1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
|
// Copyright (c) 2018-2022 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <script/descriptor.h>
#include <hash.h>
#include <key_io.h>
#include <pubkey.h>
#include <script/miniscript.h>
#include <script/parsing.h>
#include <script/script.h>
#include <script/signingprovider.h>
#include <script/solver.h>
#include <uint256.h>
#include <common/args.h>
#include <span.h>
#include <util/bip32.h>
#include <util/check.h>
#include <util/strencodings.h>
#include <util/vector.h>
#include <memory>
#include <numeric>
#include <optional>
#include <string>
#include <vector>
using util::Split;
namespace {
////////////////////////////////////////////////////////////////////////////
// Checksum //
////////////////////////////////////////////////////////////////////////////
// This section implements a checksum algorithm for descriptors with the
// following properties:
// * Mistakes in a descriptor string are measured in "symbol errors". The higher
// the number of symbol errors, the harder it is to detect:
// * An error substituting a character from 0123456789()[],'/*abcdefgh@:$%{} for
// another in that set always counts as 1 symbol error.
// * Note that hex encoded keys are covered by these characters. Xprvs and
// xpubs use other characters too, but already have their own checksum
// mechanism.
// * Function names like "multi()" use other characters, but mistakes in
// these would generally result in an unparsable descriptor.
// * A case error always counts as 1 symbol error.
// * Any other 1 character substitution error counts as 1 or 2 symbol errors.
// * Any 1 symbol error is always detected.
// * Any 2 or 3 symbol error in a descriptor of up to 49154 characters is always detected.
// * Any 4 symbol error in a descriptor of up to 507 characters is always detected.
// * Any 5 symbol error in a descriptor of up to 77 characters is always detected.
// * Is optimized to minimize the chance a 5 symbol error in a descriptor up to 387 characters is undetected
// * Random errors have a chance of 1 in 2**40 of being undetected.
//
// These properties are achieved by expanding every group of 3 (non checksum) characters into
// 4 GF(32) symbols, over which a cyclic code is defined.
/*
* Interprets c as 8 groups of 5 bits which are the coefficients of a degree 8 polynomial over GF(32),
* multiplies that polynomial by x, computes its remainder modulo a generator, and adds the constant term val.
*
* This generator is G(x) = x^8 + {30}x^7 + {23}x^6 + {15}x^5 + {14}x^4 + {10}x^3 + {6}x^2 + {12}x + {9}.
* It is chosen to define an cyclic error detecting code which is selected by:
* - Starting from all BCH codes over GF(32) of degree 8 and below, which by construction guarantee detecting
* 3 errors in windows up to 19000 symbols.
* - Taking all those generators, and for degree 7 ones, extend them to degree 8 by adding all degree-1 factors.
* - Selecting just the set of generators that guarantee detecting 4 errors in a window of length 512.
* - Selecting one of those with best worst-case behavior for 5 errors in windows of length up to 512.
*
* The generator and the constants to implement it can be verified using this Sage code:
* B = GF(2) # Binary field
* BP.<b> = B[] # Polynomials over the binary field
* F_mod = b**5 + b**3 + 1
* F.<f> = GF(32, modulus=F_mod, repr='int') # GF(32) definition
* FP.<x> = F[] # Polynomials over GF(32)
* E_mod = x**3 + x + F.fetch_int(8)
* E.<e> = F.extension(E_mod) # Extension field definition
* alpha = e**2743 # Choice of an element in extension field
* for p in divisors(E.order() - 1): # Verify alpha has order 32767.
* assert((alpha**p == 1) == (p % 32767 == 0))
* G = lcm([(alpha**i).minpoly() for i in [1056,1057,1058]] + [x + 1])
* print(G) # Print out the generator
* for i in [1,2,4,8,16]: # Print out {1,2,4,8,16}*(G mod x^8), packed in hex integers.
* v = 0
* for coef in reversed((F.fetch_int(i)*(G % x**8)).coefficients(sparse=True)):
* v = v*32 + coef.integer_representation()
* print("0x%x" % v)
*/
uint64_t PolyMod(uint64_t c, int val)
{
uint8_t c0 = c >> 35;
c = ((c & 0x7ffffffff) << 5) ^ val;
if (c0 & 1) c ^= 0xf5dee51989;
if (c0 & 2) c ^= 0xa9fdca3312;
if (c0 & 4) c ^= 0x1bab10e32d;
if (c0 & 8) c ^= 0x3706b1677a;
if (c0 & 16) c ^= 0x644d626ffd;
return c;
}
std::string DescriptorChecksum(const Span<const char>& span)
{
/** A character set designed such that:
* - The most common 'unprotected' descriptor characters (hex, keypaths) are in the first group of 32.
* - Case errors cause an offset that's a multiple of 32.
* - As many alphabetic characters are in the same group (while following the above restrictions).
*
* If p(x) gives the position of a character c in this character set, every group of 3 characters
* (a,b,c) is encoded as the 4 symbols (p(a) & 31, p(b) & 31, p(c) & 31, (p(a) / 32) + 3 * (p(b) / 32) + 9 * (p(c) / 32).
* This means that changes that only affect the lower 5 bits of the position, or only the higher 2 bits, will just
* affect a single symbol.
*
* As a result, within-group-of-32 errors count as 1 symbol, as do cross-group errors that don't affect
* the position within the groups.
*/
static const std::string INPUT_CHARSET =
"0123456789()[],'/*abcdefgh@:$%{}"
"IJKLMNOPQRSTUVWXYZ&+-.;<=>?!^_|~"
"ijklmnopqrstuvwxyzABCDEFGH`#\"\\ ";
/** The character set for the checksum itself (same as bech32). */
static const std::string CHECKSUM_CHARSET = "qpzry9x8gf2tvdw0s3jn54khce6mua7l";
uint64_t c = 1;
int cls = 0;
int clscount = 0;
for (auto ch : span) {
auto pos = INPUT_CHARSET.find(ch);
if (pos == std::string::npos) return "";
c = PolyMod(c, pos & 31); // Emit a symbol for the position inside the group, for every character.
cls = cls * 3 + (pos >> 5); // Accumulate the group numbers
if (++clscount == 3) {
// Emit an extra symbol representing the group numbers, for every 3 characters.
c = PolyMod(c, cls);
cls = 0;
clscount = 0;
}
}
if (clscount > 0) c = PolyMod(c, cls);
for (int j = 0; j < 8; ++j) c = PolyMod(c, 0); // Shift further to determine the checksum.
c ^= 1; // Prevent appending zeroes from not affecting the checksum.
std::string ret(8, ' ');
for (int j = 0; j < 8; ++j) ret[j] = CHECKSUM_CHARSET[(c >> (5 * (7 - j))) & 31];
return ret;
}
std::string AddChecksum(const std::string& str) { return str + "#" + DescriptorChecksum(str); }
////////////////////////////////////////////////////////////////////////////
// Internal representation //
////////////////////////////////////////////////////////////////////////////
typedef std::vector<uint32_t> KeyPath;
/** Interface for public key objects in descriptors. */
struct PubkeyProvider
{
protected:
//! Index of this key expression in the descriptor
//! E.g. If this PubkeyProvider is key1 in multi(2, key1, key2, key3), then m_expr_index = 0
uint32_t m_expr_index;
public:
explicit PubkeyProvider(uint32_t exp_index) : m_expr_index(exp_index) {}
virtual ~PubkeyProvider() = default;
/** Compare two public keys represented by this provider.
* Used by the Miniscript descriptors to check for duplicate keys in the script.
*/
bool operator<(PubkeyProvider& other) const {
CPubKey a, b;
SigningProvider dummy;
KeyOriginInfo dummy_info;
GetPubKey(0, dummy, a, dummy_info);
other.GetPubKey(0, dummy, b, dummy_info);
return a < b;
}
/** Derive a public key.
* read_cache is the cache to read keys from (if not nullptr)
* write_cache is the cache to write keys to (if not nullptr)
* Caches are not exclusive but this is not tested. Currently we use them exclusively
*/
virtual bool GetPubKey(int pos, const SigningProvider& arg, CPubKey& key, KeyOriginInfo& info, const DescriptorCache* read_cache = nullptr, DescriptorCache* write_cache = nullptr) const = 0;
/** Whether this represent multiple public keys at different positions. */
virtual bool IsRange() const = 0;
/** Get the size of the generated public key(s) in bytes (33 or 65). */
virtual size_t GetSize() const = 0;
enum class StringType {
PUBLIC,
COMPAT // string calculation that mustn't change over time to stay compatible with previous software versions
};
/** Get the descriptor string form. */
virtual std::string ToString(StringType type=StringType::PUBLIC) const = 0;
/** Get the descriptor string form including private data (if available in arg). */
virtual bool ToPrivateString(const SigningProvider& arg, std::string& out) const = 0;
/** Get the descriptor string form with the xpub at the last hardened derivation,
* and always use h for hardened derivation.
*/
virtual bool ToNormalizedString(const SigningProvider& arg, std::string& out, const DescriptorCache* cache = nullptr) const = 0;
/** Derive a private key, if private data is available in arg. */
virtual bool GetPrivKey(int pos, const SigningProvider& arg, CKey& key) const = 0;
/** Return the non-extended public key for this PubkeyProvider, if it has one. */
virtual std::optional<CPubKey> GetRootPubKey() const = 0;
/** Return the extended public key for this PubkeyProvider, if it has one. */
virtual std::optional<CExtPubKey> GetRootExtPubKey() const = 0;
};
class OriginPubkeyProvider final : public PubkeyProvider
{
KeyOriginInfo m_origin;
std::unique_ptr<PubkeyProvider> m_provider;
bool m_apostrophe;
std::string OriginString(StringType type, bool normalized=false) const
{
// If StringType==COMPAT, always use the apostrophe to stay compatible with previous versions
bool use_apostrophe = (!normalized && m_apostrophe) || type == StringType::COMPAT;
return HexStr(m_origin.fingerprint) + FormatHDKeypath(m_origin.path, use_apostrophe);
}
public:
OriginPubkeyProvider(uint32_t exp_index, KeyOriginInfo info, std::unique_ptr<PubkeyProvider> provider, bool apostrophe) : PubkeyProvider(exp_index), m_origin(std::move(info)), m_provider(std::move(provider)), m_apostrophe(apostrophe) {}
bool GetPubKey(int pos, const SigningProvider& arg, CPubKey& key, KeyOriginInfo& info, const DescriptorCache* read_cache = nullptr, DescriptorCache* write_cache = nullptr) const override
{
if (!m_provider->GetPubKey(pos, arg, key, info, read_cache, write_cache)) return false;
std::copy(std::begin(m_origin.fingerprint), std::end(m_origin.fingerprint), info.fingerprint);
info.path.insert(info.path.begin(), m_origin.path.begin(), m_origin.path.end());
return true;
}
bool IsRange() const override { return m_provider->IsRange(); }
size_t GetSize() const override { return m_provider->GetSize(); }
std::string ToString(StringType type) const override { return "[" + OriginString(type) + "]" + m_provider->ToString(type); }
bool ToPrivateString(const SigningProvider& arg, std::string& ret) const override
{
std::string sub;
if (!m_provider->ToPrivateString(arg, sub)) return false;
ret = "[" + OriginString(StringType::PUBLIC) + "]" + std::move(sub);
return true;
}
bool ToNormalizedString(const SigningProvider& arg, std::string& ret, const DescriptorCache* cache) const override
{
std::string sub;
if (!m_provider->ToNormalizedString(arg, sub, cache)) return false;
// If m_provider is a BIP32PubkeyProvider, we may get a string formatted like a OriginPubkeyProvider
// In that case, we need to strip out the leading square bracket and fingerprint from the substring,
// and append that to our own origin string.
