NOTEQUAL: // use OP_NUMNOTEQUAL
                {
                    // (x1 x2 - bool)
                    if (stack.size() < 2)
                        return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
                    valtype& vch1 = stacktop(-2);
                    valtype& vch2 = stacktop(-1);
                    bool fEqual = (vch1 == vch2);
                    // OP_NOTEQUAL is disabled because it would be too easy to say
                    // something like n != 1 and have some wiseguy pass in 1 with extra
                    // zero bytes after it (numerically, 0x01 == 0x0001 == 0x000001)
                    //if (opcode == OP_NOTEQUAL)
                    //    fEqual = !fEqual;
                    popstack(stack);
                    popstack(stack);
                    stack.push_back(fEqual ? vchTrue : vchFalse);
                    if (opcode == OP_EQUALVERIFY)
                    {
                        if (fEqual)
                            popstack(stack);
                        else
                            return set_error(serror, SCRIPT_ERR_EQUALVERIFY);
                    }
                }
                break;


                //
                // Numeric
                //
                case OP_1ADD:
                case OP_1SUB:
                case OP_NEGATE:
                case OP_ABS:
                case OP_NOT:
                case OP_0NOTEQUAL:
                {
                    // (in -- out)
                    if (stack.size() < 1)
                        return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
                    CScriptNum bn(stacktop(-1), fRequireMinimal);
                    switch (opcode)
                    {
                    case OP_1ADD:       bn += bnOne; break;
                    case OP_1SUB:       bn -= bnOne; break;
                    case OP_NEGATE:     bn = -bn; break;
                    case OP_ABS:        if (bn < bnZero) bn = -bn; break;
                    case OP_NOT:        bn = (bn == bnZero); break;
                    case OP_0NOTEQUAL:  bn = (bn != bnZero); break;
                    default:            assert(!"invalid opcode"); break;
                    }
                    popstack(stack);
                    stack.push_back(bn.getvch());
                }
                break;

                case OP_ADD:
                case OP_SUB:
                case OP_BOOLAND:
                case OP_BOOLOR:
                case OP_NUMEQUAL:
                case OP_NUMEQUALVERIFY:
                case OP_NUMNOTEQUAL:
                case OP_LESSTHAN:
                case OP_GREATERTHAN:
                case OP_LESSTHANOREQUAL:
                case OP_GREATERTHANOREQUAL:
                case OP_MIN:
                case OP_MAX:
                {
                    // (x1 x2 -- out)
                    if (stack.size() < 2)
                        return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
                    CScriptNum bn1(stacktop(-2), fRequireMinimal);
                    CScriptNum bn2(stacktop(-1), fRequireMinimal);
                    CScriptNum bn(0);
                    switch (opcode)
                    {
                    case OP_ADD:
                        bn = bn1 + bn2;
                        break;

                    case OP_SUB:
                        bn = bn1 - bn2;
                        break;

                    case OP_BOOLAND:             bn = (bn1 != bnZero && bn2 != bnZero); break;
                    case OP_BOOLOR:              bn = (bn1 != bnZero || bn2 != bnZero); break;
                    case OP_NUMEQUAL:            bn = (bn1 == bn2); break;
                    case OP_NUMEQUALVERIFY:      bn = (bn1 == bn2); break;
                    case OP_NUMNOTEQUAL:         bn = (bn1 != bn2); break;
                    case OP_LESSTHAN:            bn = (bn1 < bn2); break;
                    case OP_GREATERTHAN:         bn = (bn1 > bn2); break;
                    case OP_LESSTHANOREQUAL:     bn = (bn1 <= bn2); break;
                    case OP_GREATERTHANOREQUAL:  bn = (bn1 >= bn2); break;
                    case OP_MIN:                 bn = (bn1 < bn2 ? bn1 : bn2); break;
                    case OP_MAX:                 bn = (bn1 > bn2 ? bn1 : bn2); break;
                    default:                     assert(!"invalid opcode"); break;
                    }
                    popstack(stack);
                    popstack(stack);
                    stack.push_back(bn.getvch());

                    if (opcode == OP_NUMEQUALVERIFY)
                    {
                        if (CastToBool(stacktop(-1)))
                            popstack(stack);
                        else
                            return set_error(serror, SCRIPT_ERR_NUMEQUALVERIFY);
                    }
                }
                break;

                case OP_WITHIN:
                {
                    // (x min max -- out)
                    if (stack.size() < 3)
                        return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
                    CScriptNum bn1(stacktop(-3), fRequireMinimal);
                    CScriptNum bn2(stacktop(-2), fRequireMinimal);
                    CScriptNum bn3(stacktop(-1), fRequireMinimal);
                    bool fValue = (bn2 <= bn1 && bn1 < bn3);
                    popstack(stack);
                    popstack(stack);
                    popstack(stack);
                    stack.push_back(fValue ? vchTrue : vchFalse);
                }
                break;


                //
                // Crypto
                //
                case OP_RIPEMD160:
                case OP_SHA1:
                case OP_SHA256:
                case OP_HASH160:
                case OP_HASH256:
                {
                    // (in -- hash)
                    if (stack.size() < 1)
                        return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
                    valtype& vch = stacktop(-1);
                    valtype vchHash((opcode == OP_RIPEMD160 || opcode == OP_SHA1 || opcode == OP_HASH160) ? 20 : 32);
                    if (opcode == OP_RIPEMD160)
                        CRIPEMD160().Write(vch.data(), vch.size()).Finalize(vchHash.data());
                    else if (opcode == OP_SHA1)
                        CSHA1().Write(vch.data(), vch.size()).Finalize(vchHash.data());
                    else if (opcode == OP_SHA256)
                        CSHA256().Write(vch.data(), vch.size()).Finalize(vchHash.data());
                    else if (opcode == OP_HASH160)
                        CHash160().Write(vch).Finalize(vchHash);
                    else if (opcode == OP_HASH256)
                        CHash256().Write(vch).Finalize(vchHash);
                    popstack(stack);
                    stack.push_back(vchHash);
                }
                break;

                case OP_CODESEPARATOR:
                {
                    // If SCRIPT_VERIFY_CONST_SCRIPTCODE flag is set, use of OP_CODESEPARATOR is rejected in pre-segwit
                    // script, even in an unexecuted branch (this is checked above the opcode case statement).