if (sub[0] == '[') {
sub = sub.substr(9);
ret = "[" + OriginString(StringType::PUBLIC, /*normalized=*/true) + std::move(sub);
} else {
ret = "[" + OriginString(StringType::PUBLIC, /*normalized=*/true) + "]" + std::move(sub);
}
return true;
}
bool GetPrivKey(int pos, const SigningProvider& arg, CKey& key) const override
{
return m_provider->GetPrivKey(pos, arg, key);
}
std::optional<CPubKey> GetRootPubKey() const override
{
return m_provider->GetRootPubKey();
}
std::optional<CExtPubKey> GetRootExtPubKey() const override
{
return m_provider->GetRootExtPubKey();
}
};
/** An object representing a parsed constant public key in a descriptor. */
class ConstPubkeyProvider final : public PubkeyProvider
{
CPubKey m_pubkey;
bool m_xonly;
public:
ConstPubkeyProvider(uint32_t exp_index, const CPubKey& pubkey, bool xonly) : PubkeyProvider(exp_index), m_pubkey(pubkey), m_xonly(xonly) {}
bool GetPubKey(int pos, const SigningProvider& arg, CPubKey& key, KeyOriginInfo& info, const DescriptorCache* read_cache = nullptr, DescriptorCache* write_cache = nullptr) const override
{
key = m_pubkey;
info.path.clear();
CKeyID keyid = m_pubkey.GetID();
std::copy(keyid.begin(), keyid.begin() + sizeof(info.fingerprint), info.fingerprint);
return true;
}
bool IsRange() const override { return false; }
size_t GetSize() const override { return m_pubkey.size(); }
std::string ToString(StringType type) const override { return m_xonly ? HexStr(m_pubkey).substr(2) : HexStr(m_pubkey); }
bool ToPrivateString(const SigningProvider& arg, std::string& ret) const override
{
CKey key;
if (m_xonly) {
for (const auto& keyid : XOnlyPubKey(m_pubkey).GetKeyIDs()) {
arg.GetKey(keyid, key);
if (key.IsValid()) break;
}
} else {
arg.GetKey(m_pubkey.GetID(), key);
}
if (!key.IsValid()) return false;
ret = EncodeSecret(key);
return true;
}
bool ToNormalizedString(const SigningProvider& arg, std::string& ret, const DescriptorCache* cache) const override
{
ret = ToString(StringType::PUBLIC);
return true;
}
bool GetPrivKey(int pos, const SigningProvider& arg, CKey& key) const override
{
return arg.GetKey(m_pubkey.GetID(), key);
}
std::optional<CPubKey> GetRootPubKey() const override
{
return m_pubkey;
}
std::optional<CExtPubKey> GetRootExtPubKey() const override
{
return std::nullopt;
}
};
enum class DeriveType {
NO,
UNHARDENED,
HARDENED,
};
/** An object representing a parsed extended public key in a descriptor. */
class BIP32PubkeyProvider final : public PubkeyProvider
{
// Root xpub, path, and final derivation step type being used, if any
CExtPubKey m_root_extkey;
KeyPath m_path;
DeriveType m_derive;
// Whether ' or h is used in harded derivation
bool m_apostrophe;
bool GetExtKey(const SigningProvider& arg, CExtKey& ret) const
{
CKey key;
if (!arg.GetKey(m_root_extkey.pubkey.GetID(), key)) return false;
ret.nDepth = m_root_extkey.nDepth;
std::copy(m_root_extkey.vchFingerprint, m_root_extkey.vchFingerprint + sizeof(ret.vchFingerprint), ret.vchFingerprint);
ret.nChild = m_root_extkey.nChild;
ret.chaincode = m_root_extkey.chaincode;
ret.key = key;
return true;
}
// Derives the last xprv
bool GetDerivedExtKey(const SigningProvider& arg, CExtKey& xprv, CExtKey& last_hardened) const
{
if (!GetExtKey(arg, xprv)) return false;
for (auto entry : m_path) {
if (!xprv.Derive(xprv, entry)) return false;
if (entry >> 31) {
last_hardened = xprv;
}
}
return true;
}
bool IsHardened() const
{
if (m_derive == DeriveType::HARDENED) return true;
for (auto entry : m_path) {
if (entry >> 31) return true;
}
return false;
}
public:
BIP32PubkeyProvider(uint32_t exp_index, const CExtPubKey& extkey, KeyPath path, DeriveType derive, bool apostrophe) : PubkeyProvider(exp_index), m_root_extkey(extkey), m_path(std::move(path)), m_derive(derive), m_apostrophe(apostrophe) {}
bool IsRange() const override { return m_derive != DeriveType::NO; }
size_t GetSize() const override { return 33; }
bool GetPubKey(int pos, const SigningProvider& arg, CPubKey& key_out, KeyOriginInfo& final_info_out, const DescriptorCache* read_cache = nullptr, DescriptorCache* write_cache = nullptr) const override
{
// Info of parent of the to be derived pubkey
KeyOriginInfo parent_info;
CKeyID keyid = m_root_extkey.pubkey.GetID();
std::copy(keyid.begin(), keyid.begin() + sizeof(parent_info.fingerprint), parent_info.fingerprint);
parent_info.path = m_path;
// Info of the derived key itself which is copied out upon successful completion
KeyOriginInfo final_info_out_tmp = parent_info;
if (m_derive == DeriveType::UNHARDENED) final_info_out_tmp.path.push_back((uint32_t)pos);
if (m_derive == DeriveType::HARDENED) final_info_out_tmp.path.push_back(((uint32_t)pos) | 0x80000000L);
// Derive keys or fetch them from cache
CExtPubKey final_extkey = m_root_extkey;
CExtPubKey parent_extkey = m_root_extkey;
CExtPubKey last_hardened_extkey;
bool der = true;
if (read_cache) {
if (!read_cache->GetCachedDerivedExtPubKey(m_expr_index, pos, final_extkey)) {
if (m_derive == DeriveType::HARDENED) return false;
// Try to get the derivation parent
if (!read_cache->GetCachedParentExtPubKey(m_expr_index, parent_extkey)) return false;
final_extkey = parent_extkey;
if (m_derive == DeriveType::UNHARDENED) der = parent_extkey.Derive(final_extkey, pos);
}
} else if (IsHardened()) {
CExtKey xprv;
CExtKey lh_xprv;
if (!GetDerivedExtKey(arg, xprv, lh_xprv)) return false;
parent_extkey = xprv.Neuter();
if (m_derive == DeriveType::UNHARDENED) der = xprv.Derive(xprv, pos);
if (m_derive == DeriveType::HARDENED) der = xprv.Derive(xprv, pos | 0x80000000UL);
final_extkey = xprv.Neuter();
if (lh_xprv.key.IsValid()) {
last_hardened_extkey = lh_xprv.Neuter();
}
} else {
for (auto entry : m_path) {
if (!parent_extkey.Derive(parent_extkey, entry)) return false;
}
final_extkey = parent_extkey;
if (m_derive == DeriveType::UNHARDENED) der = parent_extkey.Derive(final_extkey, pos);
assert(m_derive != DeriveType::HARDENED);
}
if (!der) return false;
final_info_out = final_info_out_tmp;
key_out = final_extkey.pubkey;
if (write_cache) {
// Only cache parent if there is any unhardened derivation
if (m_derive != DeriveType::HARDENED) {
write_cache->CacheParentExtPubKey(m_expr_index, parent_extkey);
// Cache last hardened xpub if we have it
if (last_hardened_extkey.pubkey.IsValid()) {
write_cache->CacheLastHardenedExtPubKey(m_expr_index, last_hardened_extkey);
}
} else if (final_info_out.path.size() > 0) {
write_cache->CacheDerivedExtPubKey(m_expr_index, pos, final_extkey);
}
}
return true;
}
std::string ToString(StringType type, bool normalized) const
{
// If StringType==COMPAT, always use the apostrophe to stay compatible with previous versions
const bool use_apostrophe = (!normalized && m_apostrophe) || type == StringType::COMPAT;
std::string ret = EncodeExtPubKey(m_root_extkey) + FormatHDKeypath(m_path, /*apostrophe=*/use_apostrophe);
if (IsRange()) {
ret += "/*";
if (m_derive == DeriveType::HARDENED) ret += use_apostrophe ? '\'' : 'h';
}
return ret;
}
std::string ToString(StringType type=StringType::PUBLIC) const override
{
return ToString(type, /*normalized=*/false);
}
bool ToPrivateString(const SigningProvider& arg, std::string& out) const override
{
CExtKey key;
if (!GetExtKey(arg, key)) return false;
out = EncodeExtKey(key) + FormatHDKeypath(m_path, /*apostrophe=*/m_apostrophe);
if (IsRange()) {
out += "/*";
if (m_derive == DeriveType::HARDENED) out += m_apostrophe ? '\'' : 'h';
}
return true;
}
bool ToNormalizedString(const SigningProvider& arg, std::string& out, const DescriptorCache* cache) const override
{
if (m_derive == DeriveType::HARDENED) {
out = ToString(StringType::PUBLIC, /*normalized=*/true);
return true;
}
// Step backwards to find the last hardened step in the path
int i = (int)m_path.size() - 1;
for (; i >= 0; --i) {
if (m_path.at(i) >> 31) {
break;
}
}
// Either no derivation or all unhardened derivation
if (i == -1) {
out = ToString();
return true;
}
// Get the path to the last hardened stup
KeyOriginInfo origin;
int k = 0;
for (; k <= i; ++k) {
// Add to the path
origin.path.push_back(m_path.at(k));
}
// Build the remaining path
KeyPath end_path;
for (; k < (int)m_path.size(); ++k) {
end_path.push_back(m_path.at(k));
}
// Get the fingerprint
CKeyID id = m_root_extkey.pubkey.GetID();
std::copy(id.begin(), id.begin() + 4, origin.fingerprint);
CExtPubKey xpub;
CExtKey lh_xprv;
// If we have the cache, just get the parent xpub
if (cache != nullptr) {
cache->GetCachedLastHardenedExtPubKey(m_expr_index, xpub);
}
if (!xpub.pubkey.IsValid()) {
// Cache miss, or nor cache, or need privkey
CExtKey xprv;
if (!GetDerivedExtKey(arg, xprv, lh_xprv)) return false;
xpub = lh_xprv.Neuter();
}
assert(xpub.pubkey.IsValid());
// Build the string
std::string origin_str = HexStr(origin.fingerprint) + FormatHDKeypath(origin.path);
out = "[" + origin_str + "]" + EncodeExtPubKey(xpub) + FormatHDKeypath(end_path);
if (IsRange()) {
out += "/*";
assert(m_derive == DeriveType::UNHARDENED);
}
return true;
}
bool GetPrivKey(int pos, const SigningProvider& arg, CKey& key) const override
{
CExtKey extkey;
CExtKey dummy;
if (!GetDerivedExtKey(arg, extkey, dummy)) return false;
if (m_derive == DeriveType::UNHARDENED && !extkey.Derive(extkey, pos)) return false;
if (m_derive == DeriveType::HARDENED && !extkey.Derive(extkey, pos | 0x80000000UL)) return false;
key = extkey.key;
return true;
}
std::optional<CPubKey> GetRootPubKey() const override
{
return std::nullopt;
}
std::optional<CExtPubKey> GetRootExtPubKey() const override
{
return m_root_extkey;
}
};
/** Base class for all Descriptor implementations. */
class DescriptorImpl : public Descriptor
{
protected:
//! Public key arguments for this descriptor (size 1 for PK, PKH, WPKH; any size for WSH and Multisig).
const std::vector<std::unique_ptr<PubkeyProvider>> m_pubkey_args;
//! The string name of the descriptor function.
const std::string m_name;
//! The sub-descriptor arguments (empty for everything but SH and WSH).
//! In doc/descriptors.m this is referred to as SCRIPT expressions sh(SCRIPT)
//! and wsh(SCRIPT), and distinct from KEY expressions and ADDR expressions.
//! Subdescriptors can only ever generate a single script.
const std::vector<std::unique_ptr<DescriptorImpl>> m_subdescriptor_args;
//! Return a serialization of anything except pubkey and script arguments, to be prepended to those.
virtual std::string ToStringExtra() const { return ""; }
/** A helper function to construct the scripts for this descriptor.
*
* This function is invoked once by ExpandHelper.
*
* @param pubkeys The evaluations of the m_pubkey_args field.
* @param scripts The evaluations of m_subdescriptor_args (one for each m_subdescriptor_args element).
* @param out A FlatSigningProvider to put scripts or public keys in that are necessary to the solver.
* The origin info of the provided pubkeys is automatically added.
* @return A vector with scriptPubKeys for this descriptor.
*/
virtual std::vector<CScript> MakeScripts(const std::vector<CPubKey>& pubkeys, Span<const CScript> scripts, FlatSigningProvider& out) const = 0;
public:
DescriptorImpl(std::vector<std::unique_ptr<PubkeyProvider>> pubkeys, const std::string& name) : m_pubkey_args(std::move(pubkeys)), m_name(name), m_subdescriptor_args() {}
DescriptorImpl(std::vector<std::unique_ptr<PubkeyProvider>> pubkeys, std::unique_ptr<DescriptorImpl> script, const std::string& name) : m_pubkey_args(std::move(pubkeys)), m_name(name), m_subdescriptor_args(Vector(std::move(script))) {}
DescriptorImpl(std::vector<std::unique_ptr<PubkeyProvider>> pubkeys, std::vector<std::unique_ptr<DescriptorImpl>> scripts, const std::string& name) : m_pubkey_args(std::move(pubkeys)), m_name(name), m_subdescriptor_args(std::move(scripts)) {}
enum class StringType
{
PUBLIC,
PRIVATE,
NORMALIZED,
COMPAT, // string calculation that mustn't change over time to stay compatible with previous software versions
};
// NOLINTNEXTLINE(misc-no-recursion)
bool IsSolvable() const override
{
for (const auto& arg : m_subdescriptor_args) {
if (!arg->IsSolvable()) return false;
}
return true;
}
// NOLINTNEXTLINE(misc-no-recursion)
bool IsRange() const final
{
for (const auto& pubkey : m_pubkey_args) {
if (pubkey->IsRange()) return true;
}
for (const auto& arg : m_subdescriptor_args) {
if (arg->IsRange()) return true;
}
return false;
}
// NOLINTNEXTLINE(misc-no-recursion)
virtual bool ToStringSubScriptHelper(const SigningProvider* arg, std::string& ret, const StringType type, const DescriptorCache* cache = nullptr) const
{
size_t pos = 0;
for (const auto& scriptarg : m_subdescriptor_args) {
if (pos++) ret += ",";
std::string tmp;
if (!scriptarg->ToStringHelper(arg, tmp, type, cache)) return false;
ret += tmp;
}
return true;
}
// NOLINTNEXTLINE(misc-no-recursion)
virtual bool ToStringHelper(const SigningProvider* arg, std::string& out, const StringType type, const DescriptorCache* cache = nullptr) const
{
std::string extra = ToStringExtra();
size_t pos = extra.size() > 0 ? 1 : 0;
std::string ret = m_name + "(" + extra;
for (const auto& pubkey : m_pubkey_args) {
if (pos++) ret += ",";
std::string tmp;
switch (type) {
case StringType::NORMALIZED:
if (!pubkey->ToNormalizedString(*arg, tmp, cache)) return false;
break;
case StringType::PRIVATE:
if (!pubkey->ToPrivateString(*arg, tmp)) return false;
break;
case StringType::PUBLIC:
tmp = pubkey->ToString();
break;
case StringType::COMPAT:
tmp = pubkey->ToString(PubkeyProvider::StringType::COMPAT);
break;
}
ret += tmp;
}
std::string subscript;
if (!ToStringSubScriptHelper(arg, subscript, type, cache)) return false;
if (pos && subscript.size()) ret += ',';
out = std::move(ret) + std::move(subscript) + ")";
return true;
}
std::string ToString(bool compat_format) const final
{
std::string ret;
ToStringHelper(nullptr, ret, compat_format ? StringType::COMPAT : StringType::PUBLIC);
return AddChecksum(ret);
}
bool ToPrivateString(const SigningProvider& arg, std::string& out) const override
{
bool ret = ToStringHelper(&arg, out, StringType::PRIVATE);
out = AddChecksum(out);
return ret;
}
bool ToNormalizedString(const SigningProvider& arg, std::string& out, const DescriptorCache* cache) const override final
{
bool ret = ToStringHelper(&arg, out, StringType::NORMALIZED, cache);
out = AddChecksum(out);
return ret;
}
// NOLINTNEXTLINE(misc-no-recursion)
bool ExpandHelper(int pos, const SigningProvider& arg, const DescriptorCache* read_cache, std::vector<CScript>& output_scripts, FlatSigningProvider& out, DescriptorCache* write_cache) const
{
std::vector<std::pair<CPubKey, KeyOriginInfo>> entries;
entries.reserve(m_pubkey_args.size());
// Construct temporary data in `entries`, `subscripts`, and `subprovider` to avoid producing output in case of failure.
for (const auto& p : m_pubkey_args) {
entries.emplace_back();
if (!p->GetPubKey(pos, arg, entries.back().first, entries.back().second, read_cache, write_cache)) return false;
}
std::vector<CScript> subscripts;
FlatSigningProvider subprovider;
for (const auto& subarg : m_subdescriptor_args) {
std::vector<CScript> outscripts;
if (!subarg->ExpandHelper(pos, arg, read_cache, outscripts, subprovider, write_cache)) return false;
assert(outscripts.size() == 1);
subscripts.emplace_back(std::move(outscripts[0]));
}
out.Merge(std::move(subprovider));
std::vector<CPubKey> pubkeys;
pubkeys.reserve(entries.size());
for (auto& entry : entries) {
pubkeys.push_back(entry.first);
out.origins.emplace(entry.first.GetID(), std::make_pair<CPubKey, KeyOriginInfo>(CPubKey(entry.first), std::move(entry.second)));
}
output_scripts = MakeScripts(pubkeys, Span{subscripts}, out);
return true;
}
bool Expand(int pos, const SigningProvider& provider, std::vector<CScript>& output_scripts, FlatSigningProvider& out, DescriptorCache* write_cache = nullptr) const final
{
return ExpandHelper(pos, provider, nullptr, output_scripts, out, write_cache);
}
bool ExpandFromCache(int pos, const DescriptorCache& read_cache, std::vector<CScript>& output_scripts, FlatSigningProvider& out) const final
{
return ExpandHelper(pos, DUMMY_SIGNING_PROVIDER, &read_cache, output_scripts, out, nullptr);
}
// NOLINTNEXTLINE(misc-no-recursion)
void ExpandPrivate(int pos, const SigningProvider& provider, FlatSigningProvider& out) const final
{
for (const auto& p : m_pubkey_args) {
CKey key;
if (!p->GetPrivKey(pos, provider, key)) continue;
out.keys.emplace(key.GetPubKey().GetID(), key);
}
for (const auto& arg : m_subdescriptor_args) {
arg->ExpandPrivate(pos, provider, out);
}
}
std::optional<OutputType> GetOutputType() const override { return std::nullopt; }
std::optional<int64_t> ScriptSize() const override { return {}; }
/** A helper for MaxSatisfactionWeight.
*
* @param use_max_sig Whether to assume ECDSA signatures will have a high-r.
* @return The maximum size of the satisfaction in raw bytes (with no witness meaning).
*/
virtual std::optional<int64_t> MaxSatSize(bool use_max_sig) const { return {}; }
std::optional<int64_t> MaxSatisfactionWeight(bool) const override { return {}; }
std::optional<int64_t> MaxSatisfactionElems() const override { return {}; }
// NOLINTNEXTLINE(misc-no-recursion)
void GetPubKeys(std::set<CPubKey>& pubkeys, std::set<CExtPubKey>& ext_pubs) const override
{
for (const auto& p : m_pubkey_args) {
std::optional<CPubKey> pub = p->GetRootPubKey();
if (pub) pubkeys.insert(*pub);
std::optional<CExtPubKey> ext_pub = p->GetRootExtPubKey();
if (ext_pub) ext_pubs.insert(*ext_pub);
}
for (const auto& arg : m_subdescriptor_args) {
arg->GetPubKeys(pubkeys, ext_pubs);
}
}
};
/** A parsed addr(A) descriptor. */
class AddressDescriptor final : public DescriptorImpl
{
const CTxDestination m_destination;
protected:
std::string ToStringExtra() const override { return EncodeDestination(m_destination); }
std::vector<CScript> MakeScripts(const std::vector<CPubKey>&, Span<const CScript>, FlatSigningProvider&) const override { return Vector(GetScriptForDestination(m_destination)); }
public:
AddressDescriptor(CTxDestination destination) : DescriptorImpl({}, "addr"), m_destination(std::move(destination)) {}
bool IsSolvable() const final { return false; }
std::optional<OutputType> GetOutputType() const override
{
return OutputTypeFromDestination(m_destination);
}
bool IsSingleType() const final { return true; }
bool ToPrivateString(const SigningProvider& arg, std::string& out) const final { return false; }
std::optional<int64_t> ScriptSize() const override { return GetScriptForDestination(m_destination).size(); }
};
/** A parsed raw(H) descriptor. */
class RawDescriptor final : public DescriptorImpl
{
const CScript m_script;
protected:
std::string ToStringExtra() const override { return HexStr(m_script); }
std::vector<CScript> MakeScripts(const std::vector<CPubKey>&, Span<const CScript>, FlatSigningProvider&) const override { return Vector(m_script); }
public:
RawDescriptor(CScript script) : DescriptorImpl({}, "raw"), m_script(std::move(script)) {}
bool IsSolvable() const final { return false; }