                    // Hash starts after the code separator
                    pbegincodehash = pc;
                    execdata.m_codeseparator_pos = opcode_pos;
                }
                break;

                case OP_CHECKSIG:
                case OP_CHECKSIGVERIFY:
                {
                    // (sig pubkey -- bool)
                    if (stack.size() < 2)
                        return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);

                    valtype& vchSig    = stacktop(-2);
                    valtype& vchPubKey = stacktop(-1);

                    bool fSuccess = true;
                    if (!EvalChecksig(vchSig, vchPubKey, pbegincodehash, pend, execdata, flags, checker, sigversion, serror, fSuccess)) return false;
                    popstack(stack);
                    popstack(stack);
                    stack.push_back(fSuccess ? vchTrue : vchFalse);
                    if (opcode == OP_CHECKSIGVERIFY)
                    {
                        if (fSuccess)
                            popstack(stack);
                        else
                            return set_error(serror, SCRIPT_ERR_CHECKSIGVERIFY);
                    }
                }
                break;

                case OP_CHECKSIGADD:
                {
                    // OP_CHECKSIGADD is only available in Tapscript
                    if (sigversion == SigVersion::BASE || sigversion == SigVersion::WITNESS_V0) return set_error(serror, SCRIPT_ERR_BAD_OPCODE);

                    // (sig num pubkey -- num)
                    if (stack.size() < 3) return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);

                    const valtype& sig = stacktop(-3);
                    const CScriptNum num(stacktop(-2), fRequireMinimal);
                    const valtype& pubkey = stacktop(-1);

                    bool success = true;
                    if (!EvalChecksig(sig, pubkey, pbegincodehash, pend, execdata, flags, checker, sigversion, serror, success)) return false;
                    popstack(stack);
                    popstack(stack);
                    popstack(stack);
                    stack.push_back((num + (success ? 1 : 0)).getvch());
                }
                break;

                case OP_CHECKMULTISIG:
                case OP_CHECKMULTISIGVERIFY:
                {
                    if (sigversion == SigVersion::TAPSCRIPT) return set_error(serror, SCRIPT_ERR_TAPSCRIPT_CHECKMULTISIG);

                    // ([sig ...] num_of_signatures [pubkey ...] num_of_pubkeys -- bool)

                    int i = 1;
                    if ((int)stack.size() < i)
                        return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);

                    int nKeysCount = CScriptNum(stacktop(-i), fRequireMinimal).getint();
                    if (nKeysCount < 0 || nKeysCount > MAX_PUBKEYS_PER_MULTISIG)
                        return set_error(serror, SCRIPT_ERR_PUBKEY_COUNT);
                    nOpCount += nKeysCount;
                    if (nOpCount > MAX_OPS_PER_SCRIPT)
                        return set_error(serror, SCRIPT_ERR_OP_COUNT);
                    int ikey = ++i;
                    // ikey2 is the position of last non-signature item in the stack. Top stack item = 1.
                    // With SCRIPT_VERIFY_NULLFAIL, this is used for cleanup if operation fails.
                    int ikey2 = nKeysCount + 2;
                    i += nKeysCount;
                    if ((int)stack.size() < i)
                        return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);

                    int nSigsCount = CScriptNum(stacktop(-i), fRequireMinimal).getint();
                    if (nSigsCount < 0 || nSigsCount > nKeysCount)
                        return set_error(serror, SCRIPT_ERR_SIG_COUNT);
                    int isig = ++i;
                    i += nSigsCount;
                    if ((int)stack.size() < i)
                        return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);

                    // Subset of script starting at the most recent codeseparator
                    CScript scriptCode(pbegincodehash, pend);

                    // Drop the signature in pre-segwit scripts but not segwit scripts
                    for (int k = 0; k < nSigsCount; k++)
                    {
                        valtype& vchSig = stacktop(-isig-k);
                        if (sigversion == SigVersion::BASE) {
                            int found = FindAndDelete(scriptCode, CScript() << vchSig);
                            if (found > 0 && (flags & SCRIPT_VERIFY_CONST_SCRIPTCODE))
                                return set_error(serror, SCRIPT_ERR_SIG_FINDANDDELETE);
                        }
                    }

                    bool fSuccess = true;
                    while (fSuccess && nSigsCount > 0)
                    {
                        valtype& vchSig    = stacktop(-isig);
                        valtype& vchPubKey = stacktop(-ikey);

                        // Note how this makes the exact order of pubkey/signature evaluation
                        // distinguishable by CHECKMULTISIG NOT if the STRICTENC flag is set.
                        // See the script_(in)valid tests for details.
                        if (!CheckSignatureEncoding(vchSig, flags, serror) || !CheckPubKeyEncoding(vchPubKey, flags, sigversion, serror)) {
                            // serror is set
                            return false;
                        }

                        // Check signature
                        bool fOk = checker.CheckECDSASignature(vchSig, vchPubKey, scriptCode, sigversion);

                        if (fOk) {
                            isig++;
                            nSigsCount--;
                        }
                        ikey++;
                        nKeysCount--;

                        // If there are more signatures left than keys left,
                        // then too many signatures have failed. Exit early,
                        // without checking any further signatures.
                        if (nSigsCount > nKeysCount)
                            fSuccess = false;
                    }

                    // Clean up stack of actual arguments
                    while (i-- > 1) {
                        // If the operation failed, we require that all signatures must be empty vector
                        if (!fSuccess && (flags & SCRIPT_VERIFY_NULLFAIL) && !ikey2 && stacktop(-1).size())
                            return set_error(serror, SCRIPT_ERR_SIG_NULLFAIL);
                        if (ikey2 > 0)
                            ikey2--;
                        popstack(stack);
                    }

                    // A bug causes CHECKMULTISIG to consume one extra argument
                    // whose contents were not checked in any way.
                    //
                    // Unfortunately this is a potential source of mutability,
                    // so optionally verify it is exactly equal to zero prior
                    // to removing it from the stack.
                    if (stack.size() < 1)
                        return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
                    if ((flags & SCRIPT_VERIFY_NULLDUMMY) && stacktop(-1).size())
                        return set_error(serror, SCRIPT_ERR_SIG_NULLDUMMY);
                    popstack(stack);

                    stack.push_back(fSuccess ? vchTrue : vchFalse);

                    if (opcode == OP_CHECKMULTISIGVERIFY)
                    {
                        if (fSuccess)
                            popstack(stack);
                        else
                            return set_error(serror, SCRIPT_ERR_CHECKMULTISIGVERIFY);
                    }
                }
                break;

                default:
                    return set_error(serror, SCRIPT_ERR_BAD_OPCODE);
            }

            // Size limits
            if (stack.size() + altstack.size() > MAX_STACK_SIZE)
                return set_error(serror, SCRIPT_ERR_STACK_SIZE);
        }
    }
    catch (...)
    {
        return set_error(serror, SCRIPT_ERR_UNKNOWN_ERROR);
    }

    if (!vfExec.empty())
        return set_error(serror, SCRIPT_ERR_UNBALANCED_CONDITIONAL);

    return set_success(serror);
}

bool EvalScript(std::vector<std::vector<unsigned char> >& stack, const CScript& script, unsigned int flags, const BaseSignatureChecker& checker, SigVersion sigversion, ScriptError* serror)
{
    ScriptExecutionData execdata;
    return EvalScript(stack, script, flags, checker, sigversion, execdata, serror);
}

namespace {

/**
 * Wrapper that serializes like CTransaction, but with the modifications
 *  required for the signature hash done in-place
 */
template <class T>
class CTransactionSignatureSerializer
{
private:
    const T& txTo;             //!< reference to the spending transaction (the one being serialized)
    const CScript& scriptCode; //!< output script being consumed
    const unsigned int nIn;    //!< input index of txTo being signed
    const bool fAnyoneCanPay;  //!< whether the hashtype has the SIGHASH_ANYONECANPAY flag set
    const bool fHashSingle;    //!< whether the hashtype is SIGHASH_SINGLE
    const bool fHashNone;      //!< whether the hashtype is SIGHASH_NONE

public:
    CTransactionSignatureSerializer(const T& txToIn, const CScript& scriptCodeIn, unsigned int nInIn, int nHashTypeIn) :
        txTo(txToIn), scriptCode(scriptCodeIn), nIn(nInIn),
        fAnyoneCanPay(!!(nHashTypeIn & SIGHASH_ANYONECANPAY)),
        fHashSingle((nHashTypeIn & 0x1f) == SIGHASH_SINGLE),
        fHashNone((nHashTypeIn & 0x1f) == SIGHASH_NONE) {}

    /** Serialize the passed scriptCode, skipping OP_CODESEPARATORs */
    template<typename S>
    void SerializeScriptCode(S &s) const {
        CScript::const_iterator it = scriptCode.begin();
        CScript::const_iterator itBegin = it;
        opcodetype opcode;
        unsigned int nCodeSeparators = 0;
        while (scriptCode.GetOp(it, opcode)) {
            if (opcode == OP_CODESEPARATOR)
                nCodeSeparators++;
        }
        ::WriteCompactSize(s, scriptCode.size() - nCodeSeparators);
        it = itBegin;
        while (scriptCode.GetOp(it, opcode)) {
            if (opcode == OP_CODESEPARATOR) {
                s.write(AsBytes(Span{&itBegin[0], size_t(it - itBegin - 1)}));
                itBegin = it;
            }
        }
        if (itBegin != scriptCode.end())
            s.write(AsBytes(Span{&itBegin[0], size_t(it - itBegin)}));
    }

    /** Serialize an input of txTo */
    template<typename S>
    void SerializeInput(S &s, unsigned int nInput) const {
        // In case of SIGHASH_ANYONECANPAY, only the input being signed is serialized
        if (fAnyoneCanPay)
            nInput = nIn;
        // Serialize the prevout
        ::Serialize(s, txTo.vin[nInput].prevout);
        // Serialize the script
        if (nInput != nIn)
            // Blank out other inputs' signatures
            ::Serialize(s, CScript());
        else
            SerializeScriptCode(s);
        // Serialize the nSequence
        if (nInput != nIn && (fHashSingle || fHashNone))
            // let the others update at will
            ::Serialize(s, int{0});
        else
            ::Serialize(s, txTo.vin[nInput].nSequence);
    }

    /** Serialize an output of txTo */
    template<typename S>
    void SerializeOutput(S &s, unsigned int nOutput) const {
        if (fHashSingle && nOutput != nIn)
            // Do not lock-in the txout payee at other indices as txin
            ::Serialize(s, CTxOut());
        else
            ::Serialize(s, txTo.vout[nOutput]);
    }

    /** Serialize txTo */
    template<typename S>
    void Serialize(S &s) const {
        // Serialize version
        ::Serialize(s, txTo.version);
        // Serialize vin
        unsigned int nInputs = fAnyoneCanPay ? 1 : txTo.vin.size();
        ::WriteCompactSize(s, nInputs);
        for (unsigned int nInput = 0; nInput < nInputs; nInput++)
             SerializeInput(s, nInput);
        // Serialize vout
        unsigned int nOutputs = fHashNone ? 0 : (fHashSingle ? nIn+1 : txTo.vout.size());
        ::WriteCompactSize(s, nOutputs);
        for (unsigned int nOutput = 0; nOutput < nOutputs; nOutput++)
             SerializeOutput(s, nOutput);
        // Serialize nLockTime
        ::Serialize(s, txTo.nLockTime);
    }
};

/** Compute the (single) SHA256 of the concatenation of all prevouts of a tx. */
template <class T>
uint256 GetPrevoutsSHA256(const T& txTo)
{
    HashWriter ss{};
    for (const auto& txin : txTo.vin) {
        ss << txin.prevout;
    }
    return ss.GetSHA256();
}

/** Compute the (single) SHA256 of the concatenation of all nSequences of a tx. */
template <class T>
uint256 GetSequencesSHA256(const T& txTo)
{
    HashWriter ss{};
    for (const auto& txin : txTo.vin) {
        ss << txin.nSequence;
    }
    return ss.GetSHA256();
}

/** Compute the (single) SHA256 of the concatenation of all txouts of a tx. */
template <class T>
uint256 GetOutputsSHA256(const T& txTo)
{
    HashWriter ss{};
    for (const auto& txout : txTo.vout) {
        ss << txout;
    }
    return ss.GetSHA256();
}

/** Compute the (single) SHA256 of the concatenation of all amounts spent by a tx. */
uint256 GetSpentAmountsSHA256(const std::vector<CTxOut>& outputs_spent)
{
    HashWriter ss{};
    for (const auto& txout : outputs_spent) {
        ss << txout.nValue;
    }
    return ss.GetSHA256();
}

/** Compute the (single) SHA256 of the concatenation of all scriptPubKeys spent by a tx. */
uint256 GetSpentScriptsSHA256(const std::vector<CTxOut>& outputs_spent)
{
    HashWriter ss{};
    for (const auto& txout : outputs_spent) {
        ss << txout.scriptPubKey;
    }
    return ss.GetSHA256();
}


} // namespace

template <class T>
void PrecomputedTransactionData::Init(const T& txTo, std::vector<CTxOut>&& spent_outputs, bool force)
{
    assert(!m_spent_outputs_ready);

    m_spent_outputs = std::move(spent_outputs);
    if (!m_spent_outputs.empty()) {
        assert(m_spent_outputs.size() == txTo.vin.size());
        m_spent_outputs_ready = true;
    }