std::optional<OutputType> GetOutputType() const override
{
CTxDestination dest;
ExtractDestination(m_script, dest);
return OutputTypeFromDestination(dest);
}
bool IsSingleType() const final { return true; }
bool ToPrivateString(const SigningProvider& arg, std::string& out) const final { return false; }
std::optional<int64_t> ScriptSize() const override { return m_script.size(); }
};
/** A parsed pk(P) descriptor. */
class PKDescriptor final : public DescriptorImpl
{
private:
const bool m_xonly;
protected:
std::vector<CScript> MakeScripts(const std::vector<CPubKey>& keys, Span<const CScript>, FlatSigningProvider&) const override
{
if (m_xonly) {
CScript script = CScript() << ToByteVector(XOnlyPubKey(keys[0])) << OP_CHECKSIG;
return Vector(std::move(script));
} else {
return Vector(GetScriptForRawPubKey(keys[0]));
}
}
public:
PKDescriptor(std::unique_ptr<PubkeyProvider> prov, bool xonly = false) : DescriptorImpl(Vector(std::move(prov)), "pk"), m_xonly(xonly) {}
bool IsSingleType() const final { return true; }
std::optional<int64_t> ScriptSize() const override {
return 1 + (m_xonly ? 32 : m_pubkey_args[0]->GetSize()) + 1;
}
std::optional<int64_t> MaxSatSize(bool use_max_sig) const override {
const auto ecdsa_sig_size = use_max_sig ? 72 : 71;
return 1 + (m_xonly ? 65 : ecdsa_sig_size);
}
std::optional<int64_t> MaxSatisfactionWeight(bool use_max_sig) const override {
return *MaxSatSize(use_max_sig) * WITNESS_SCALE_FACTOR;
}
std::optional<int64_t> MaxSatisfactionElems() const override { return 1; }
};
/** A parsed pkh(P) descriptor. */
class PKHDescriptor final : public DescriptorImpl
{
protected:
std::vector<CScript> MakeScripts(const std::vector<CPubKey>& keys, Span<const CScript>, FlatSigningProvider& out) const override
{
CKeyID id = keys[0].GetID();
out.pubkeys.emplace(id, keys[0]);
return Vector(GetScriptForDestination(PKHash(id)));
}
public:
PKHDescriptor(std::unique_ptr<PubkeyProvider> prov) : DescriptorImpl(Vector(std::move(prov)), "pkh") {}
std::optional<OutputType> GetOutputType() const override { return OutputType::LEGACY; }
bool IsSingleType() const final { return true; }
std::optional<int64_t> ScriptSize() const override { return 1 + 1 + 1 + 20 + 1 + 1; }
std::optional<int64_t> MaxSatSize(bool use_max_sig) const override {
const auto sig_size = use_max_sig ? 72 : 71;
return 1 + sig_size + 1 + m_pubkey_args[0]->GetSize();
}
std::optional<int64_t> MaxSatisfactionWeight(bool use_max_sig) const override {
return *MaxSatSize(use_max_sig) * WITNESS_SCALE_FACTOR;
}
std::optional<int64_t> MaxSatisfactionElems() const override { return 2; }
};
/** A parsed wpkh(P) descriptor. */
class WPKHDescriptor final : public DescriptorImpl
{
protected:
std::vector<CScript> MakeScripts(const std::vector<CPubKey>& keys, Span<const CScript>, FlatSigningProvider& out) const override
{
CKeyID id = keys[0].GetID();
out.pubkeys.emplace(id, keys[0]);
return Vector(GetScriptForDestination(WitnessV0KeyHash(id)));
}
public:
WPKHDescriptor(std::unique_ptr<PubkeyProvider> prov) : DescriptorImpl(Vector(std::move(prov)), "wpkh") {}
std::optional<OutputType> GetOutputType() const override { return OutputType::BECH32; }
bool IsSingleType() const final { return true; }
std::optional<int64_t> ScriptSize() const override { return 1 + 1 + 20; }
std::optional<int64_t> MaxSatSize(bool use_max_sig) const override {
const auto sig_size = use_max_sig ? 72 : 71;
return (1 + sig_size + 1 + 33);
}
std::optional<int64_t> MaxSatisfactionWeight(bool use_max_sig) const override {
return MaxSatSize(use_max_sig);
}
std::optional<int64_t> MaxSatisfactionElems() const override { return 2; }
};
/** A parsed combo(P) descriptor. */
class ComboDescriptor final : public DescriptorImpl
{
protected:
std::vector<CScript> MakeScripts(const std::vector<CPubKey>& keys, Span<const CScript>, FlatSigningProvider& out) const override
{
std::vector<CScript> ret;
CKeyID id = keys[0].GetID();
out.pubkeys.emplace(id, keys[0]);
ret.emplace_back(GetScriptForRawPubKey(keys[0])); // P2PK
ret.emplace_back(GetScriptForDestination(PKHash(id))); // P2PKH
if (keys[0].IsCompressed()) {
CScript p2wpkh = GetScriptForDestination(WitnessV0KeyHash(id));
out.scripts.emplace(CScriptID(p2wpkh), p2wpkh);
ret.emplace_back(p2wpkh);
ret.emplace_back(GetScriptForDestination(ScriptHash(p2wpkh))); // P2SH-P2WPKH
}
return ret;
}
public:
ComboDescriptor(std::unique_ptr<PubkeyProvider> prov) : DescriptorImpl(Vector(std::move(prov)), "combo") {}
bool IsSingleType() const final { return false; }
};
/** A parsed multi(...) or sortedmulti(...) descriptor */
class MultisigDescriptor final : public DescriptorImpl
{
const int m_threshold;
const bool m_sorted;
protected:
std::string ToStringExtra() const override { return strprintf("%i", m_threshold); }
std::vector<CScript> MakeScripts(const std::vector<CPubKey>& keys, Span<const CScript>, FlatSigningProvider&) const override {
if (m_sorted) {
std::vector<CPubKey> sorted_keys(keys);
std::sort(sorted_keys.begin(), sorted_keys.end());
return Vector(GetScriptForMultisig(m_threshold, sorted_keys));
}
return Vector(GetScriptForMultisig(m_threshold, keys));
}
public:
MultisigDescriptor(int threshold, std::vector<std::unique_ptr<PubkeyProvider>> providers, bool sorted = false) : DescriptorImpl(std::move(providers), sorted ? "sortedmulti" : "multi"), m_threshold(threshold), m_sorted(sorted) {}
bool IsSingleType() const final { return true; }
std::optional<int64_t> ScriptSize() const override {
const auto n_keys = m_pubkey_args.size();
auto op = [](int64_t acc, const std::unique_ptr<PubkeyProvider>& pk) { return acc + 1 + pk->GetSize();};
const auto pubkeys_size{std::accumulate(m_pubkey_args.begin(), m_pubkey_args.end(), int64_t{0}, op)};
return 1 + BuildScript(n_keys).size() + BuildScript(m_threshold).size() + pubkeys_size;
}
std::optional<int64_t> MaxSatSize(bool use_max_sig) const override {
const auto sig_size = use_max_sig ? 72 : 71;
return (1 + (1 + sig_size) * m_threshold);
}
std::optional<int64_t> MaxSatisfactionWeight(bool use_max_sig) const override {
return *MaxSatSize(use_max_sig) * WITNESS_SCALE_FACTOR;
}
std::optional<int64_t> MaxSatisfactionElems() const override { return 1 + m_threshold; }
};
/** A parsed (sorted)multi_a(...) descriptor. Always uses x-only pubkeys. */
class MultiADescriptor final : public DescriptorImpl
{
const int m_threshold;
const bool m_sorted;
protected:
std::string ToStringExtra() const override { return strprintf("%i", m_threshold); }
std::vector<CScript> MakeScripts(const std::vector<CPubKey>& keys, Span<const CScript>, FlatSigningProvider&) const override {
CScript ret;
std::vector<XOnlyPubKey> xkeys;
xkeys.reserve(keys.size());
for (const auto& key : keys) xkeys.emplace_back(key);
if (m_sorted) std::sort(xkeys.begin(), xkeys.end());
ret << ToByteVector(xkeys[0]) << OP_CHECKSIG;
for (size_t i = 1; i < keys.size(); ++i) {
ret << ToByteVector(xkeys[i]) << OP_CHECKSIGADD;
}
ret << m_threshold << OP_NUMEQUAL;
return Vector(std::move(ret));
}
public:
MultiADescriptor(int threshold, std::vector<std::unique_ptr<PubkeyProvider>> providers, bool sorted = false) : DescriptorImpl(std::move(providers), sorted ? "sortedmulti_a" : "multi_a"), m_threshold(threshold), m_sorted(sorted) {}
bool IsSingleType() const final { return true; }
std::optional<int64_t> ScriptSize() const override {
const auto n_keys = m_pubkey_args.size();
return (1 + 32 + 1) * n_keys + BuildScript(m_threshold).size() + 1;
}
std::optional<int64_t> MaxSatSize(bool use_max_sig) const override {
return (1 + 65) * m_threshold + (m_pubkey_args.size() - m_threshold);
}
std::optional<int64_t> MaxSatisfactionElems() const override { return m_pubkey_args.size(); }
};
/** A parsed sh(...) descriptor. */
class SHDescriptor final : public DescriptorImpl
{
protected:
std::vector<CScript> MakeScripts(const std::vector<CPubKey>&, Span<const CScript> scripts, FlatSigningProvider& out) const override
{
auto ret = Vector(GetScriptForDestination(ScriptHash(scripts[0])));
if (ret.size()) out.scripts.emplace(CScriptID(scripts[0]), scripts[0]);
return ret;
}
bool IsSegwit() const { return m_subdescriptor_args[0]->GetOutputType() == OutputType::BECH32; }
public:
SHDescriptor(std::unique_ptr<DescriptorImpl> desc) : DescriptorImpl({}, std::move(desc), "sh") {}
std::optional<OutputType> GetOutputType() const override
{
assert(m_subdescriptor_args.size() == 1);
if (IsSegwit()) return OutputType::P2SH_SEGWIT;
return OutputType::LEGACY;
}
bool IsSingleType() const final { return true; }
std::optional<int64_t> ScriptSize() const override { return 1 + 1 + 20 + 1; }
std::optional<int64_t> MaxSatisfactionWeight(bool use_max_sig) const override {
if (const auto sat_size = m_subdescriptor_args[0]->MaxSatSize(use_max_sig)) {
if (const auto subscript_size = m_subdescriptor_args[0]->ScriptSize()) {
// The subscript is never witness data.
const auto subscript_weight = (1 + *subscript_size) * WITNESS_SCALE_FACTOR;
// The weight depends on whether the inner descriptor is satisfied using the witness stack.