    // Determine which precomputation-impacting features this transaction uses.
    bool uses_bip143_segwit = force;
    bool uses_bip341_taproot = force;
    for (size_t inpos = 0; inpos < txTo.vin.size() && !(uses_bip143_segwit && uses_bip341_taproot); ++inpos) {
        if (!txTo.vin[inpos].scriptWitness.IsNull()) {
            if (m_spent_outputs_ready && m_spent_outputs[inpos].scriptPubKey.size() == 2 + WITNESS_V1_TAPROOT_SIZE &&
                m_spent_outputs[inpos].scriptPubKey[0] == OP_1) {
                // Treat every witness-bearing spend with 34-byte scriptPubKey that starts with OP_1 as a Taproot
                // spend. This only works if spent_outputs was provided as well, but if it wasn't, actual validation
                // will fail anyway. Note that this branch may trigger for scriptPubKeys that aren't actually segwit
                // but in that case validation will fail as SCRIPT_ERR_WITNESS_UNEXPECTED anyway.
                uses_bip341_taproot = true;
            } else {
                // Treat every spend that's not known to native witness v1 as a Witness v0 spend. This branch may
                // also be taken for unknown witness versions, but it is harmless, and being precise would require
                // P2SH evaluation to find the redeemScript.
                uses_bip143_segwit = true;
            }
        }
        if (uses_bip341_taproot && uses_bip143_segwit) break; // No need to scan further if we already need all.
    }

    if (uses_bip143_segwit || uses_bip341_taproot) {
        // Computations shared between both sighash schemes.
        m_prevouts_single_hash = GetPrevoutsSHA256(txTo);
        m_sequences_single_hash = GetSequencesSHA256(txTo);
        m_outputs_single_hash = GetOutputsSHA256(txTo);
    }
    if (uses_bip143_segwit) {
        hashPrevouts = SHA256Uint256(m_prevouts_single_hash);
        hashSequence = SHA256Uint256(m_sequences_single_hash);
        hashOutputs = SHA256Uint256(m_outputs_single_hash);
        m_bip143_segwit_ready = true;
    }
    if (uses_bip341_taproot && m_spent_outputs_ready) {
        m_spent_amounts_single_hash = GetSpentAmountsSHA256(m_spent_outputs);
        m_spent_scripts_single_hash = GetSpentScriptsSHA256(m_spent_outputs);
        m_bip341_taproot_ready = true;
    }
}

template <class T>
PrecomputedTransactionData::PrecomputedTransactionData(const T& txTo)
{
    Init(txTo, {});
}

// explicit instantiation
template void PrecomputedTransactionData::Init(const CTransaction& txTo, std::vector<CTxOut>&& spent_outputs, bool force);
template void PrecomputedTransactionData::Init(const CMutableTransaction& txTo, std::vector<CTxOut>&& spent_outputs, bool force);
template PrecomputedTransactionData::PrecomputedTransactionData(const CTransaction& txTo);
template PrecomputedTransactionData::PrecomputedTransactionData(const CMutableTransaction& txTo);

const HashWriter HASHER_TAPSIGHASH{TaggedHash("TapSighash")};
const HashWriter HASHER_TAPLEAF{TaggedHash("TapLeaf")};
const HashWriter HASHER_TAPBRANCH{TaggedHash("TapBranch")};

static bool HandleMissingData(MissingDataBehavior mdb)
{
    switch (mdb) {
    case MissingDataBehavior::ASSERT_FAIL:
        assert(!"Missing data");
        break;
    case MissingDataBehavior::FAIL:
        return false;
    }
    assert(!"Unknown MissingDataBehavior value");
}

template<typename T>
bool SignatureHashSchnorr(uint256& hash_out, ScriptExecutionData& execdata, const T& tx_to, uint32_t in_pos, uint8_t hash_type, SigVersion sigversion, const PrecomputedTransactionData& cache, MissingDataBehavior mdb)
{
    uint8_t ext_flag, key_version;
    switch (sigversion) {
    case SigVersion::TAPROOT:
        ext_flag = 0;
        // key_version is not used and left uninitialized.
        break;
    case SigVersion::TAPSCRIPT:
        ext_flag = 1;
        // key_version must be 0 for now, representing the current version of
        // 32-byte public keys in the tapscript signature opcode execution.
        // An upgradable public key version (with a size not 32-byte) may
        // request a different key_version with a new sigversion.
        key_version = 0;
        break;
    default:
        assert(false);
    }
    assert(in_pos < tx_to.vin.size());
    if (!(cache.m_bip341_taproot_ready && cache.m_spent_outputs_ready)) {
        return HandleMissingData(mdb);
    }

    HashWriter ss{HASHER_TAPSIGHASH};

    // Epoch
    static constexpr uint8_t EPOCH = 0;
    ss << EPOCH;

    // Hash type
    const uint8_t output_type = (hash_type == SIGHASH_DEFAULT) ? SIGHASH_ALL : (hash_type & SIGHASH_OUTPUT_MASK); // Default (no sighash byte) is equivalent to SIGHASH_ALL
    const uint8_t input_type = hash_type & SIGHASH_INPUT_MASK;
    if (!(hash_type <= 0x03 || (hash_type >= 0x81 && hash_type <= 0x83))) return false;
    ss << hash_type;

    // Transaction level data
    ss << tx_to.version;
    ss << tx_to.nLockTime;
    if (input_type != SIGHASH_ANYONECANPAY) {
        ss << cache.m_prevouts_single_hash;
        ss << cache.m_spent_amounts_single_hash;
        ss << cache.m_spent_scripts_single_hash;
        ss << cache.m_sequences_single_hash;
    }
    if (output_type == SIGHASH_ALL) {
        ss << cache.m_outputs_single_hash;
    }

    // Data about the input/prevout being spent
    assert(execdata.m_annex_init);
    const bool have_annex = execdata.m_annex_present;
    const uint8_t spend_type = (ext_flag << 1) + (have_annex ? 1 : 0); // The low bit indicates whether an annex is present.
    ss << spend_type;
    if (input_type == SIGHASH_ANYONECANPAY) {
        ss << tx_to.vin[in_pos].prevout;
        ss << cache.m_spent_outputs[in_pos];
        ss << tx_to.vin[in_pos].nSequence;
    } else {
        ss << in_pos;
    }
    if (have_annex) {
        ss << execdata.m_annex_hash;
    }

    // Data about the output (if only one).
    if (output_type == SIGHASH_SINGLE) {
        if (in_pos >= tx_to.vout.size()) return false;
        if (!execdata.m_output_hash) {
            HashWriter sha_single_output{};
            sha_single_output << tx_to.vout[in_pos];
            execdata.m_output_hash = sha_single_output.GetSHA256();
        }
        ss << execdata.m_output_hash.value();
    }