if (IsSegwit()) return subscript_weight + *sat_size;
return subscript_weight + *sat_size * WITNESS_SCALE_FACTOR;
}
}
return {};
}
std::optional<int64_t> MaxSatisfactionElems() const override {
if (const auto sub_elems = m_subdescriptor_args[0]->MaxSatisfactionElems()) return 1 + *sub_elems;
return {};
}
};
/** A parsed wsh(...) descriptor. */
class WSHDescriptor final : public DescriptorImpl
{
protected:
std::vector<CScript> MakeScripts(const std::vector<CPubKey>&, Span<const CScript> scripts, FlatSigningProvider& out) const override
{
auto ret = Vector(GetScriptForDestination(WitnessV0ScriptHash(scripts[0])));
if (ret.size()) out.scripts.emplace(CScriptID(scripts[0]), scripts[0]);
return ret;
}
public:
WSHDescriptor(std::unique_ptr<DescriptorImpl> desc) : DescriptorImpl({}, std::move(desc), "wsh") {}
std::optional<OutputType> GetOutputType() const override { return OutputType::BECH32; }
bool IsSingleType() const final { return true; }
std::optional<int64_t> ScriptSize() const override { return 1 + 1 + 32; }
std::optional<int64_t> MaxSatSize(bool use_max_sig) const override {
if (const auto sat_size = m_subdescriptor_args[0]->MaxSatSize(use_max_sig)) {
if (const auto subscript_size = m_subdescriptor_args[0]->ScriptSize()) {
return GetSizeOfCompactSize(*subscript_size) + *subscript_size + *sat_size;
}
}
return {};
}
std::optional<int64_t> MaxSatisfactionWeight(bool use_max_sig) const override {
return MaxSatSize(use_max_sig);
}
std::optional<int64_t> MaxSatisfactionElems() const override {
if (const auto sub_elems = m_subdescriptor_args[0]->MaxSatisfactionElems()) return 1 + *sub_elems;
return {};
}
};
/** A parsed tr(...) descriptor. */
class TRDescriptor final : public DescriptorImpl
{
std::vector<int> m_depths;
protected:
std::vector<CScript> MakeScripts(const std::vector<CPubKey>& keys, Span<const CScript> scripts, FlatSigningProvider& out) const override
{
TaprootBuilder builder;
assert(m_depths.size() == scripts.size());
for (size_t pos = 0; pos < m_depths.size(); ++pos) {
builder.Add(m_depths[pos], scripts[pos], TAPROOT_LEAF_TAPSCRIPT);
}
if (!builder.IsComplete()) return {};
assert(keys.size() == 1);
XOnlyPubKey xpk(keys[0]);
if (!xpk.IsFullyValid()) return {};
builder.Finalize(xpk);
WitnessV1Taproot output = builder.GetOutput();
out.tr_trees[output] = builder;
out.pubkeys.emplace(keys[0].GetID(), keys[0]);
return Vector(GetScriptForDestination(output));
}
bool ToStringSubScriptHelper(const SigningProvider* arg, std::string& ret, const StringType type, const DescriptorCache* cache = nullptr) const override
{
if (m_depths.empty()) return true;
std::vector<bool> path;
for (size_t pos = 0; pos < m_depths.size(); ++pos) {
if (pos) ret += ',';
while ((int)path.size() <= m_depths[pos]) {
if (path.size()) ret += '{';
path.push_back(false);
}
std::string tmp;
if (!m_subdescriptor_args[pos]->ToStringHelper(arg, tmp, type, cache)) return false;
ret += tmp;
while (!path.empty() && path.back()) {
if (path.size() > 1) ret += '}';
path.pop_back();
}
if (!path.empty()) path.back() = true;
}
return true;
}
public:
TRDescriptor(std::unique_ptr<PubkeyProvider> internal_key, std::vector<std::unique_ptr<DescriptorImpl>> descs, std::vector<int> depths) :
DescriptorImpl(Vector(std::move(internal_key)), std::move(descs), "tr"), m_depths(std::move(depths))
{
assert(m_subdescriptor_args.size() == m_depths.size());
}
std::optional<OutputType> GetOutputType() const override { return OutputType::BECH32M; }
bool IsSingleType() const final { return true; }
std::optional<int64_t> ScriptSize() const override { return 1 + 1 + 32; }
std::optional<int64_t> MaxSatisfactionWeight(bool) const override {
// FIXME: We assume keypath spend, which can lead to very large underestimations.
return 1 + 65;
}
std::optional<int64_t> MaxSatisfactionElems() const override {
// FIXME: See above, we assume keypath spend.
return 1;
}
};
/* We instantiate Miniscript here with a simple integer as key type.
* The value of these key integers are an index in the
* DescriptorImpl::m_pubkey_args vector.
*/
/**
* The context for converting a Miniscript descriptor into a Script.
*/
class ScriptMaker {
//! Keys contained in the Miniscript (the evaluation of DescriptorImpl::m_pubkey_args).
const std::vector<CPubKey>& m_keys;
//! The script context we're operating within (Tapscript or P2WSH).
const miniscript::MiniscriptContext m_script_ctx;
//! Get the ripemd160(sha256()) hash of this key.
//! Any key that is valid in a descriptor serializes as 32 bytes within a Tapscript context. So we
//! must not hash the sign-bit byte in this case.
uint160 GetHash160(uint32_t key) const {
if (miniscript::IsTapscript(m_script_ctx)) {
return Hash160(XOnlyPubKey{m_keys[key]});
}
return m_keys[key].GetID();
}
public:
ScriptMaker(const std::vector<CPubKey>& keys LIFETIMEBOUND, const miniscript::MiniscriptContext script_ctx) : m_keys(keys), m_script_ctx{script_ctx} {}
std::vector<unsigned char> ToPKBytes(uint32_t key) const {
// In Tapscript keys always serialize as x-only, whether an x-only key was used in the descriptor or not.
if (!miniscript::IsTapscript(m_script_ctx)) {
return {m_keys[key].begin(), m_keys[key].end()};
}
const XOnlyPubKey xonly_pubkey{m_keys[key]};
return {xonly_pubkey.begin(), xonly_pubkey.end()};
}
std::vector<unsigned char> ToPKHBytes(uint32_t key) const {
auto id = GetHash160(key);
return {id.begin(), id.end()};
}
};
/**
* The context for converting a Miniscript descriptor to its textual form.
*/
class StringMaker {
//! To convert private keys for private descriptors.
const SigningProvider* m_arg;
//! Keys contained in the Miniscript (a reference to DescriptorImpl::m_pubkey_args).
const std::vector<std::unique_ptr<PubkeyProvider>>& m_pubkeys;
//! Whether to serialize keys as private or public.
bool m_private;
public:
StringMaker(const SigningProvider* arg LIFETIMEBOUND, const std::vector<std::unique_ptr<PubkeyProvider>>& pubkeys LIFETIMEBOUND, bool priv)
: m_arg(arg), m_pubkeys(pubkeys), m_private(priv) {}
std::optional<std::string> ToString(uint32_t key) const
{
std::string ret;
if (m_private) {
if (!m_pubkeys[key]->ToPrivateString(*m_arg, ret)) return {};
} else {
ret = m_pubkeys[key]->ToString();
}
return ret;
}
};
class MiniscriptDescriptor final : public DescriptorImpl
{
private:
miniscript::NodeRef<uint32_t> m_node;
protected:
std::vector<CScript> MakeScripts(const std::vector<CPubKey>& keys, Span<const CScript> scripts,
FlatSigningProvider& provider) const override
{
const auto script_ctx{m_node->GetMsCtx()};
for (const auto& key : keys) {
if (miniscript::IsTapscript(script_ctx)) {
provider.pubkeys.emplace(Hash160(XOnlyPubKey{key}), key);
} else {
provider.pubkeys.emplace(key.GetID(), key);
}
}
return Vector(m_node->ToScript(ScriptMaker(keys, script_ctx)));
}
public:
MiniscriptDescriptor(std::vector<std::unique_ptr<PubkeyProvider>> providers, miniscript::NodeRef<uint32_t> node)
: DescriptorImpl(std::move(providers), "?"), m_node(std::move(node)) {}
bool ToStringHelper(const SigningProvider* arg, std::string& out, const StringType type,
const DescriptorCache* cache = nullptr) const override
{
if (const auto res = m_node->ToString(StringMaker(arg, m_pubkey_args, type == StringType::PRIVATE))) {
out = *res;
return true;
}
return false;
}
bool IsSolvable() const override { return true; }
bool IsSingleType() const final { return true; }
std::optional<int64_t> ScriptSize() const override { return m_node->ScriptSize(); }
std::optional<int64_t> MaxSatSize(bool) const override {
// For Miniscript we always assume high-R ECDSA signatures.
return m_node->GetWitnessSize();
}
std::optional<int64_t> MaxSatisfactionElems() const override {
return m_node->GetStackSize();
}
};
/** A parsed rawtr(...) descriptor. */
class RawTRDescriptor final : public DescriptorImpl
{
protected:
std::vector<CScript> MakeScripts(const std::vector<CPubKey>& keys, Span<const CScript> scripts, FlatSigningProvider& out) const override
{
assert(keys.size() == 1);
XOnlyPubKey xpk(keys[0]);
if (!xpk.IsFullyValid()) return {};
WitnessV1Taproot output{xpk};
return Vector(GetScriptForDestination(output));
}
public:
RawTRDescriptor(std::unique_ptr<PubkeyProvider> output_key) : DescriptorImpl(Vector(std::move(output_key)), "rawtr") {}
std::optional<OutputType> GetOutputType() const override { return OutputType::BECH32M; }
bool IsSingleType() const final { return true; }
std::optional<int64_t> ScriptSize() const override { return 1 + 1 + 32; }
std::optional<int64_t> MaxSatisfactionWeight(bool) const override {
// We can't know whether there is a script path, so assume key path spend.
return 1 + 65;
}
std::optional<int64_t> MaxSatisfactionElems() const override {
// See above, we assume keypath spend.
return 1;
}
};
////////////////////////////////////////////////////////////////////////////
// Parser //
////////////////////////////////////////////////////////////////////////////
enum class ParseScriptContext {
TOP, //!< Top-level context (script goes directly in scriptPubKey)
P2SH, //!< Inside sh() (script becomes P2SH redeemScript)
P2WPKH, //!< Inside wpkh() (no script, pubkey only)
P2WSH, //!< Inside wsh() (script becomes v0 witness script)
P2TR, //!< Inside tr() (either internal key, or BIP342 script leaf)
};
/**
* Parse a key path, being passed a split list of elements (the first element is ignored).
*
* @param[in] split BIP32 path string, using either ' or h for hardened derivation
* @param[out] out the key path
* @param[out] apostrophe only updated if hardened derivation is found
* @param[out] error parsing error message
* @returns false if parsing failed
**/
[[nodiscard]] bool ParseKeyPath(const std::vector<Span<const char>>& split, KeyPath& out, bool& apostrophe, std::string& error)
{
for (size_t i = 1; i < split.size(); ++i) {
Span<const char> elem = split[i];
bool hardened = false;
if (elem.size() > 0) {
const char last = elem[elem.size() - 1];
if (last == '\'' || last == 'h') {
elem = elem.first(elem.size() - 1);
hardened = true;
apostrophe = last == '\'';
}
}
uint32_t p;
if (!ParseUInt32(std::string(elem.begin(), elem.end()), &p)) {
error = strprintf("Key path value '%s' is not a valid uint32", std::string(elem.begin(), elem.end()));
return false;
} else if (p > 0x7FFFFFFFUL) {
error = strprintf("Key path value %u is out of range", p);
return false;
}
out.push_back(p | (((uint32_t)hardened) << 31));
}
return true;
}
/** Parse a public key that excludes origin information. */
std::unique_ptr<PubkeyProvider> ParsePubkeyInner(uint32_t key_exp_index, const Span<const char>& sp, ParseScriptContext ctx, FlatSigningProvider& out, bool& apostrophe, std::string& error)
{
bool permit_uncompressed = ctx == ParseScriptContext::TOP || ctx == ParseScriptContext::P2SH;
auto split = Split(sp, '/');
std::string str(split[0].begin(), split[0].end());
if (str.size() == 0) {
error = "No key provided";
return nullptr;
}
if (split.size() == 1) {
if (IsHex(str)) {
std::vector<unsigned char> data = ParseHex(str);
CPubKey pubkey(data);
if (pubkey.IsValid() && !pubkey.IsValidNonHybrid()) {
error = "Hybrid public keys are not allowed";
return nullptr;
}
if (pubkey.IsFullyValid()) {
if (permit_uncompressed || pubkey.IsCompressed()) {
return std::make_unique<ConstPubkeyProvider>(key_exp_index, pubkey, false);
} else {
error = "Uncompressed keys are not allowed";
return nullptr;
}
} else if (data.size() == 32 && ctx == ParseScriptContext::P2TR) {
unsigned char fullkey[33] = {0x02};
std::copy(data.begin(), data.end(), fullkey + 1);
pubkey.Set(std::begin(fullkey), std::end(fullkey));
if (pubkey.IsFullyValid()) {
return std::make_unique<ConstPubkeyProvider>(key_exp_index, pubkey, true);
}
}
error = strprintf("Pubkey '%s' is invalid", str);
return nullptr;
}
CKey key = DecodeSecret(str);
if (key.IsValid()) {
if (permit_uncompressed || key.IsCompressed()) {
CPubKey pubkey = key.GetPubKey();
out.keys.emplace(pubkey.GetID(), key);
return std::make_unique<ConstPubkeyProvider>(key_exp_index, pubkey, ctx == ParseScriptContext::P2TR);
} else {
error = "Uncompressed keys are not allowed";
return nullptr;
}
}
}
CExtKey extkey = DecodeExtKey(str);
CExtPubKey extpubkey = DecodeExtPubKey(str);
if (!extkey.key.IsValid() && !extpubkey.pubkey.IsValid()) {
error = strprintf("key '%s' is not valid", str);
return nullptr;
}
KeyPath path;
DeriveType type = DeriveType::NO;
if (split.back() == Span{"*"}.first(1)) {
split.pop_back();
type = DeriveType::UNHARDENED;
} else if (split.back() == Span{"*'"}.first(2) || split.back() == Span{"*h"}.first(2)) {
apostrophe = split.back() == Span{"*'"}.first(2);
split.pop_back();
type = DeriveType::HARDENED;
}
if (!ParseKeyPath(split, path, apostrophe, error)) return nullptr;
if (extkey.key.IsValid()) {
extpubkey = extkey.Neuter();
out.keys.emplace(extpubkey.pubkey.GetID(), extkey.key);
}
return std::make_unique<BIP32PubkeyProvider>(key_exp_index, extpubkey, std::move(path), type, apostrophe);
}
/** Parse a public key including origin information (if enabled). */
std::unique_ptr<PubkeyProvider> ParsePubkey(uint32_t key_exp_index, const Span<const char>& sp, ParseScriptContext ctx, FlatSigningProvider& out, std::string& error)
{
auto origin_split = Split(sp, ']');
if (origin_split.size() > 2) {
error = "Multiple ']' characters found for a single pubkey";
return nullptr;
}
// This is set if either the origin or path suffix contains a hardened derivation.