    // Additional data for BIP 342 signatures
    if (sigversion == SigVersion::TAPSCRIPT) {
        assert(execdata.m_tapleaf_hash_init);
        ss << execdata.m_tapleaf_hash;
        ss << key_version;
        assert(execdata.m_codeseparator_pos_init);
        ss << execdata.m_codeseparator_pos;
    }

    hash_out = ss.GetSHA256();
    return true;
}

template <class T>
uint256 SignatureHash(const CScript& scriptCode, const T& txTo, unsigned int nIn, int nHashType, const CAmount& amount, SigVersion sigversion, const PrecomputedTransactionData* cache)
{
    assert(nIn < txTo.vin.size());

    if (sigversion == SigVersion::WITNESS_V0) {
        uint256 hashPrevouts;
        uint256 hashSequence;
        uint256 hashOutputs;
        const bool cacheready = cache && cache->m_bip143_segwit_ready;

        if (!(nHashType & SIGHASH_ANYONECANPAY)) {
            hashPrevouts = cacheready ? cache->hashPrevouts : SHA256Uint256(GetPrevoutsSHA256(txTo));
        }

        if (!(nHashType & SIGHASH_ANYONECANPAY) && (nHashType & 0x1f) != SIGHASH_SINGLE && (nHashType & 0x1f) != SIGHASH_NONE) {
            hashSequence = cacheready ? cache->hashSequence : SHA256Uint256(GetSequencesSHA256(txTo));
        }


        if ((nHashType & 0x1f) != SIGHASH_SINGLE && (nHashType & 0x1f) != SIGHASH_NONE) {
            hashOutputs = cacheready ? cache->hashOutputs : SHA256Uint256(GetOutputsSHA256(txTo));
        } else if ((nHashType & 0x1f) == SIGHASH_SINGLE && nIn < txTo.vout.size()) {
            HashWriter ss{};
            ss << txTo.vout[nIn];
            hashOutputs = ss.GetHash();
        }

        HashWriter ss{};
        // Version
        ss << txTo.version;
        // Input prevouts/nSequence (none/all, depending on flags)
        ss << hashPrevouts;
        ss << hashSequence;
        // The input being signed (replacing the scriptSig with scriptCode + amount)
        // The prevout may already be contained in hashPrevout, and the nSequence
        // may already be contain in hashSequence.
        ss << txTo.vin[nIn].prevout;
        ss << scriptCode;
        ss << amount;
        ss << txTo.vin[nIn].nSequence;
        // Outputs (none/one/all, depending on flags)
        ss << hashOutputs;
        // Locktime
        ss << txTo.nLockTime;
        // Sighash type
        ss << nHashType;

        return ss.GetHash();
    }

    // Check for invalid use of SIGHASH_SINGLE
    if ((nHashType & 0x1f) == SIGHASH_SINGLE) {
        if (nIn >= txTo.vout.size()) {
            //  nOut out of range
            return uint256::ONE;
        }
    }

    // Wrapper to serialize only the necessary parts of the transaction being signed
    CTransactionSignatureSerializer<T> txTmp(txTo, scriptCode, nIn, nHashType);

    // Serialize and hash
    HashWriter ss{};
    ss << txTmp << nHashType;
    return ss.GetHash();
}

template <class T>
bool GenericTransactionSignatureChecker<T>::VerifyECDSASignature(const std::vector<unsigned char>& vchSig, const CPubKey& pubkey, const uint256& sighash) const
{
    return pubkey.Verify(sighash, vchSig);
}

template <class T>
bool GenericTransactionSignatureChecker<T>::VerifySchnorrSignature(Span<const unsigned char> sig, const XOnlyPubKey& pubkey, const uint256& sighash) const
{
    return pubkey.VerifySchnorr(sighash, sig);
}

template <class T>
bool GenericTransactionSignatureChecker<T>::CheckECDSASignature(const std::vector<unsigned char>& vchSigIn, const std::vector<unsigned char>& vchPubKey, const CScript& scriptCode, SigVersion sigversion) const
{
    CPubKey pubkey(vchPubKey);
    if (!pubkey.IsValid())
        return false;

    // Hash type is one byte tacked on to the end of the signature
    std::vector<unsigned char> vchSig(vchSigIn);
    if (vchSig.empty())
        return false;
    int nHashType = vchSig.back();
    vchSig.pop_back();

    // Witness sighashes need the amount.
    if (sigversion == SigVersion::WITNESS_V0 && amount < 0) return HandleMissingData(m_mdb);

    uint256 sighash = SignatureHash(scriptCode, *txTo, nIn, nHashType, amount, sigversion, this->txdata);

    if (!VerifyECDSASignature(vchSig, pubkey, sighash))
        return false;

    return true;
}

template <class T>
bool GenericTransactionSignatureChecker<T>::CheckSchnorrSignature(Span<const unsigned char> sig, Span<const unsigned char> pubkey_in, SigVersion sigversion, ScriptExecutionData& execdata, ScriptError* serror) const
{
    assert(sigversion == SigVersion::TAPROOT || sigversion == SigVersion::TAPSCRIPT);
    // Schnorr signatures have 32-byte public keys. The caller is responsible for enforcing this.
    assert(pubkey_in.size() == 32);
    // Note that in Tapscript evaluation, empty signatures are treated specially (invalid signature that does not
    // abort script execution). This is implemented in EvalChecksigTapscript, which won't invoke
    // CheckSchnorrSignature in that case. In other contexts, they are invalid like every other signature with
    // size different from 64 or 65.
    if (sig.size() != 64 && sig.size() != 65) return set_error(serror, SCRIPT_ERR_SCHNORR_SIG_SIZE);

    XOnlyPubKey pubkey{pubkey_in};

    uint8_t hashtype = SIGHASH_DEFAULT;
    if (sig.size() == 65) {
        hashtype = SpanPopBack(sig);
        if (hashtype == SIGHASH_DEFAULT) return set_error(serror, SCRIPT_ERR_SCHNORR_SIG_HASHTYPE);
    }
    uint256 sighash;
    if (!this->txdata) return HandleMissingData(m_mdb);
    if (!SignatureHashSchnorr(sighash, execdata, *txTo, nIn, hashtype, sigversion, *this->txdata, m_mdb)) {
        return set_error(serror, SCRIPT_ERR_SCHNORR_SIG_HASHTYPE);
    }
    if (!VerifySchnorrSignature(sig, pubkey, sighash)) return set_error(serror, SCRIPT_ERR_SCHNORR_SIG);
    return true;
}

template <class T>
bool GenericTransactionSignatureChecker<T>::CheckLockTime(const CScriptNum& nLockTime) const
{
    // There are two kinds of nLockTime: lock-by-blockheight
    // and lock-by-blocktime, distinguished by whether
    // nLockTime < LOCKTIME_THRESHOLD.
    //
    // We want to compare apples to apples, so fail the script
    // unless the type of nLockTime being tested is the same as
    // the nLockTime in the transaction.
    if (!(
        (txTo->nLockTime <  LOCKTIME_THRESHOLD && nLockTime <  LOCKTIME_THRESHOLD) ||
        (txTo->nLockTime >= LOCKTIME_THRESHOLD && nLockTime >= LOCKTIME_THRESHOLD)
    ))
        return false;

    // Now that we know we're comparing apples-to-apples, the
    // comparison is a simple numeric one.
    if (nLockTime > (int64_t)txTo->nLockTime)
        return false;