bool apostrophe = false;
if (origin_split.size() == 1) {
return ParsePubkeyInner(key_exp_index, origin_split[0], ctx, out, apostrophe, error);
}
if (origin_split[0].empty() || origin_split[0][0] != '[') {
error = strprintf("Key origin start '[ character expected but not found, got '%c' instead",
origin_split[0].empty() ? /** empty, implies split char */ ']' : origin_split[0][0]);
return nullptr;
}
auto slash_split = Split(origin_split[0].subspan(1), '/');
if (slash_split[0].size() != 8) {
error = strprintf("Fingerprint is not 4 bytes (%u characters instead of 8 characters)", slash_split[0].size());
return nullptr;
}
std::string fpr_hex = std::string(slash_split[0].begin(), slash_split[0].end());
if (!IsHex(fpr_hex)) {
error = strprintf("Fingerprint '%s' is not hex", fpr_hex);
return nullptr;
}
auto fpr_bytes = ParseHex(fpr_hex);
KeyOriginInfo info;
static_assert(sizeof(info.fingerprint) == 4, "Fingerprint must be 4 bytes");
assert(fpr_bytes.size() == 4);
std::copy(fpr_bytes.begin(), fpr_bytes.end(), info.fingerprint);
if (!ParseKeyPath(slash_split, info.path, apostrophe, error)) return nullptr;
auto provider = ParsePubkeyInner(key_exp_index, origin_split[1], ctx, out, apostrophe, error);
if (!provider) return nullptr;
return std::make_unique<OriginPubkeyProvider>(key_exp_index, std::move(info), std::move(provider), apostrophe);
}
std::unique_ptr<PubkeyProvider> InferPubkey(const CPubKey& pubkey, ParseScriptContext ctx, const SigningProvider& provider)
{
// Key cannot be hybrid
if (!pubkey.IsValidNonHybrid()) {
return nullptr;
}
// Uncompressed is only allowed in TOP and P2SH contexts
if (ctx != ParseScriptContext::TOP && ctx != ParseScriptContext::P2SH && !pubkey.IsCompressed()) {
return nullptr;
}
std::unique_ptr<PubkeyProvider> key_provider = std::make_unique<ConstPubkeyProvider>(0, pubkey, false);
KeyOriginInfo info;
if (provider.GetKeyOrigin(pubkey.GetID(), info)) {
return std::make_unique<OriginPubkeyProvider>(0, std::move(info), std::move(key_provider), /*apostrophe=*/false);
}
return key_provider;
}
std::unique_ptr<PubkeyProvider> InferXOnlyPubkey(const XOnlyPubKey& xkey, ParseScriptContext ctx, const SigningProvider& provider)
{
CPubKey pubkey{xkey.GetEvenCorrespondingCPubKey()};
std::unique_ptr<PubkeyProvider> key_provider = std::make_unique<ConstPubkeyProvider>(0, pubkey, true);
KeyOriginInfo info;
if (provider.GetKeyOriginByXOnly(xkey, info)) {
return std::make_unique<OriginPubkeyProvider>(0, std::move(info), std::move(key_provider), /*apostrophe=*/false);
}
return key_provider;
}
/**
* The context for parsing a Miniscript descriptor (either from Script or from its textual representation).
*/
struct KeyParser {
//! The Key type is an index in DescriptorImpl::m_pubkey_args
using Key = uint32_t;
//! Must not be nullptr if parsing from string.
FlatSigningProvider* m_out;
//! Must not be nullptr if parsing from Script.
const SigningProvider* m_in;
//! List of keys contained in the Miniscript.
mutable std::vector<std::unique_ptr<PubkeyProvider>> m_keys;
//! Used to detect key parsing errors within a Miniscript.
mutable std::string m_key_parsing_error;
//! The script context we're operating within (Tapscript or P2WSH).
const miniscript::MiniscriptContext m_script_ctx;
//! The number of keys that were parsed before starting to parse this Miniscript descriptor.
uint32_t m_offset;
KeyParser(FlatSigningProvider* out LIFETIMEBOUND, const SigningProvider* in LIFETIMEBOUND,
miniscript::MiniscriptContext ctx, uint32_t offset = 0)
: m_out(out), m_in(in), m_script_ctx(ctx), m_offset(offset) {}
bool KeyCompare(const Key& a, const Key& b) const {
return *m_keys.at(a) < *m_keys.at(b);
}
ParseScriptContext ParseContext() const {
switch (m_script_ctx) {
case miniscript::MiniscriptContext::P2WSH: return ParseScriptContext::P2WSH;
case miniscript::MiniscriptContext::TAPSCRIPT: return ParseScriptContext::P2TR;
}
assert(false);
}
template<typename I> std::optional<Key> FromString(I begin, I end) const
{
assert(m_out);
Key key = m_keys.size();
auto pk = ParsePubkey(m_offset + key, {&*begin, &*end}, ParseContext(), *m_out, m_key_parsing_error);
if (!pk) return {};
m_keys.push_back(std::move(pk));
return key;
}
std::optional<std::string> ToString(const Key& key) const
{
return m_keys.at(key)->ToString();
}
template<typename I> std::optional<Key> FromPKBytes(I begin, I end) const
{
assert(m_in);
Key key = m_keys.size();
if (miniscript::IsTapscript(m_script_ctx) && end - begin == 32) {
XOnlyPubKey pubkey;
std::copy(begin, end, pubkey.begin());
if (auto pubkey_provider = InferPubkey(pubkey.GetEvenCorrespondingCPubKey(), ParseContext(), *m_in)) {
m_keys.push_back(std::move(pubkey_provider));
return key;
}
} else if (!miniscript::IsTapscript(m_script_ctx)) {
CPubKey pubkey(begin, end);
if (auto pubkey_provider = InferPubkey(pubkey, ParseContext(), *m_in)) {
m_keys.push_back(std::move(pubkey_provider));
return key;
}
}
return {};
}
template<typename I> std::optional<Key> FromPKHBytes(I begin, I end) const
{
assert(end - begin == 20);
assert(m_in);
uint160 hash;
std::copy(begin, end, hash.begin());
CKeyID keyid(hash);
CPubKey pubkey;
if (m_in->GetPubKey(keyid, pubkey)) {
if (auto pubkey_provider = InferPubkey(pubkey, ParseContext(), *m_in)) {
Key key = m_keys.size();
m_keys.push_back(std::move(pubkey_provider));
return key;
}
}
return {};
}
miniscript::MiniscriptContext MsContext() const {
return m_script_ctx;
}
};
/** Parse a script in a particular context. */
// NOLINTNEXTLINE(misc-no-recursion)
std::unique_ptr<DescriptorImpl> ParseScript(uint32_t& key_exp_index, Span<const char>& sp, ParseScriptContext ctx, FlatSigningProvider& out, std::string& error)
{
using namespace script;
auto expr = Expr(sp);
if (Func("pk", expr)) {
auto pubkey = ParsePubkey(key_exp_index, expr, ctx, out, error);
if (!pubkey) {
error = strprintf("pk(): %s", error);
return nullptr;
}
++key_exp_index;
return std::make_unique<PKDescriptor>(std::move(pubkey), ctx == ParseScriptContext::P2TR);
}
if ((ctx == ParseScriptContext::TOP || ctx == ParseScriptContext::P2SH || ctx == ParseScriptContext::P2WSH) && Func("pkh", expr)) {
auto pubkey = ParsePubkey(key_exp_index, expr, ctx, out, error);
if (!pubkey) {
error = strprintf("pkh(): %s", error);
return nullptr;
}
++key_exp_index;
return std::make_unique<PKHDescriptor>(std::move(pubkey));
} else if (ctx != ParseScriptContext::P2TR && Func("pkh", expr)) {
// Under Taproot, always the Miniscript parser deal with it.
error = "Can only have pkh at top level, in sh(), wsh(), or in tr()";
return nullptr;
}
if (ctx == ParseScriptContext::TOP && Func("combo", expr)) {
auto pubkey = ParsePubkey(key_exp_index, expr, ctx, out, error);
if (!pubkey) {
error = strprintf("combo(): %s", error);
return nullptr;
}
++key_exp_index;
return std::make_unique<ComboDescriptor>(std::move(pubkey));
} else if (Func("combo", expr)) {
error = "Can only have combo() at top level";
return nullptr;
}
const bool multi = Func("multi", expr);
const bool sortedmulti = !multi && Func("sortedmulti", expr);
const bool multi_a = !(multi || sortedmulti) && Func("multi_a", expr);
const bool sortedmulti_a = !(multi || sortedmulti || multi_a) && Func("sortedmulti_a", expr);
if (((ctx == ParseScriptContext::TOP || ctx == ParseScriptContext::P2SH || ctx == ParseScriptContext::P2WSH) && (multi || sortedmulti)) ||
(ctx == ParseScriptContext::P2TR && (multi_a || sortedmulti_a))) {
auto threshold = Expr(expr);
uint32_t thres;
std::vector<std::unique_ptr<PubkeyProvider>> providers;
if (!ParseUInt32(std::string(threshold.begin(), threshold.end()), &thres)) {
error = strprintf("Multi threshold '%s' is not valid", std::string(threshold.begin(), threshold.end()));
return nullptr;
}
size_t script_size = 0;
while (expr.size()) {
if (!Const(",", expr)) {
error = strprintf("Multi: expected ',', got '%c'", expr[0]);
return nullptr;
}
auto arg = Expr(expr);
auto pk = ParsePubkey(key_exp_index, arg, ctx, out, error);
if (!pk) {
error = strprintf("Multi: %s", error);
return nullptr;
}
script_size += pk->GetSize() + 1;
providers.emplace_back(std::move(pk));
key_exp_index++;
}
if ((multi || sortedmulti) && (providers.empty() || providers.size() > MAX_PUBKEYS_PER_MULTISIG)) {
error = strprintf("Cannot have %u keys in multisig; must have between 1 and %d keys, inclusive", providers.size(), MAX_PUBKEYS_PER_MULTISIG);
return nullptr;
} else if ((multi_a || sortedmulti_a) && (providers.empty() || providers.size() > MAX_PUBKEYS_PER_MULTI_A)) {
error = strprintf("Cannot have %u keys in multi_a; must have between 1 and %d keys, inclusive", providers.size(), MAX_PUBKEYS_PER_MULTI_A);
return nullptr;
} else if (thres < 1) {
error = strprintf("Multisig threshold cannot be %d, must be at least 1", thres);
return nullptr;
} else if (thres > providers.size()) {
error = strprintf("Multisig threshold cannot be larger than the number of keys; threshold is %d but only %u keys specified", thres, providers.size());
return nullptr;
}
if (ctx == ParseScriptContext::TOP) {
if (providers.size() > 3) {
error = strprintf("Cannot have %u pubkeys in bare multisig; only at most 3 pubkeys", providers.size());
return nullptr;
}
}
if (ctx == ParseScriptContext::P2SH) {
// This limits the maximum number of compressed pubkeys to 15.
if (script_size + 3 > MAX_SCRIPT_ELEMENT_SIZE) {
error = strprintf("P2SH script is too large, %d bytes is larger than %d bytes", script_size + 3, MAX_SCRIPT_ELEMENT_SIZE);
return nullptr;
}
}
if (multi || sortedmulti) {
return std::make_unique<MultisigDescriptor>(thres, std::move(providers), sortedmulti);
} else {
return std::make_unique<MultiADescriptor>(thres, std::move(providers), sortedmulti_a);
}
} else if (multi || sortedmulti) {
error = "Can only have multi/sortedmulti at top level, in sh(), or in wsh()";
return nullptr;
} else if (multi_a || sortedmulti_a) {
error = "Can only have multi_a/sortedmulti_a inside tr()";
return nullptr;
}
if ((ctx == ParseScriptContext::TOP || ctx == ParseScriptContext::P2SH) && Func("wpkh", expr)) {
auto pubkey = ParsePubkey(key_exp_index, expr, ParseScriptContext::P2WPKH, out, error);
if (!pubkey) {
error = strprintf("wpkh(): %s", error);
return nullptr;
}
key_exp_index++;
return std::make_unique<WPKHDescriptor>(std::move(pubkey));
} else if (Func("wpkh", expr)) {
error = "Can only have wpkh() at top level or inside sh()";
return nullptr;
}
if (ctx == ParseScriptContext::TOP && Func("sh", expr)) {
auto desc = ParseScript(key_exp_index, expr, ParseScriptContext::P2SH, out, error);
if (!desc || expr.size()) return nullptr;
return std::make_unique<SHDescriptor>(std::move(desc));
} else if (Func("sh", expr)) {
error = "Can only have sh() at top level";
return nullptr;
}
if ((ctx == ParseScriptContext::TOP || ctx == ParseScriptContext::P2SH) && Func("wsh", expr)) {
auto desc = ParseScript(key_exp_index, expr, ParseScriptContext::P2WSH, out, error);
if (!desc || expr.size()) return nullptr;
return std::make_unique<WSHDescriptor>(std::move(desc));
} else if (Func("wsh", expr)) {
error = "Can only have wsh() at top level or inside sh()";
return nullptr;
}
if (ctx == ParseScriptContext::TOP && Func("addr", expr)) {
CTxDestination dest = DecodeDestination(std::string(expr.begin(), expr.end()));
if (!IsValidDestination(dest)) {
error = "Address is not valid";
return nullptr;
}
return std::make_unique<AddressDescriptor>(std::move(dest));
} else if (Func("addr", expr)) {
error = "Can only have addr() at top level";
return nullptr;
}
if (ctx == ParseScriptContext::TOP && Func("tr", expr)) {
auto arg = Expr(expr);
auto internal_key = ParsePubkey(key_exp_index, arg, ParseScriptContext::P2TR, out, error);
if (!internal_key) {
error = strprintf("tr(): %s", error);
return nullptr;
}
++key_exp_index;
std::vector<std::unique_ptr<DescriptorImpl>> subscripts; //!< list of script subexpressions
std::vector<int> depths; //!< depth in the tree of each subexpression (same length subscripts)
if (expr.size()) {
if (!Const(",", expr)) {
error = strprintf("tr: expected ',', got '%c'", expr[0]);
return nullptr;
}
/** The path from the top of the tree to what we're currently processing.
* branches[i] == false: left branch in the i'th step from the top; true: right branch.
*/
std::vector<bool> branches;
// Loop over all provided scripts. In every iteration exactly one script will be processed.
// Use a do-loop because inside this if-branch we expect at least one script.
do {
// First process all open braces.
while (Const("{", expr)) {
branches.push_back(false); // new left branch
if (branches.size() > TAPROOT_CONTROL_MAX_NODE_COUNT) {
error = strprintf("tr() supports at most %i nesting levels", TAPROOT_CONTROL_MAX_NODE_COUNT);
return nullptr;
}
}
// Process the actual script expression.
auto sarg = Expr(expr);
subscripts.emplace_back(ParseScript(key_exp_index, sarg, ParseScriptContext::P2TR, out, error));
if (!subscripts.back()) return nullptr;
depths.push_back(branches.size());
// Process closing braces; one is expected for every right branch we were in.
while (branches.size() && branches.back()) {
if (!Const("}", expr)) {
error = strprintf("tr(): expected '}' after script expression");
return nullptr;
}
branches.pop_back(); // move up one level after encountering '}'
}
// If after that, we're at the end of a left branch, expect a comma.
if (branches.size() && !branches.back()) {
if (!Const(",", expr)) {
error = strprintf("tr(): expected ',' after script expression");
return nullptr;
}
branches.back() = true; // And now we're in a right branch.
}
} while (branches.size());
// After we've explored a whole tree, we must be at the end of the expression.
if (expr.size()) {
error = strprintf("tr(): expected ')' after script expression");
return nullptr;
}
}
assert(TaprootBuilder::ValidDepths(depths));
return std::make_unique<TRDescriptor>(std::move(internal_key), std::move(subscripts), std::move(depths));
} else if (Func("tr", expr)) {
error = "Can only have tr at top level";
return nullptr;
}
if (ctx == ParseScriptContext::TOP && Func("rawtr", expr)) {
auto arg = Expr(expr);
if (expr.size()) {
error = strprintf("rawtr(): only one key expected.");
return nullptr;
}
auto output_key = ParsePubkey(key_exp_index, arg, ParseScriptContext::P2TR, out, error);
if (!output_key) return nullptr;
++key_exp_index;
return std::make_unique<RawTRDescriptor>(std::move(output_key));
} else if (Func("rawtr", expr)) {
error = "Can only have rawtr at top level";
return nullptr;
}
if (ctx == ParseScriptContext::TOP && Func("raw", expr)) {
std::string str(expr.begin(), expr.end());
if (!IsHex(str)) {
error = "Raw script is not hex";
return nullptr;
}
auto bytes = ParseHex(str);
return std::make_unique<RawDescriptor>(CScript(bytes.begin(), bytes.end()));
} else if (Func("raw", expr)) {
error = "Can only have raw() at top level";
return nullptr;
}
// Process miniscript expressions.
{
const auto script_ctx{ctx == ParseScriptContext::P2WSH ? miniscript::MiniscriptContext::P2WSH : miniscript::MiniscriptContext::TAPSCRIPT};
KeyParser parser(/*out = */&out, /* in = */nullptr, /* ctx = */script_ctx, key_exp_index);
auto node = miniscript::FromString(std::string(expr.begin(), expr.end()), parser);
if (parser.m_key_parsing_error != "") {
error = std::move(parser.m_key_parsing_error);
return nullptr;
}
if (node) {
if (ctx != ParseScriptContext::P2WSH && ctx != ParseScriptContext::P2TR) {
error = "Miniscript expressions can only be used in wsh or tr.";
return nullptr;
}
if (!node->IsSane() || node->IsNotSatisfiable()) {
// Try to find the first insane sub for better error reporting.
auto insane_node = node.get();
if (const auto sub = node->FindInsaneSub()) insane_node = sub;
if (const auto str = insane_node->ToString(parser)) error = *str;
if (!insane_node->IsValid()) {
error += " is invalid";
} else if (!node->IsSane()) {
error += " is not sane";
if (!insane_node->IsNonMalleable()) {
error += ": malleable witnesses exist";
} else if (insane_node == node.get() && !insane_node->NeedsSignature()) {
error += ": witnesses without signature exist";
} else if (!insane_node->CheckTimeLocksMix()) {
error += ": contains mixes of timelocks expressed in blocks and seconds";
} else if (!insane_node->CheckDuplicateKey()) {
error += ": contains duplicate public keys";
} else if (!insane_node->ValidSatisfactions()) {
error += ": needs witnesses that may exceed resource limits";
}
} else {
error += " is not satisfiable";
}
return nullptr;
}
// A signature check is required for a miniscript to be sane. Therefore no sane miniscript
// may have an empty list of public keys.
CHECK_NONFATAL(!parser.m_keys.empty());
key_exp_index += parser.m_keys.size();
return std::make_unique<MiniscriptDescriptor>(std::move(parser.m_keys), std::move(node));
}
}
if (ctx == ParseScriptContext::P2SH) {
error = "A function is needed within P2SH";
return nullptr;
} else if (ctx == ParseScriptContext::P2WSH) {
error = "A function is needed within P2WSH";
return nullptr;
}
error = strprintf("'%s' is not a valid descriptor function", std::string(expr.begin(), expr.end()));
return nullptr;
}
std::unique_ptr<DescriptorImpl> InferMultiA(const CScript& script, ParseScriptContext ctx, const SigningProvider& provider)
{
auto match = MatchMultiA(script);
if (!match) return {};
std::vector<std::unique_ptr<PubkeyProvider>> keys;
keys.reserve(match->second.size());
for (const auto keyspan : match->second) {
if (keyspan.size() != 32) return {};
auto key = InferXOnlyPubkey(XOnlyPubKey{keyspan}, ctx, provider);
if (!key) return {};
keys.push_back(std::move(key));
}
return std::make_unique<MultiADescriptor>(match->first, std::move(keys));
}
// NOLINTNEXTLINE(misc-no-recursion)
std::unique_ptr<DescriptorImpl> InferScript(const CScript& script, ParseScriptContext ctx, const SigningProvider& provider)
{
if (ctx == ParseScriptContext::P2TR && script.size() == 34 && script[0] == 32 && script[33] == OP_CHECKSIG) {
XOnlyPubKey key{Span{script}.subspan(1, 32)};
return std::make_unique<PKDescriptor>(InferXOnlyPubkey(key, ctx, provider), true);
}
if (ctx == ParseScriptContext::P2TR) {
auto ret = InferMultiA(script, ctx, provider);
if (ret) return ret;
}
std::vector<std::vector<unsigned char>> data;
TxoutType txntype = Solver(script, data);
if (txntype == TxoutType::PUBKEY && (ctx == ParseScriptContext::TOP || ctx == ParseScriptContext::P2SH || ctx == ParseScriptContext::P2WSH)) {
CPubKey pubkey(data[0]);
if (auto pubkey_provider = InferPubkey(pubkey, ctx, provider)) {
return std::make_unique<PKDescriptor>(std::move(pubkey_provider));
}
}
if (txntype == TxoutType::PUBKEYHASH && (ctx == ParseScriptContext::TOP || ctx == ParseScriptContext::P2SH || ctx == ParseScriptContext::P2WSH)) {
uint160 hash(data[0]);
CKeyID keyid(hash);
CPubKey pubkey;
if (provider.GetPubKey(keyid, pubkey)) {
if (auto pubkey_provider = InferPubkey(pubkey, ctx, provider)) {
return std::make_unique<PKHDescriptor>(std::move(pubkey_provider));
}
}
}
if (txntype == TxoutType::WITNESS_V0_KEYHASH && (ctx == ParseScriptContext::TOP || ctx == ParseScriptContext::P2SH)) {
uint160 hash(data[0]);
CKeyID keyid(hash);
CPubKey pubkey;
if (provider.GetPubKey(keyid, pubkey)) {
if (auto pubkey_provider = InferPubkey(pubkey, ParseScriptContext::P2WPKH, provider)) {
return std::make_unique<WPKHDescriptor>(std::move(pubkey_provider));
}
}
}
if (txntype == TxoutType::MULTISIG && (ctx == ParseScriptContext::TOP || ctx == ParseScriptContext::P2SH || ctx == ParseScriptContext::P2WSH)) {
bool ok = true;
std::vector<std::unique_ptr<PubkeyProvider>> providers;
for (size_t i = 1; i + 1 < data.size(); ++i) {
CPubKey pubkey(data[i]);
if (auto pubkey_provider = InferPubkey(pubkey, ctx, provider)) {
providers.push_back(std::move(pubkey_provider));
} else {
ok = false;
break;
}
}
if (ok) return std::make_unique<MultisigDescriptor>((int)data[0][0], std::move(providers));
}
if (txntype == TxoutType::SCRIPTHASH && ctx == ParseScriptContext::TOP) {
uint160 hash(data[0]);
CScriptID scriptid(hash);
CScript subscript;
if (provider.GetCScript(scriptid, subscript)) {
auto sub = InferScript(subscript, ParseScriptContext::P2SH, provider);
if (sub) return std::make_unique<SHDescriptor>(std::move(sub));
}
}
if (txntype == TxoutType::WITNESS_V0_SCRIPTHASH && (ctx == ParseScriptContext::TOP || ctx == ParseScriptContext::P2SH)) {
CScriptID scriptid{RIPEMD160(data[0])};
CScript subscript;
if (provider.GetCScript(scriptid, subscript)) {
auto sub = InferScript(subscript, ParseScriptContext::P2WSH, provider);
if (sub) return std::make_unique<WSHDescriptor>(std::move(sub));
}
}
if (txntype == TxoutType::WITNESS_V1_TAPROOT && ctx == ParseScriptContext::TOP) {
// Extract x-only pubkey from output.