    // Finally the nLockTime feature can be disabled in IsFinalTx()
    // and thus CHECKLOCKTIMEVERIFY bypassed if every txin has
    // been finalized by setting nSequence to maxint. The
    // transaction would be allowed into the blockchain, making
    // the opcode ineffective.
    //
    // Testing if this vin is not final is sufficient to
    // prevent this condition. Alternatively we could test all
    // inputs, but testing just this input minimizes the data
    // required to prove correct CHECKLOCKTIMEVERIFY execution.
    if (CTxIn::SEQUENCE_FINAL == txTo->vin[nIn].nSequence)
        return false;

    return true;
}

template <class T>
bool GenericTransactionSignatureChecker<T>::CheckSequence(const CScriptNum& nSequence) const
{
    // Relative lock times are supported by comparing the passed
    // in operand to the sequence number of the input.
    const int64_t txToSequence = (int64_t)txTo->vin[nIn].nSequence;

    // Fail if the transaction's version number is not set high
    // enough to trigger BIP 68 rules.
    if (txTo->version < 2)
        return false;

    // Sequence numbers with their most significant bit set are not
    // consensus constrained. Testing that the transaction's sequence
    // number do not have this bit set prevents using this property
    // to get around a CHECKSEQUENCEVERIFY check.
    if (txToSequence & CTxIn::SEQUENCE_LOCKTIME_DISABLE_FLAG)
        return false;

    // Mask off any bits that do not have consensus-enforced meaning
    // before doing the integer comparisons
    const uint32_t nLockTimeMask = CTxIn::SEQUENCE_LOCKTIME_TYPE_FLAG | CTxIn::SEQUENCE_LOCKTIME_MASK;
    const int64_t txToSequenceMasked = txToSequence & nLockTimeMask;
    const CScriptNum nSequenceMasked = nSequence & nLockTimeMask;

    // There are two kinds of nSequence: lock-by-blockheight
    // and lock-by-blocktime, distinguished by whether
    // nSequenceMasked < CTxIn::SEQUENCE_LOCKTIME_TYPE_FLAG.
    //
    // We want to compare apples to apples, so fail the script
    // unless the type of nSequenceMasked being tested is the same as
    // the nSequenceMasked in the transaction.
    if (!(
        (txToSequenceMasked <  CTxIn::SEQUENCE_LOCKTIME_TYPE_FLAG && nSequenceMasked <  CTxIn::SEQUENCE_LOCKTIME_TYPE_FLAG) ||
        (txToSequenceMasked >= CTxIn::SEQUENCE_LOCKTIME_TYPE_FLAG && nSequenceMasked >= CTxIn::SEQUENCE_LOCKTIME_TYPE_FLAG)
    )) {
        return false;
    }

    // Now that we know we're comparing apples-to-apples, the
    // comparison is a simple numeric one.
    if (nSequenceMasked > txToSequenceMasked)
        return false;

    return true;
}

// explicit instantiation
template class GenericTransactionSignatureChecker<CTransaction>;
template class GenericTransactionSignatureChecker<CMutableTransaction>;

static bool ExecuteWitnessScript(const Span<const valtype>& stack_span, const CScript& exec_script, unsigned int flags, SigVersion sigversion, const BaseSignatureChecker& checker, ScriptExecutionData& execdata, ScriptError* serror)
{
    std::vector<valtype> stack{stack_span.begin(), stack_span.end()};

    if (sigversion == SigVersion::TAPSCRIPT) {
        // OP_SUCCESSx processing overrides everything, including stack element size limits
        CScript::const_iterator pc = exec_script.begin();
        while (pc < exec_script.end()) {
            opcodetype opcode;
            if (!exec_script.GetOp(pc, opcode)) {
                // Note how this condition would not be reached if an unknown OP_SUCCESSx was found
                return set_error(serror, SCRIPT_ERR_BAD_OPCODE);
            }
            // New opcodes will be listed here. May use a different sigversion to modify existing opcodes.
            if (IsOpSuccess(opcode)) {
                if (flags & SCRIPT_VERIFY_DISCOURAGE_OP_SUCCESS) {
                    return set_error(serror, SCRIPT_ERR_DISCOURAGE_OP_SUCCESS);
                }
                return set_success(serror);
            }
        }

        // Tapscript enforces initial stack size limits (altstack is empty here)
        if (stack.size() > MAX_STACK_SIZE) return set_error(serror, SCRIPT_ERR_STACK_SIZE);
    }

    // Disallow stack item size > MAX_SCRIPT_ELEMENT_SIZE in witness stack
    for (const valtype& elem : stack) {
        if (elem.size() > MAX_SCRIPT_ELEMENT_SIZE) return set_error(serror, SCRIPT_ERR_PUSH_SIZE);
    }

    // Run the script interpreter.
    if (!EvalScript(stack, exec_script, flags, checker, sigversion, execdata, serror)) return false;

    // Scripts inside witness implicitly require cleanstack behaviour
    if (stack.size() != 1) return set_error(serror, SCRIPT_ERR_CLEANSTACK);
    if (!CastToBool(stack.back())) return set_error(serror, SCRIPT_ERR_EVAL_FALSE);
    return true;
}

uint256 ComputeTapleafHash(uint8_t leaf_version, Span<const unsigned char> script)
{
    return (HashWriter{HASHER_TAPLEAF} << leaf_version << CompactSizeWriter(script.size()) << script).GetSHA256();
}

uint256 ComputeTapbranchHash(Span<const unsigned char> a, Span<const unsigned char> b)
{
    HashWriter ss_branch{HASHER_TAPBRANCH};
    if (std::lexicographical_compare(a.begin(), a.end(), b.begin(), b.end())) {
        ss_branch << a << b;
    } else {
        ss_branch << b << a;
    }
    return ss_branch.GetSHA256();
}

uint256 ComputeTaprootMerkleRoot(Span<const unsigned char> control, const uint256& tapleaf_hash)
{
    assert(control.size() >= TAPROOT_CONTROL_BASE_SIZE);
    assert(control.size() <= TAPROOT_CONTROL_MAX_SIZE);
    assert((control.size() - TAPROOT_CONTROL_BASE_SIZE) % TAPROOT_CONTROL_NODE_SIZE == 0);

    const int path_len = (control.size() - TAPROOT_CONTROL_BASE_SIZE) / TAPROOT_CONTROL_NODE_SIZE;
    uint256 k = tapleaf_hash;
    for (int i = 0; i < path_len; ++i) {
        Span node{Span{control}.subspan(TAPROOT_CONTROL_BASE_SIZE + TAPROOT_CONTROL_NODE_SIZE * i, TAPROOT_CONTROL_NODE_SIZE)};
        k = ComputeTapbranchHash(k, node);
    }
    return k;
}

static bool VerifyTaprootCommitment(const std::vector<unsigned char>& control, const std::vector<unsigned char>& program, const uint256& tapleaf_hash)
{
    assert(control.size() >= TAPROOT_CONTROL_BASE_SIZE);
    assert(program.size() >= uint256::size());
    //! The internal pubkey (x-only, so no Y coordinate parity).
    const XOnlyPubKey p{Span{control}.subspan(1, TAPROOT_CONTROL_BASE_SIZE - 1)};
    //! The output pubkey (taken from the scriptPubKey).
    const XOnlyPubKey q{program};
    // Compute the Merkle root from the leaf and the provided path.
    const uint256 merkle_root = ComputeTaprootMerkleRoot(control, tapleaf_hash);
    // Verify that the output pubkey matches the tweaked internal pubkey, after correcting for parity.
    return q.CheckTapTweak(p, merkle_root, control[0] & 1);
}

static bool VerifyWitnessProgram(const CScriptWitness& witness, int witversion, const std::vector<unsigned char>& program, unsigned int flags, const BaseSignatureChecker& checker, ScriptError* serror, bool is_p2sh)
{
    CScript exec_script; //!< Actually executed script (last stack item in P2WSH; implied P2PKH script in P2WPKH; leaf script in P2TR)
    Span stack{witness.stack};
    ScriptExecutionData execdata;

    if (witversion == 0) {
        if (program.size() == WITNESS_V0_SCRIPTHASH_SIZE) {
            // BIP141 P2WSH: 32-byte witness v0 program (which encodes SHA256(script))
            if (stack.size() == 0) {
                return set_error(serror, SCRIPT_ERR_WITNESS_PROGRAM_WITNESS_EMPTY);
            }
            const valtype& script_bytes = SpanPopBack(stack);
            exec_script = CScript(script_bytes.begin(), script_bytes.end());
            uint256 hash_exec_script;
            CSHA256().Write(exec_script.data(), exec_script.size()).Finalize(hash_exec_script.begin());
            if (memcmp(hash_exec_script.begin(), program.data(), 32)) {
                return set_error(serror, SCRIPT_ERR_WITNESS_PROGRAM_MISMATCH);
            }
            return ExecuteWitnessScript(stack, exec_script, flags, SigVersion::WITNESS_V0, checker, execdata, serror);
        } else if (program.size() == WITNESS_V0_KEYHASH_SIZE) {
            // BIP141 P2WPKH: 20-byte witness v0 program (which encodes Hash160(pubkey))
            if (stack.size() != 2) {
                return set_error(serror, SCRIPT_ERR_WITNESS_PROGRAM_MISMATCH); // 2 items in witness
            }
            exec_script << OP_DUP << OP_HASH160 << program << OP_EQUALVERIFY << OP_CHECKSIG;
            return ExecuteWitnessScript(stack, exec_script, flags, SigVersion::WITNESS_V0, checker, execdata, serror);
        } else {
            return set_error(serror, SCRIPT_ERR_WITNESS_PROGRAM_WRONG_LENGTH);
        }
    } else if (witversion == 1 && program.size() == WITNESS_V1_TAPROOT_SIZE && !is_p2sh) {
        // BIP341 Taproot: 32-byte non-P2SH witness v1 program (which encodes a P2C-tweaked pubkey)
        if (!(flags & SCRIPT_VERIFY_TAPROOT)) return set_success(serror);
        if (stack.size() == 0) return set_error(serror, SCRIPT_ERR_WITNESS_PROGRAM_WITNESS_EMPTY);
        if (stack.size() >= 2 && !stack.back().empty() && stack.back()[0] == ANNEX_TAG) {
            // Drop annex (this is non-standard; see IsWitnessStandard)
            const valtype& annex = SpanPopBack(stack);
            execdata.m_annex_hash = (HashWriter{} << annex).GetSHA256();
            execdata.m_annex_present = true;
        } else {
            execdata.m_annex_present = false;
        }
        execdata.m_annex_init = true;
        if (stack.size() == 1) {
            // Key path spending (stack size is 1 after removing optional annex)
            if (!checker.CheckSchnorrSignature(stack.front(), program, SigVersion::TAPROOT, execdata, serror)) {
                return false; // serror is set
            }
            return set_success(serror);
        } else {
            // Script path spending (stack size is >1 after removing optional annex)
            const valtype& control = SpanPopBack(stack);
            const valtype& script = SpanPopBack(stack);
            if (control.size() < TAPROOT_CONTROL_BASE_SIZE || control.size() > TAPROOT_CONTROL_MAX_SIZE || ((control.size() - TAPROOT_CONTROL_BASE_SIZE) % TAPROOT_CONTROL_NODE_SIZE) != 0) {
                return set_error(serror, SCRIPT_ERR_TAPROOT_WRONG_CONTROL_SIZE);
            }
            execdata.m_tapleaf_hash = ComputeTapleafHash(control[0] & TAPROOT_LEAF_MASK, script);
            if (!VerifyTaprootCommitment(control, program, execdata.m_tapleaf_hash)) {
                return set_error(serror, SCRIPT_ERR_WITNESS_PROGRAM_MISMATCH);
            }
            execdata.m_tapleaf_hash_init = true;
            if ((control[0] & TAPROOT_LEAF_MASK) == TAPROOT_LEAF_TAPSCRIPT) {
                // Tapscript (leaf version 0xc0)
                exec_script = CScript(script.begin(), script.end());
                execdata.m_validation_weight_left = ::GetSerializeSize(witness.stack) + VALIDATION_WEIGHT_OFFSET;
                execdata.m_validation_weight_left_init = true;
                return ExecuteWitnessScript(stack, exec_script, flags, SigVersion::TAPSCRIPT, checker, execdata, serror);
            }
            if (flags & SCRIPT_VERIFY_DISCOURAGE_UPGRADABLE_TAPROOT_VERSION) {
                return set_error(serror, SCRIPT_ERR_DISCOURAGE_UPGRADABLE_TAPROOT_VERSION);
            }
            return set_success(serror);
        }
    } else if (!is_p2sh && CScript::IsPayToAnchor(witversion, program)) {
        return true;
    } else {
        if (flags & SCRIPT_VERIFY_DISCOURAGE_UPGRADABLE_WITNESS_PROGRAM) {
            return set_error(serror, SCRIPT_ERR_DISCOURAGE_UPGRADABLE_WITNESS_PROGRAM);
        }
        // Other version/size/p2sh combinations return true for future softfork compatibility
        return true;
    }
    // There is intentionally no return statement here, to be able to use "control reaches end of non-void function" warnings to detect gaps in the logic above.
}

bool VerifyScript(const CScript& scriptSig, const CScript& scriptPubKey, const CScriptWitness* witness, unsigned int flags, const BaseSignatureChecker& checker, ScriptError* serror)
{
    static const CScriptWitness emptyWitness;
    if (witness == nullptr) {
        witness = &emptyWitness;
    }
    bool hadWitness = false;

    set_error(serror, SCRIPT_ERR_UNKNOWN_ERROR);

    if ((flags & SCRIPT_VERIFY_SIGPUSHONLY) != 0 && !scriptSig.IsPushOnly()) {
        return set_error(serror, SCRIPT_ERR_SIG_PUSHONLY);
    }