XOnlyPubKey pubkey;
std::copy(data[0].begin(), data[0].end(), pubkey.begin());
// Request spending data.
TaprootSpendData tap;
if (provider.GetTaprootSpendData(pubkey, tap)) {
// If found, convert it back to tree form.
auto tree = InferTaprootTree(tap, pubkey);
if (tree) {
// If that works, try to infer subdescriptors for all leaves.
bool ok = true;
std::vector<std::unique_ptr<DescriptorImpl>> subscripts; //!< list of script subexpressions
std::vector<int> depths; //!< depth in the tree of each subexpression (same length subscripts)
for (const auto& [depth, script, leaf_ver] : *tree) {
std::unique_ptr<DescriptorImpl> subdesc;
if (leaf_ver == TAPROOT_LEAF_TAPSCRIPT) {
subdesc = InferScript(CScript(script.begin(), script.end()), ParseScriptContext::P2TR, provider);
}
if (!subdesc) {
ok = false;
break;
} else {
subscripts.push_back(std::move(subdesc));
depths.push_back(depth);
}
}
if (ok) {
auto key = InferXOnlyPubkey(tap.internal_key, ParseScriptContext::P2TR, provider);
return std::make_unique<TRDescriptor>(std::move(key), std::move(subscripts), std::move(depths));
}
}
}
// If the above doesn't work, construct a rawtr() descriptor with just the encoded x-only pubkey.
if (pubkey.IsFullyValid()) {
auto key = InferXOnlyPubkey(pubkey, ParseScriptContext::P2TR, provider);
if (key) {
return std::make_unique<RawTRDescriptor>(std::move(key));
}
}
}
if (ctx == ParseScriptContext::P2WSH || ctx == ParseScriptContext::P2TR) {
const auto script_ctx{ctx == ParseScriptContext::P2WSH ? miniscript::MiniscriptContext::P2WSH : miniscript::MiniscriptContext::TAPSCRIPT};
KeyParser parser(/* out = */nullptr, /* in = */&provider, /* ctx = */script_ctx);
auto node = miniscript::FromScript(script, parser);
if (node && node->IsSane()) {
return std::make_unique<MiniscriptDescriptor>(std::move(parser.m_keys), std::move(node));
}
}
// The following descriptors are all top-level only descriptors.
// So if we are not at the top level, return early.
if (ctx != ParseScriptContext::TOP) return nullptr;
CTxDestination dest;
if (ExtractDestination(script, dest)) {
if (GetScriptForDestination(dest) == script) {
return std::make_unique<AddressDescriptor>(std::move(dest));
}
}
return std::make_unique<RawDescriptor>(script);
}
} // namespace
/** Check a descriptor checksum, and update desc to be the checksum-less part. */
bool CheckChecksum(Span<const char>& sp, bool require_checksum, std::string& error, std::string* out_checksum = nullptr)
{
auto check_split = Split(sp, '#');
if (check_split.size() > 2) {
error = "Multiple '#' symbols";
return false;
}
if (check_split.size() == 1 && require_checksum){
error = "Missing checksum";
return false;
}
if (check_split.size() == 2) {
if (check_split[1].size() != 8) {
error = strprintf("Expected 8 character checksum, not %u characters", check_split[1].size());
return false;
}
}
auto checksum = DescriptorChecksum(check_split[0]);
if (checksum.empty()) {
error = "Invalid characters in payload";
return false;
}
if (check_split.size() == 2) {
if (!std::equal(checksum.begin(), checksum.end(), check_split[1].begin())) {
error = strprintf("Provided checksum '%s' does not match computed checksum '%s'", std::string(check_split[1].begin(), check_split[1].end()), checksum);
return false;
}
}
if (out_checksum) *out_checksum = std::move(checksum);
sp = check_split[0];
return true;
}
std::unique_ptr<Descriptor> Parse(const std::string& descriptor, FlatSigningProvider& out, std::string& error, bool require_checksum)
{
Span<const char> sp{descriptor};
if (!CheckChecksum(sp, require_checksum, error)) return nullptr;
uint32_t key_exp_index = 0;
auto ret = ParseScript(key_exp_index, sp, ParseScriptContext::TOP, out, error);
if (sp.size() == 0 && ret) return std::unique_ptr<Descriptor>(std::move(ret));
return nullptr;
}
std::string GetDescriptorChecksum(const std::string& descriptor)
{
std::string ret;
std::string error;
Span<const char> sp{descriptor};
if (!CheckChecksum(sp, false, error, &ret)) return "";
return ret;
}
std::unique_ptr<Descriptor> InferDescriptor(const CScript& script, const SigningProvider& provider)
{
return InferScript(script, ParseScriptContext::TOP, provider);
}
uint256 DescriptorID(const Descriptor& desc)
{
std::string desc_str = desc.ToString(/*compat_format=*/true);
uint256 id;
CSHA256().Write((unsigned char*)desc_str.data(), desc_str.size()).Finalize(id.begin());
return id;
}
void DescriptorCache::CacheParentExtPubKey(uint32_t key_exp_pos, const CExtPubKey& xpub)
{
m_parent_xpubs[key_exp_pos] = xpub;
}
void DescriptorCache::CacheDerivedExtPubKey(uint32_t key_exp_pos, uint32_t der_index, const CExtPubKey& xpub)
{
auto& xpubs = m_derived_xpubs[key_exp_pos];
xpubs[der_index] = xpub;
}
void DescriptorCache::CacheLastHardenedExtPubKey(uint32_t key_exp_pos, const CExtPubKey& xpub)
{
m_last_hardened_xpubs[key_exp_pos] = xpub;
}
bool DescriptorCache::GetCachedParentExtPubKey(uint32_t key_exp_pos, CExtPubKey& xpub) const
{
const auto& it = m_parent_xpubs.find(key_exp_pos);
if (it == m_parent_xpubs.end()) return false;
xpub = it->second;
return true;
}
bool DescriptorCache::GetCachedDerivedExtPubKey(uint32_t key_exp_pos, uint32_t der_index, CExtPubKey& xpub) const
{
const auto& key_exp_it = m_derived_xpubs.find(key_exp_pos);
if (key_exp_it == m_derived_xpubs.end()) return false;
const auto& der_it = key_exp_it->second.find(der_index);
if (der_it == key_exp_it->second.end()) return false;
xpub = der_it->second;
return true;
}
bool DescriptorCache::GetCachedLastHardenedExtPubKey(uint32_t key_exp_pos, CExtPubKey& xpub) const
{
const auto& it = m_last_hardened_xpubs.find(key_exp_pos);
if (it == m_last_hardened_xpubs.end()) return false;
xpub = it->second;
return true;
}
DescriptorCache DescriptorCache::MergeAndDiff(const DescriptorCache& other)
{
DescriptorCache diff;
for (const auto& parent_xpub_pair : other.GetCachedParentExtPubKeys()) {
CExtPubKey xpub;
if (GetCachedParentExtPubKey(parent_xpub_pair.first, xpub)) {
if (xpub != parent_xpub_pair.second) {
throw std::runtime_error(std::string(__func__) + ": New cached parent xpub does not match already cached parent xpub");
}
continue;
}
CacheParentExtPubKey(parent_xpub_pair.first, parent_xpub_pair.second);
diff.CacheParentExtPubKey(parent_xpub_pair.first, parent_xpub_pair.second);
}
for (const auto& derived_xpub_map_pair : other.GetCachedDerivedExtPubKeys()) {
for (const auto& derived_xpub_pair : derived_xpub_map_pair.second) {
CExtPubKey xpub;
if (GetCachedDerivedExtPubKey(derived_xpub_map_pair.first, derived_xpub_pair.first, xpub)) {
if (xpub != derived_xpub_pair.second) {
throw std::runtime_error(std::string(__func__) + ": New cached derived xpub does not match already cached derived xpub");
}
continue;
}
CacheDerivedExtPubKey(derived_xpub_map_pair.first, derived_xpub_pair.first, derived_xpub_pair.second);
diff.CacheDerivedExtPubKey(derived_xpub_map_pair.first, derived_xpub_pair.first, derived_xpub_pair.second);
}
}
for (const auto& lh_xpub_pair : other.GetCachedLastHardenedExtPubKeys()) {
CExtPubKey xpub;
if (GetCachedLastHardenedExtPubKey(lh_xpub_pair.first, xpub)) {
if (xpub != lh_xpub_pair.second) {
throw std::runtime_error(std::string(__func__) + ": New cached last hardened xpub does not match already cached last hardened xpub");
}
continue;
}
CacheLastHardenedExtPubKey(lh_xpub_pair.first, lh_xpub_pair.second);
diff.CacheLastHardenedExtPubKey(lh_xpub_pair.first, lh_xpub_pair.second);
}
return diff;
}
ExtPubKeyMap DescriptorCache::GetCachedParentExtPubKeys() const
{
return m_parent_xpubs;
}
std::unordered_map<uint32_t, ExtPubKeyMap> DescriptorCache::GetCachedDerivedExtPubKeys() const
{
return m_derived_xpubs;
}
ExtPubKeyMap DescriptorCache::GetCachedLastHardenedExtPubKeys() const
{
return m_last_hardened_xpubs;
}
|