    // scriptSig and scriptPubKey must be evaluated sequentially on the same stack
    // rather than being simply concatenated (see CVE-2010-5141)
    std::vector<std::vector<unsigned char> > stack, stackCopy;
    if (!EvalScript(stack, scriptSig, flags, checker, SigVersion::BASE, serror))
        // serror is set
        return false;
    if (flags & SCRIPT_VERIFY_P2SH)
        stackCopy = stack;
    if (!EvalScript(stack, scriptPubKey, flags, checker, SigVersion::BASE, serror))
        // serror is set
        return false;
    if (stack.empty())
        return set_error(serror, SCRIPT_ERR_EVAL_FALSE);
    if (CastToBool(stack.back()) == false)
        return set_error(serror, SCRIPT_ERR_EVAL_FALSE);

    // Bare witness programs
    int witnessversion;
    std::vector<unsigned char> witnessprogram;
    if (flags & SCRIPT_VERIFY_WITNESS) {
        if (scriptPubKey.IsWitnessProgram(witnessversion, witnessprogram)) {
            hadWitness = true;
            if (scriptSig.size() != 0) {
                // The scriptSig must be _exactly_ CScript(), otherwise we reintroduce malleability.
                return set_error(serror, SCRIPT_ERR_WITNESS_MALLEATED);
            }
            if (!VerifyWitnessProgram(*witness, witnessversion, witnessprogram, flags, checker, serror, /*is_p2sh=*/false)) {
                return false;
            }
            // Bypass the cleanstack check at the end. The actual stack is obviously not clean
            // for witness programs.
            stack.resize(1);
        }
    }

    // Additional validation for spend-to-script-hash transactions:
    if ((flags & SCRIPT_VERIFY_P2SH) && scriptPubKey.IsPayToScriptHash())
    {
        // scriptSig must be literals-only or validation fails
        if (!scriptSig.IsPushOnly())
            return set_error(serror, SCRIPT_ERR_SIG_PUSHONLY);

        // Restore stack.
        swap(stack, stackCopy);

        // stack cannot be empty here, because if it was the
        // P2SH  HASH <> EQUAL  scriptPubKey would be evaluated with
        // an empty stack and the EvalScript above would return false.
        assert(!stack.empty());

        const valtype& pubKeySerialized = stack.back();
        CScript pubKey2(pubKeySerialized.begin(), pubKeySerialized.end());
        popstack(stack);

        if (!EvalScript(stack, pubKey2, flags, checker, SigVersion::BASE, serror))
            // serror is set
            return false;
        if (stack.empty())
            return set_error(serror, SCRIPT_ERR_EVAL_FALSE);
        if (!CastToBool(stack.back()))
            return set_error(serror, SCRIPT_ERR_EVAL_FALSE);

        // P2SH witness program
        if (flags & SCRIPT_VERIFY_WITNESS) {
            if (pubKey2.IsWitnessProgram(witnessversion, witnessprogram)) {
                hadWitness = true;
                if (scriptSig != CScript() << std::vector<unsigned char>(pubKey2.begin(), pubKey2.end())) {
                    // The scriptSig must be _exactly_ a single push of the redeemScript. Otherwise we
                    // reintroduce malleability.
                    return set_error(serror, SCRIPT_ERR_WITNESS_MALLEATED_P2SH);
                }
                if (!VerifyWitnessProgram(*witness, witnessversion, witnessprogram, flags, checker, serror, /*is_p2sh=*/true)) {
                    return false;
                }
                // Bypass the cleanstack check at the end. The actual stack is obviously not clean
                // for witness programs.
                stack.resize(1);
            }
        }
    }

    // The CLEANSTACK check is only performed after potential P2SH evaluation,
    // as the non-P2SH evaluation of a P2SH script will obviously not result in
    // a clean stack (the P2SH inputs remain). The same holds for witness evaluation.
    if ((flags & SCRIPT_VERIFY_CLEANSTACK) != 0) {
        // Disallow CLEANSTACK without P2SH, as otherwise a switch CLEANSTACK->P2SH+CLEANSTACK
        // would be possible, which is not a softfork (and P2SH should be one).
        assert((flags & SCRIPT_VERIFY_P2SH) != 0);
        assert((flags & SCRIPT_VERIFY_WITNESS) != 0);
        if (stack.size() != 1) {
            return set_error(serror, SCRIPT_ERR_CLEANSTACK);
        }
    }

    if (flags & SCRIPT_VERIFY_WITNESS) {
        // We can't check for correct unexpected witness data if P2SH was off, so require
        // that WITNESS implies P2SH. Otherwise, going from WITNESS->P2SH+WITNESS would be
        // possible, which is not a softfork.
        assert((flags & SCRIPT_VERIFY_P2SH) != 0);
        if (!hadWitness && !witness->IsNull()) {
            return set_error(serror, SCRIPT_ERR_WITNESS_UNEXPECTED);
        }
    }

    return set_success(serror);
}

size_t static WitnessSigOps(int witversion, const std::vector<unsigned char>& witprogram, const CScriptWitness& witness)
{
    if (witversion == 0) {
        if (witprogram.size() == WITNESS_V0_KEYHASH_SIZE)
            return 1;

        if (witprogram.size() == WITNESS_V0_SCRIPTHASH_SIZE && witness.stack.size() > 0) {
            CScript subscript(witness.stack.back().begin(), witness.stack.back().end());
            return subscript.GetSigOpCount(true);
        }
    }

    // Future flags may be implemented here.
    return 0;
}

size_t CountWitnessSigOps(const CScript& scriptSig, const CScript& scriptPubKey, const CScriptWitness* witness, unsigned int flags)
{
    static const CScriptWitness witnessEmpty;

    if ((flags & SCRIPT_VERIFY_WITNESS) == 0) {
        return 0;
    }
    assert((flags & SCRIPT_VERIFY_P2SH) != 0);

    int witnessversion;
    std::vector<unsigned char> witnessprogram;
    if (scriptPubKey.IsWitnessProgram(witnessversion, witnessprogram)) {
        return WitnessSigOps(witnessversion, witnessprogram, witness ? *witness : witnessEmpty);
    }

    if (scriptPubKey.IsPayToScriptHash() && scriptSig.IsPushOnly()) {
        CScript::const_iterator pc = scriptSig.begin();
        std::vector<unsigned char> data;
        while (pc < scriptSig.end()) {
            opcodetype opcode;
            scriptSig.GetOp(pc, opcode, data);
        }
        CScript subscript(data.begin(), data.end());
        if (subscript.IsWitnessProgram(witnessversion, witnessprogram)) {
            return WitnessSigOps(witnessversion, witnessprogram, witness ? *witness : witnessEmpty);
        }
    }

    return 0;
}